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Abstract
A stochastic differential equation model is derived for cotton fibers that are expe-
riencing breakage. The model provides greater understanding of the fiber breakage
phenomenon and the origination of different fiber-length distributions. In the sto-
chastic model, the fibers are grouped by length. In this manner, the cotton fiber
distribution can be considered as a population distribution. An Ito stochastic dif-
ferential equation model is derived by carefully considering the population process
and breakage possibilities over a short time interval. Comparisons between the sto-
chastic model and Monte Carlo calculations indicate that a stochastic differential
equation can accurately model fiber-length distributions. In addition, the stochastic
model generalizes classic deterministic integra-differential equation models for fiber
breakage.
Keywords - model, stochastic differential equation, Ito, cotton, fiber breakage

In cotton thread manufacture, the cotton fiber length distribution determines many

of the characteristics of the thread. Fiber length is a good indicator of spinning

efficiency, yarn strength, and yarn uniformity. Fiber length distribution is affected

by breakage during processing (Krifa, 2006; Meyer et al., 1966). In cotton process-

ing, fiber breakage occurs in ginning and carding. Breakage of the fibers in cotton



The development of a stochastic differential equation (SDE) model for fiber-length

distributions provides more understanding of the fiber breakage phenomenon and

the origination of different fiber-length distributions (Rakan, 2007). By comparing

calculations of the stochastic model with fiber-length data, fiber breakage parameters

can be estimated and distribution characteristics can be investigated.

In the stochastic model, the fibers are grouped by length. In this manner, the

cotton fiber distribution can be considered as a population distribution. The SDE

model is derived by carefully considering the population process and breakage possi-

bilities over a short time interval using stochastic modeling techniques described, for

example, in (Allen, 1999; Allen, 2003; Allen, 2007). First, a discrete stochastic model

is derived where the breakage phenomenon is carefully studied for a short time inter-

val. Then, a system of stochastic differential equations is identified whose probability

distribution approximates that of the discrete stochastic model.

Comparisons of calculational results using a stochastic model for cotton fiber

breakage with Monte Carlo computational results indicate that an SDE model can

accurately estimate fiber-length distributions. In addition, the SDE model generalizes

classic deterministic integra-differential equation models for fiber breakage described,

for example, in (Meyer et aI., 1966). Furthermore, the SDE model gives information

on the variability in fiber-length distributions which deterministic models are unable

to provide.

In developing an SDE model, m populations, {Nk(t)}k'=l> of fibers having different

lengths are considered as functions of time t. Some terminology associated with the

stochastic model is required and is introduced as follows.

Let L = fiber length where it is assumed that 0 :S L :S Lmax·

Let Lk = kh for k = 0, 1,2, ... ,m where h = Lmax/m.



Let Sk,l = fraction of fragments of length L1 formed from breakage of fibers of length

Lk. (Note: that L~~11 Sk,l = 1 and Sk,k-l = Sk,d

Let Pk,l(t)dt = Nk(t)Sk,lqkdt = probability of a fragment of length L1 being formed

from breakage of a fiber of length Lk in time t to t + dt.

To develop the model, the changes in the fiber populations are carefully studied

and tabulated for a small time interval dt. Then, for the small time interval, the

mean change E(Ci.N(t)) and the covariance in the change

are calculated where terms of order (dt)2 are neglected. For example, consider the

special case where m=8, that is, there are 8 groups of fibers. Consider a fiber in the

7th group breaking into two fibers, one in group 5 and one in group 2. The change

produced is:

by summing the products of the changes with the respective probabilities. In general,

for any m, it can be shown that the lth component of E(Ci.N(t)) has the form:

m 1-1

E(Ci.N(t))1 = L Pk,l(t)dt - LPl,k(t)dt.
k=I+1 k=1

m k-l

E ((Ci.N(t))(Ci.N(t)f) = L L Ck,lpk,l(t)dt
k=1 1=1



where Ok,l is the appropriate matrix that accounts for a fiber of group k breaking

into a fiber of group l and group k -l. For example, for the special case where m = 8

and a fiber in the 7th group breaks into two fibers, one in group 5 and one in group

0 0 0 0 0 0 0 0
0 1 0 0 1 0 -1 0
0 0 0 0 0 0 0 0

07,5 = (!:::..Nf,5(!:::..Ry,5)T = 0 0 0 0 0 0 0 0
0 1 0 0 1 0 -1 0
0 0 0 0 0 0 0 0
0 -1 0 0 -1 0 1 0
0 0 0 0 0 0 0 0

Then, the probability distribution peN, t) of the fiber-length populations with time t

approximately satisfies the forward Kolmogorov equation (Allen, 1999; Allen, 2003;

where N(t) = [N1(t), N2(t), ... , Nm(t)jT are the fiber populations in each length group

and Wet) = [W1(t), ... , Wm(t)jT is an m-dimensional Wiener process (Allen, 1999;

Allen, 2003; Allen, 2007). Equation (1) is an SDE model for the fiber-length popula-

It is interesting to note that the deterministic part of equation (1) reduces for a

large number of groups m to a well-known integra-differential equation. Consider the



m j-l

Nj(t + dt) = Nj(t) + E(6.N(t))j = Nj(t) + L Pk,j(t) dt - LPj,k(t) dt.
k=j+l k=l

m j-l

Nj(t + dt) = Nj(t) + L Nk(t)Sk,jqk dt - L Nj(t)Sj,kqj dt.
k=j+l k=l

Letting Nj(t) ~ N(Lj, t)6.L, Sk,j = S(Lk, Lj)6.L, and % = q(Lj), then

N(Lj, t + dt) ~ N(Lj, t) + rmax

S(>', Lj)q(>')N(>', t) d>'dtJLi+1_lLi
-
1

S(Lj, >.)q(Lj)N(Lj, t) d>'dt.

8N(L t) rLmax

8t' = -q(L)N(L, t) + JL S(>', L)q(>')N(>', t) d>..

This integra-differential equation is well-known in fiber breakage studies and is de-

rived, for example, in (Meyer et al., 1966).

To test stochastic differential equation model (1), the model is compared computa-

tionally with Monte Carlo calculations. In the Monte Carlo calculations, for each

small time step, each fiber is checked for breakage. If breakage occurs, the fiber is

randomly divided. Considered in these calculations is the situation where breakage

occurs randomly and the probability for breakage is proportional to the length of the

qk dt = J1 (LLk ) dt
max

h 1
Sk,j = Lk = k



where Sk,j is the fraction of fragments of length Lj formed from breakage of fibers of

length Lk.

dN(t) = BN(t) dt + (V(t))1/2 dW(t),

where B is a constant m x m matrix. For example, for the case where the number of

fiber groups is m = 8, then

-1 2 2 2 2 2 2 2
0 -1 2 2 2 2 2 2
0 0 -1 2 2 2 2 2

B= 0 0 0 -1 2 2 2 2
J-Lh/Lmax.0 0 0 0 -1 2 2 2

0 0 0 0 0 -1 2 2
0 0 0 0 0 0 -1 2
0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0
0 1 0 0 1 0 -1 0
0 0 0 0 0 0 0 0

C7,5 = 0 0 0 0 0 0 0 0
0 1 0 0 1 0 -1 0
0 0 0 0 0 0 0 0
0 -1 0 0 -1 0 1 0
0 0 0 0 0 0 0 0

In the calculations, the number of groups m was set to 50, the parameter J-L was

set equal to unity, and it was assumed that there were initially 100 fibers with each

fiber initially 1 inch in length. The calculational results are compared in Table 1 for

the Monte Carlo method and the SDE model (1) at time t = 1.0. The averages are

given for 200 sample paths. The results indicate very good agreement between the

two different procedures. In addition, in Figures 1 and 2, the average number of fibers

in each group and the variances for each fiber length group are presented for the 50

Additional computations were performed with a more realistic initial fiber-length

distribution. For these calculations, it was assumed that the fibers initially were



Avg. Number Standard Dev. Average Fiber Standard Dev.
of Fibers in No. of Fibers Length in Fiber Length

200.5 (MC) 10.57 (MC) 0.5001 (MC) 0.0263 (MC)
197.8 (SDE) 11.47 (SDE) 0.5068 (SDE) 0.0265 (SDE)

Table 1: Monte Carlo (MC) and Stochastic Differential Equation (SDE) Calculational
Results on Fiber Lengths at Time t = 1.0.
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Figure 1: Average number of fibers for each group at time t = 1.0, SDE (left) and
Monte Carlo (right), Fibers initially in group 50

distributed as Nk(O) = 2(k - 20) for k = 20,21, ... ,35 and Nk(O) = 2(50 - k) for

k = 36,37, ... ,50 where Nk(O) was the initial number of fibers of length Lk = 0.02k

bimodal structure is apparent in the calculated fiber-length distribution. A bimodal

distribution often appears in cotton fiber-length data (Krifa, 2006). For comparison,

the distribution of cotton fiber lengths collected at a carding chute is presented in

4. An Equivalent SDE Model

It is interesting that the SDE model (1) is not a unique stochastic differential equation

model for cotton fiber breakage. There exist alternate SDE systems that are equiv-

alent to system (1) in the sense that they share the same sample paths. In (Allen,
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Figure 2: Variances for each group at time t = 1.0, SDE (left) and Monte Carlo
(right), Fibers initially in group 50

dN(t) = fj(N(t), t) dt + G(N(t), t) dW*(t),

where W(t) = [W1(t), W2(t), ... ,Wm(t)jT, W*(t) = [Wt(t), W;(t), ... ,W;(t)jT, and

Wi(t) for i = 1,2, ... ,m and W/(t) for i = 1,2, ... ,d are independent Wiener

processes. Essentially, the two SDE models are equivalent if they possess the identi-

cal covariance matrix V = E(ti.N) (ti.N)T jdt. Applying this result to model (1), an

m k-1

dN(t) = fj(N(t), t) dt + L L(ti.N)k,I(Pk,l(t)) 1/2 dW:,I(t), (2)
k=l 1=1



Figure 3: Calculated fiber length distribution after random breakage at time t = 1.0
(Using the SDE model)

-1,
1,
0,

if i = k
ifi=l or i=k-l
otherwise.

Notice, for SDE model (2), that d = m(m - 1)/2 Wiener processes are required

whereas SDE model (1) only requires m Wiener processes. However, model (2) does

m k-1 m k-1

= L L L L E[(~N)kJ(PkJ)I/2(dWkJ)(dW:,I)T((~N)k,lf(Pk,I)I/2]/dt
k=1 i=1 k=1 1=1

m k-1

= L L E((~N)k,I((~N)k,lf Pk,l
k=1 1=1
m k-1

= L L Ck,lpk,l
k=1 1=1

=v



the parameter J.l was set equal to unity, and it was assumed that there were initially

100 one-inch fibers. Two hundred sample paths were computed for each SDE model.

The calculational results are compared in Table 2 for SDE model (1) and SDE model

(2) at time t = 1.0. The results indicate good agreement between the two different

Avg. Number Standard Dev. Average Fiber Standard Dev.
of Fibers in No. of Fibers Length in Fiber Length

197.8 (SDE (1)) 11.47 (SDE (1)) 0.5068 (SDE (1)) 0.0265 (SDE (1))
196.3 (SDE (2)) 10.25 (SDE (2)) 0.5109 (SDE (2)) 0.0271 (SDE (2))

~0.04
rnc:
Q)

Cl0.03

In summary, a stochastic differential equation model was developed for fibers under-

going breakage. The SDE model generalized a classic deterministic model for fiber

breakage and the SDE model compared well with Monte Carlo computations for ran-

dom breakage. Furthermore, calculations with the SDE model exhibited a bimodal
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