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Abstract

Feed-forward and recurrent neural networks ttave been successfully used for modelling
and control of non-linear systems. The main features of these systems such as the ability
to learn from examples and to self-adapt ar¢ very well suited for the multi-resolution
approach intrinsic to wavelets. Wavelets : offer an adequate framework for the
representation of “natural” signals and imagés that are described by piece-wise smooth
functions, with rather sharp transitions between neighbouring domains. The combination
of wavelet theory and neural networks has le:?d to the development of wavelet networks
(WNNs). WNNs are neural networks using wavelets as activation function, where both
the position and the dilation of the wavelets are optimised besides the weights. Their
strength lies in the capability of catching essential features in “frequency-rich” signals. In
this paper an infinite impulse response (IIR) r¢current structure is combined in cascade to
a WNN in a proposed controller-scheme. The effectiveness of the proposed controller is
illustrated through an application to composiltion control in a continuously stirred tank
reactor (CSTR) system. Simulation results demonstrate the applicability of the proposed
design method to non-linear control systems.

Keywords: wavelet theory, neural networks, infinite impulse response, modelling,
control

1. INTRODUCTION

The currently existing complex plants cannot be accurately described by traditional
rigorous mathematical models, and there are increasing needs for highly accurate control
and autonomous behaviour in control, robotics and artificial life communities. The
conventional approaches for understanding and predicting the behaviour of such systems
based on analytical techniques can prove to ‘Tbe inadequate. These difficulties lead to a
number of challenging problems, ie., embed the human intelligence into a machine,
because there is a huge gap between the humahn intelligence and the machine intelligence.
With emerging development in neural networks (NN) and fuzzy logic technologies, non-
linear modelling designs can expand to even greater horizons. Generally, in many
applications multi/single layer feed-forward neural networks have demonstrated an
amazing ability to learn the desired map from discrete data. A number of rigorous
mathematical proofs have been provided to explain this uncanny ability of feed-forward
neural networks to approximate maps [1].
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In recent years, wavelets have become a wvery active subject in many scientific and
engineering research areas. Especially WNNS, inspired by both the feed-forward neural
networks and wavelet decompositions, have received considerable attention [2] and
become a popular tool for function approximation. The main characteristic of WNN is
that some kinds of wavelet functions are used as the nonlinear transformation function in
the hidden layer, instead of the usual sigmoid function. Incorporating the time-frequency
localisation properties of wavelets and the learning abilities of NNs, WNNs have shown
its advantages over the regular methods such as NNs for complex nonlinear system
modelling. Unlike the multilayer perceptron which is a global network, WNN is a local
network in which the output function is well localised in both time and frequency
domains. In a local network only a small subset of weights are active at each point in the
output space and the training of the network in one part of the input space does not
corrupt that which has already been leamed in more distant regions. Thus the learning
speed of the local network is generally much faster than the global network. The radial
basis function (RBF) network is also an examgle of a spatially local network. In addition,
local recurrent networks or temporal local networks such as centre recurrent, linear
recurrent, and IIR recurrent structures can bé used in cascade with RBF networks to
provide a double local network architecture resulting in even quicker learning and faster
convergence [3].

At present, there are two different kinds of WNN structure, one with fixed wavelet
bases, where the dilation and translation parameters of wavelet basis are fixed, and only
the output layer weights are adjustable. For ‘the WNN with fixed wavelets, the main
problem is the selection of wavelet bases/frames. The wavelet basis has to be selected
appropriately since the choice of the wavelét basis can be critical to approximation
performance. Another type is the variable wavelet bases, where the dilation parameters,
translation parameters and the output layer welights are adjustable. Stability of the WNN
structures as identification/controller schemes (structural WNN’s adaptation, parameter
adjusting and control of nonlinear systems) has been carried out using the Lyapunov
theory [16].

In terms of engineering applications, WNNs have also shown promising results in
both signal representation and classification [4-5]. The main objective of this work is to
investigate the applicability of an Adaptive Neuro-Wavelet Network (ANW) architecture
that incorporates an impulse infinite-response (IIR) filter for modelling and control of
non-linear processes. Traditional self-tuning dadaptive control approaches are limited in
that they cannot deal with complex nonlinear systems. Typically, these techniques
assume that the control model is operating in a linear region. The parameters of a
linearised plant model are estimated recursively and used to update the controllers.
Generally, it is not possible to design a controller based on mathematical analysis for
such plants that consist of the nonlinearity and the uncertainty. The problem is
exacerbated when the functions describing the plants are unknown and change with time
[6]. It is important to develop an effective /technique in which the structure of the
unknown, linear/nonlinear plant models can be identified as an adaptive process; and
controllers have to be designed which act rapidly, accurately and in a stable fashion.
Developments in neuro-control design [7] have proved to be useful for a wide class of
practical situations showing that they can cope with significant unknown nonlinearity.
The idea of neuro-control is to first process an identification model that approximates the
unknown dynamics of the plant in which the parameters of the neural network are
adjusted off-line. In a recent research study a PI control strategy using WNN schemes
combined with TIR filters has been proposed for the identification/control of a wind
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turbine used in a wind energy conversion system [17]. The authors utilised adaptive
RASP (Rational Functions with Second-Otder) wavelet functions. These functions
although are characterized from a fast tralning time when they are incorporated in a
WNN structure. However oscillations and instability has been reported when the used
number of RASP functions is exceed a specifi¢ number.

The goal of this research study is to impjement a control method that addresses the
self-tuning PI control problems for severely nonlinear systems by utilising ANWs to
achieve a nonlinear controller design. In contrast to the RASP function, in this study, the
usage of Morlet functions is proposed. The Morlet wavelet function is directional (in the
sense of being effective in selecting orientations) and capable of fine tuning specific
frequencies. These latter capabilities are ¢specially important in filtering out the
background noise, and comprise the advantages of the Morlet wavelet with respect to
other filters such as RASP and Shannon. In fact, having exponential decay in both the
time and frequency domain, the Morlet function has optimal joint time-frequency
concentration.

Simulation results to a pH CSTR demonstrate the above concept. In this proposed
method, the ANW scheme is needed to learn the characteristics of the plant dynamic
systems and make use of it to determine the future inputs that will minimise error
performance index so as to compensate the PI controller parameters.

2. CONTINUOUS STIRRED TANK REACTOR (CSTR) FOR pH CONTROL

We investigate a benchmark problem for nonlinear control system design, which is based
on a specific continuous stirred tank reactor (CSTR). Let consider a pH CSTR

schematically shown in Fig. 1.
2

NaOH

Fig. 1: pH CSTR

The CSTR has two input streams, one containing sodium hydroxide and the other acetic
acid. A dynamic model for the pH in the tank can be obtained using the approach
presented by Jean Saint-Donat [8]. Fig. 2 shows that the process has highly non-linear
steady-state behaviour. It is a weak acid/strobg base system which exhibits large gain
changes. It can be seen that pH CSTR is highly nonlinear around pH=7. In fact, the
steady state pH gain to basic flow changes by a factor of 2.8.

The model is derived from first principles, material balances and chemical equilibria, and
has become generally accepted in the literatutre. The method implements mass balances
on components, or combinations of components, called reaction invariants by Gustafsson
and Waller [9], of the CSTR solution’s ionic species. These reaction invariants are
suitable for mass balancing because, unlike the concentration of the hydrogen ion, they
do not change as the reaction equilibrium shlfts The equilibrium relations for the weak
acid/strong base system are:
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where, K is the dissociation constant of I-}AC, K,is the dissociation constant of
NaOH and K is the dissociation constant of water. NaOH is a strong base which fully
dissociates (i.e. 1/K, = 0) and hence Eq. 2 yields NaOH =0.
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Fig. 2: CSTR process curve

Two reaction invariants for the reactions of the system are the total ionic concentration of
the acid and the total ionic concentration of the base:

& =[HAC)+[ 4C"] @
¢ =[Na] | Q)

In addition to the chemical equilibria for the acid and base, the solution must remain
electrically neutral at all times, giving

§+[H*:|=|:OH‘]+DAC‘:| (6)
The reaction invariants, £ and ¢ are found frohl the following mass balances
Total acetate balance:

RG -+ Ry =r ™)
Sodium ion balance: |
F,C, - (R +E)§=V% ®)

where F; is the acid flow rate, F; is the base ﬂow rate, C; is the acid concentration, C; is
the base concentration and V is the CSTR liquid volume. Finally the pH is calculated
using ‘

pH =—Log,,([H"]) ©9)
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3. WAVELET NEURAL NETWORKS AS FUNCTION APPROXIMATORS

Pati and Krishnaprasad [10] described a ndtwork in which the sigmoidal activation
functions of a typical neural network are repljhced by particular shifts and dilations of a
given mother wavelet. Thus, consider Eq.1 wﬁere T, a closed proper subset of RxR,, is
the set of all training pairs (x,y): 1

y=f® =) w,¥,,x), Y(xy)e T,w,,.x,yeRmeZnecl" (10)
where "=" is defined such that there exists & € R so that
e>|rxm-y (11
and where v, is a wavelet such that ‘
Y () =27 292" x = ) (12)

Pati’s network is similar to the general expression of the discrete wavelet transform. In
this case, a network structure is being consideIed, that is simply a projection onto a basis
— an inner product — where the basis is a wavélet basis. The training vectors are thus just
been projecting onto the wavelet basis. Since an infinite basis cannot be implemented, a
finite subset over the compactly supported interval on which the training data is defined
is chosen. Furthermore, the set is also limited to a maximum dilation. Define I as the
finite set of all shifts and dilations (m,n). Then the training data can now been

approximated by the finite set of shifts and dilations (m,n) €I and a corresponding set of
coefficients (or weights) {w, .}, ,a ©R [10]. The overall approximation error is

determined by
2

(13)

E= Y |fm-y

(x.)eT

This error functional is nearly identical to that of the Back-propagation (BP) algorithm
with only one important difference. It turns oﬁt that the error functional described above
is convex in terms of the weights wy,,. This|is quite different from the BP algorithm,
which, in general, has a non-linear error su&face. Due to the convexity of the error
functional, any minimiser is a global minirriiser. Furthermore, it is clear that simple
iterative schemes such as gradient descent perform adequately since there is no
possibility of getting stuck in local minim# The authors have presented a network
synthesis algorithm. The algorithm involves cﬂetermining the set of wavelets for use as
activation functions for the hidden layer neur{ms by considering the time and frequency
limits of the training data. Given that the trainfhng data is bounded in time and frequency,
the exact shifts and dilations of the mothc{r wavelet can be determined which are
necessary to adequately cover the time and frequency range of the training data. This
number is the upper bound of hidden layefr neurons necessary to approximate the
functional relationship between x and y to an}f precision ¢. However, this method can be



226 Kodogiannis, Petrounias and Lygouras

computationally intractable if the number of required wavelets is very large; i.e., the time
and frequency bounds are very large. In an alternative approach, Zhang [11] describes an
implementation of a wavelet neural network] based on Pati and Krishnaprasad’s [10]
synthesis algorithm and the orthonormal leést squares minimisation method. Zhang
proposes to build a candidate set of wavelets based from the initial infinite set of all
possible shifts and dilations of the mother wavelet by first truncating it to a finite set
based on some a priori knowledge about the training data. His method involves using the
Gram-Schmidt ortho-normalisation method to' determine the N wavelets and their shift
and dilation parameters. Finally, the weights érre calculated by a simple inversion of an
upper triangular matrix. The criteria are given by the time and frequency support of the
training data set. The resulting set is a subset of the regular pyramid structure of wavelets
usually associated with dyadic multiresolutimﬁ decomposition. The goal is to select N
wavelets from the candidate set, such that these N are optimal with respect to
approximation error [11].

4. ADAPTIVE NEURAL WAVELET NETWORK

In contrast to the networks proposed by Pati and Krishnaprasad and Zhang, an alternative
approach is proposed that does not fix the shift and dilation parameters [12]. The
“Adaptive Neural-Wavelet network™ (ANW) concept could be considered as a capable
for approximating arbitrary nonlinear functions. Fig. 3 illustrates the schematic of the
proposed network. In this proposed architecture, the approximation model consists of an
adaptive neural-network topology with the wavelet transformation embedded in the
hidden units.

Such architecture approximates any desired signal z(#) by generalising a linear
combination if a set of daughter wavelets 4, , (¥), where 4, ,(¢) are generated by dilation a

and translation b from a mother waveleth(z):

h,,(6)=h (’—_—b) (14)

a

with the dilation factora>0. Given a list of K candidate wavelets obtained from the
discrete wavelet decomposition, the approximated signal of the network p(¢) can be

represented by:
K
2(0) = u()Y, wih,, 5, (1) (15)
k=1

where w, are the weight coefficients towards nétwork’s output.

The inversion formula of the wavelet transform cannot be expressed directly by finite neural
networks, but can be approximated using neural network topology with finite hidden units. This
is so because most targets are restricted in both the time and frequency domain. The training
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algorithm consists of two processes: the initialisaltion phase and the parameters’ update through
the minimisation of error. The network consists df one hidden layer with an appropriate number
of nodes, which are defined by the user.

Fig. 3: Schematic df ANW network

It is assumed that the network output function satisfies the admissibility condition and
that the network sufficiently distributes K sbts of the mother wavelet basis function
defined by the user, evenly partitioning the r¢g10n of interest. The wavelet used in this

study is the Morlet function.
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Fig. 4: Cos-Gaussian Morlet Wavelet H(t) and its Fourier Transform H(w)

The Morlet’s basic wavelet function is a multiplication of Fourier basis with a Gaussian
window [13]:

h(r) =exp(jw,r) exp(—Q.Srz) (16)
Its real part is a Cos-Gaussian and the imagit;ary part is a Sin-Gaussian function. The

Cos-Gaussian wavelet is a real even function. The Fourier transform of the Cos-Gaussian

wavelet is the Gaussian functions shifted to a)oi and —a, respectively:

T !
H(w)= \/;(exp[—O.S(w ~@,)*1+exp[-0.5(w+ @,)*]) (17)
Which is even and real positive valued. Fig. 4 illustrates the plots of the Morlet wavelet
and its Fourier spectrum, with@, = 4. The Morlet wavelets do not satisfy the wavelet

admissible condition, because

H(0) =27 exp(~0.56,7) % 0 (18)
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That leads toc, = +oo. However, if w,is suffidiently large, say w, =4, then H(0) comes

‘ . - . .
very close to zero and can be practically considered as zero in numerical computations.
The neural-network parameters w, ,a, ,b, an b# optimised by minimising the mean square

|

error (E) function over all samples. Thus, ie(t) =z, (t)—z,(t)is a time varying error
function at time ¢, where y, (¢)is the desired (target) response. The (£) function is defined
by :

E=1/ 22 (z(t)—- 1:18(t))2 (19)

We choose to minimise E using the gadieﬁt descent minimisation algorithm for the
variables a, and b. Therefore we must find thé partial derivatives of Eq. 19 with respect
tow,,a,,b,. ‘

5@ - _Z_‘: () - 2e)h(= " %ty
T . . t—bk‘ L
a— = 20 - HOuEwH =)

g—Z(z(t) z(t))u(t)wh(%)( ")~

ak

1 b, OE (20)
t—
> (20~ 20wk ( < )( [ J —H -
P a4 a a, b,
The resulting update for all parameters to be tqned 1s as follows:
OE
new old
a” =a” -n,—,
k e~ T, 8a,
new Ol aE
b =b ~1, a,
vew o OF
W =wp -7, EP 1)
where 7, € Ris the step-size parameter of the gradient descent update.

w(r) - IR filter

[
R

Fig. 5: Schematic of HUNW-IIR network
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In cascade with this network we have deploylred a local infinite impulse response (IIR)
block structure. The IIR structure is then dsed to create a ‘‘double’’ local network
architecture that provides a computationally effﬁcient method of training the system and
results accordingly in quick learning, and fast ¢onvergence, subjected to the number of K
wavelet functions employed in the ANW schelf:ne [18].

Fig. 5 illustrates the structure which apTroximating any desired signal y(r)by
generalising a linear combination of a set of|daughter wavelets A(¢) cascaded with the
local IIR recurrent networks. The approxiﬂated signal of the network jf) can be

modelled by: ‘
. M N .
PO = cz@e~Du@®)+d, 3+ j@) (22)
i=0 j=1 ;
where M andc, are the number of feed-forwarjd delays and coefficients of the IIR filter,

respectively, N and d, are the number of feedbbck delays and recursive filter coefficients,

respectively. The IIR structure as shown throquh Eq. 22 is illustrated in Fig. 6.

Fig. 6: Schematic of the IIR scheme

The signals u(¢)and v(f)are the input and co-input to the system at time ¢, respectively.
Input v(r)is usually kept small for feedback st#bility purposes. In this extended structure,

the neural-network parametersw, ,a, ,b, ,c;, d;can be optimised by minimising the mean
square error (E) function over all samples using again the gradient descent learning

algorithm. The related gradients that are required to update these parameters are given as:

gwﬁ_; - _gu(t)e(t)g ch [—t—;-f)i~i] | (23)
aif; _ gu(:)e(r)gc,.wk h. (r - b _i] @4)
oE & 4 (t-p, (2=b _.|_[t=h |OF

6—@{—;“(’)90);0’{ a, ]w"h ( %a,‘ l] ( 9 ]abk )
g_f - ‘iu(t)e(t)z(t - : @0
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oE L L ‘
— == V(D)1 - J) 27)
6dj =1
The resulting update for the remaining parameters to be tuned is as follows:
OE
G = -n.—, | (28)
Oc,
oF

i =d ~n, @9

.
with 7, , € R is the step-size parameter of the gradient descent update.

ANW scheme is similar to the structure of a RBF network, in the sense that wavelets
are local basis functions that provide less interfering than global ones, leading to a
noncomplex dependency in the neural network parameters. However, during the
initialisation phase, care should be taken for détermining the initial parameters values. All
initial weights w, are initialised to small; values between +0.2 (similarly to the

initialisation of MLP networks) while the dilation parameters g, are initialised using the

heuristic rule “global first nearest—neighbour”}[19]. It uses the uniform average width for
all units using the Euclidean distance in the input space between each unit m and its
nearest neighbour #. Note that if the dilation parameters are set too wide, they can cause
several overlapping partitions and thus cannot be realised. Setting a, too narrow may

result in longer convergence. Initial translati{?n parameters b, are spaced equally apart

throughout the training data to provide non-overlapping partitions throughout the
neighbouring intervals. Finally, the initial IIR coefficients ¢ and d should be set so that
the system has poles inside the unit circle, thus both are set to 0.1.

A common problem of IIR adaptive networks is the problem of guaranteeing
stability and convergence. In particular, IIR adaptive networks are prone to instability as
a consequence of unbounded growth of the adaptation coefficients. Furthermore,
recursively adapting coefficients creates movement in the location of poles from the
origin, causing the network to become unstable, even if the adaptation is stable. Finally,
the convergence of the steepest descent gradient algorithm that is applied to minimise the
error sometimes becomes stuck in a local minimum. The problem of the potential
adaptive instability can be solved by successively reducing the learning rate factor. In
addition, as it is shown in Fig.6, a “gamma ope¢rator”, which imposes both trivial stability

conditions and is computationally effective has been utilised [20]. The “gamma operator”
has the following form:

Wt (30)

) - r

t-(1-7)
where vy is a real parameter that controls the memory depth of this operator and usually is
inthe range 0<y<2.



Adaptive Wavelet Neural Networks f 231

5. HYBRID-PI BASED CONTROLLER

Traditional self-tuning adaptive control approaches are limited in that they cannot deal
with complex nonlinear systems. Typically, hhese techniques assume that the control
model is operating in a linear region. The p#rameters of a linearised plant model are
estimated recursively and used to update the qbontrollers. Generally, it is not possible to
design a controller based on mathematical analysis for such plants that consist of the

|
nonlinearity and the uncertainty. The problem is exacerbated when the functions

describing the plants are unknown and change with time. Such nonlinear time-varying
adaptive control problems are arising with increasing frequency in today’s technology. It
is important to develop an effective technique in which the structure of the unknown,
linear/nonlinear plant models can be identified as an adaptive process; and controllers
have to be designed which act rapidly, accuratély and in a stable fashion.

The proposed scheme in this research study is the usage of adaptive self-tuning PI
controllers using the ANW network. In this methodology, the ANW scheme is needed to
learn the characteristics of the plant dynamic systems and make use of it to determine the
future inputs that will minimise error performance index so as to compensate the PI
controller parameters.

The PI controller is one of the simplest of thjp traditional feedback controller schemes.
Nevertheless, the linear PI algorithm might be difficult to deal with processes with
complex dynamics such as those with large: dead time, inverse response and highly
nonlinear characteristics. To improve the control performance, an adaptive PI algorithm
is proposed by utilising the simple PI controller structure based on self-tuning schemes of
the ANW parameters. The basic idea of PI cohtrol is that the control action u(k) should
be proportional to the error and the integral jof the error over time. However, limited
performance can be of disadvantages to the linear PI controller i.e., the PI mode is used to
eliminate the steady-state offset, which sometimes can cause excessive overshoot due to
direct implementation of the integral action, efc. The proposed adaptive variable PI
controller can help to improve the limited perﬁormance of the static PI controller dealing
with conflict in nature between static acduracy (steady-state error) and dynamic
responsiveness (speed of response). Several tuning components determine the

i T
contribution of the weights of the error that sqits a cost function £ = %Z(r(k) (3

k=1
where r(k)is the desired set-point and jz(kj) is the ANW output. Before beginning
tracking operation using the ANW based PI icontroller, the unknown nonlinear CSTR
must be identified according to a certain modél. In this particular identification process,
the model consists of a “neural” network topoiogy with the wavelet transform embedded
in the hidden units. In cascaded with the network is a local infinite impulse response (IIR)

block structure as shown in Fig. 5.
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Let us consider a general SISO dynamical system represented in discrete domain by the
state equations

x(k +1) = f (x(k),u() k)
y(k) = g (x(k), k)
where x(k) e R"and u(k), y(k) e R. The onlyi accessible data are the input # and output

y.
It has been shown [14] that if the linearised system around the equilibrium state is
observable, an input-output representation exist which has the form

y(k +1) = ¢’(J’(k), y(k _1),~~'sy(k -n+ 1),1J!(k)au(k - l)’“"u(k —n+ 1)) (32)
i.e. a function @(.)exists that maps y(k) and u(k),and their n~1past values into

€29

y(k+1) . In view of this, a learning-based model @ can be trained to approximate ¢ over

the domain interest. The considerations are based on the neural network controller design
of the control system. The following alternative model of an unknown plant that can
simplify the computation of the control input i§ described by the equation

y(k+1)=(y(k))+T (y(k))u(k) (33)
for a discrete-time process of dimension 1, whére y(k) and #(k) denote the input and the
output at the k" instant of time. |
If the nonlinearity terms ¢(.)and I'(.)are knawn exactly, the required control u(k) for
tracking a desired output r(k +1) can be computed at every time instant using the formula
il =T+ D=0/ (k)
TGw)
However, if ¢(.) and T'(.)are unknown, the idea is to use the proposed ANW scheme to

(34)

approximate the system dynamics i.e.,

Plhe+1)=p(y(k),0, )+ (y(k),0r Ju(k) (33)
|
28 N o NesLinear N
r MT’C,,/"“WM" o T I’rm"('cu i
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Fig. 7: Proposed dontrol scheme

Comparing the model of Eq. (35) with the one of Eq. (22) we can conclude that

o(y(1),0,)=22d, 3k - j)v(k) (36)
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F(y®),0r) =Y catk-i) (37)

After the nonlinearities ¢@(.)and I'()are approximated by the two distinct network
functions @(.) and f‘(.) with adjustable parameters, represented by®,and

O respectively, the PI control x(k) for tracking a desired output r(k +1)can be obtained

from

u(k)=u(k -1)+ Ple(k)—e(k -]+ Ie(k) (38)
where P and I are proportional and integral galins, u(k) is a plant input at T, where T is
a sampling interval, and

e(k) =r(k)— y(k) (39)

P and I parameters are considered as part of the function of E and can be optimised and
updated according to the cost function E,

P(ky= P(k=1)+ sy (R (2(k) ~ 5k ~D) (40)
I(k) = I(k =1)+ p,e(k)T (k)& (k)| (1)

where I"comes from Eq. (37), and u is the fixed learning rate of each adaptive P/

parameter. Fig. 7 illustrates the diagram of the resulting network topology based on the PI
controller for self-tuning control of CSTR. Stability of the closed loop, where the
parameters of a linear controller are been tuned via a learning model of the nonlinear
plant/process, has been already been addressed in [21], where the proof of tracking error
asymptotic stability is provided.

6. SIMULATION RESULTS

The first step in the ANW model design procédure is the generation of training data set
and this requires the design of the process inplﬁt signal. The design of the input signal for
nonlinear system identification is more cdmplicated than it is for linear system
identification. The input signal should excite%all the frequencies of interest and should
also excite the process over the whole of the required operating region [14].

A Random Amplitude Signal (RAS) is commonly used as the process excitation
signal to generate open loop data for neural network training. This signal consists of a
uniformly distributed random variable appliejJ to the process input at each clock period
and is more likely to exercise the process ovef the desired operating range than a binary
signal [15], such as a pseudo-random binary sequence (PRBS) which is widely employed
for linear system identification. A Random Amplitude Signal is specified by its clock
period, which should be a multiple of the sam 1le time so that the process input is constant
between consecutive samples, and by its amjitude range, which may be expressed as a

percentage maximum deviation from a steady-state value.
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The aim of CSTR process excitation is to generate I/O process data which contains
sufficient information for a neural network to identify the non-linear process dynamics
over the entire operating range, and a RAS' is commonly employed to achieve this.
However, there is no reason why this signal ishould achieve adequate excitation of the
non-linear dynamics of all processes. This is iparticularly so for this CSTR pH process
where the strong non-linearity is characterised by its steady-state titration curve (Fig. 2).
One of the obstacles to accurately modelling such a process is to obtain output data in the
high gain region for network training. When the pH process is excited by a standard
RAS, little output data is generated in the area where the process gain is a maximum. The
data distribution of Fig. 8 illustrates the lack of output data between pH 7 and 10, and any
learning-based network model which is trained with such data could have large prediction
errors in this region.

Such training data base was developed by forcing the stream of sodium hydroxide F,
with a Random Amplitude Signal superimposed on its steady-state value. The parameters
for the CSTR considered can be seen in [8]. It is seen in Fig. 8 the changes in consecutive
process inputs generated by the RAS are often small and this can result in the process
output remaining in a low gain region for sevéral consecutive RAS clock pulses. This is
disadvantageous because it promotes an uneven output data distribution. One practical
way of improving the uneven distribution of the training data is to force the signal
through the region of maximum process gain on each clock pulse.
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The resulting "modified" RAS, illustrated in fig. 9, has a uniformly distributed input in
the two intervals above and below a threshdld level which was chosen as the process
input at maximum steady-state gain. While ﬂ?e data distribution still appears to be very
uneven, there is a threefold increase in the |data density between pH 7 and 10 when
compared to the output data density generated by a standard RAS.

Using the data extracted from a RAS, the ANW scheme with Morlet mother wavelets is
employed to approximate the pH data. IIR block structure with feed forward coefficients
M=3 and feedback coefficients N=3 is alsp implemented. Note that if the dilation
parameters are set too wide, they can cause several overlapping partitions and thus cannot
be rallied. Fig. 10 illustrates the approximation of the CSTR performance using RAS

input signals. The ANW approximates satisfactory the process curve.
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Fig. 10: Performance of médelling the pH Process

In this training process, 36 Morlet wavelets have been employed in the ANW scheme and
the error goal of 0.032 was achieved at 250 iterations/epochs. In general, more
iterations/epochs as well as larger training dataset are needed for a more accurate
performance. The leaming rate parameters for weights, dilations, translations, IIR
feedforward coefficients, and feedback coefficients were fixed at 0.01, 0.05, 0.05, 0.02,
and 0.02, respectively.
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All initial weights w, were initialised to +0.1 and the dilations a, were set initially to

7.5. Just for comparison, an ANW scheme without the feed-forward and feedback
coefficients managed to achieve the same errdr goal however with an increased number
of epochs. Future work will be focused to address the self-structure of the ANW scheme
during the training phase, i.e. the number of wavelet functions to be determined during
the learning process.

After the identification model is completedi, the tracking operation takes command of
the neuro-process control to track the desired siet-point. On-line control results are shown
in Fig. 11. Fig. 11a shows the control result when the system traces step responses, while
Fig. 11b shows that when the system traces g smooth curve. The proposed self-tuning
neuro-wavelet controller utilised the ANW-IItR scheme. Controller parameters P and [/
were initially set at 0.2 and 0.1 respectivelyf which then later vary with local control
network conditions. The emphasis is on the f}lant output responses to the reference set
point. |

7. CONCLUSIONS

This paper discussed the application of neuro-wavelet networks in the implementation of
adaptive controllers for the identification and control of nonlinear processes. The
approach used, based on a single layer feed f¢mard neural networks with hidden nodes
of adaptive Morlet wavelet functions, PI contrqj)ller and an infinite impulse response (IIR)
recurrent structure, allowed fast convergence to a simple nonlinear dynamic behaviour. In
this research study, controller ability for set point tracking was demonstrated on a pH
CSTR process.
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