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ABSTRACT. Combining Carstensen's result from 1991 concerned with the
localization of polynomial zeros and the third order iterative method for the
simultaneous determination of polynomial zeros, we derive a posteriori error bound
method with cubical convergence. The constructed method has useful property of
inclusion methods to produce disks containing all simple zeros of a polynomial.
Computationally verifiable initial conditions that guarantee the convergence of this
method are stated. Some computational aspects and the possibility of
implementation on parallel computers are considered.

With practical computational problems, a standard question should be "what is
the error in the result?" As already pointed out by Wilkinson [33], the considerable
amount of the applied procedure is to improve the approximate result and also to
give error bounds for the improved approximations. The computed solution of a
polynomial equation is only an approximation to the true solution, since there are
errors originating from discretization or truncation and from rounding. In connection
with this effect we quote Henrici's argumentation given in [11]: "Working with finite
word length, we cannot hope to identify exactly a complex number such as a zero of a
polynomial. We can at best exhibit a circle of arbitrary small radius that contains it."
This problem can be overcome by using self-validated iterative methods that use
interval arithmetic, see [1], [18]. In each iteration resulting intervals contain the
desired zeros providing in this way the automatic determination of the upper error
bounds given by radii or semidiagonals of inclusion approximations.

The price to be paid in order to achieve the characteristics of interval methods
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consists of the increase of numerical operations. In order to decrease the computa-
tional cost of these methods, in this paper we study a quasi-interval method that
combines good properties of iterative methods with fast convergence and a poster-
iori error bounds. Simultaneous determination of both centers and radii leads to
an iterative error bound method which has very convenient inclusion property at
each iteration. The main attention is devoted to the construction of initial
conditions for the guaranteed convergence of the proposed method and to the
determination of the convergence rate of a posteriori error bounds.

Let p(z) = zn + al zn-l + ... + an-l z + an (ai E C) be a monic polynomial and let

W(Zi)= p(zJ (iEIn :={l, ... ,n}),
fI(Zi-Zj)
j=l
i'~i

where zJ>""zn are distinct approximations to the simple zeros ;-J>"";-n of P.
For the sake of simplicity, we will often write W(zJ = Wi. The quantity Wi is
often called Weierstrass' correction since it appears in the well known Weierstrass'
iterative method zi = zi - W; (i E In) (also called the Durand-Kerner method [7],
[13]) for the simultaneous computation of all simple zeros of a polynomial.

Studying the problem of determination of polynomial zeros, it is necessary to
consider simultaneously several important tasks such as localization of zeros,
distribution of initial approximations z}O), ... z~O), their closeness and the
convergence of a posteriori error bounds (shorter PEB) given by the size of
inclusion regions containing zeros. An extensive research carried out during the
last two decades (see, e.g., [19], [21], [22], [32]) showed that successful solving the
aforementioned problems can be realized by using an initial condition of the form

w(o) ~ cnd(O) (1)

w(m) = m~lw(z}m) )1, d(m) = mi.n Iz}m) - z}m)1 (m = 0,1,... ),
1~I~n 1~I,J~n

f~i

and m = 0, I ,2,. .. is the iteration index. The quantity Cn depends only on the
polynomial degree n. When we omit the iteration index, then we write simply w
andd.

In what follows we will denote a disk Z with center c and radius r by
parametric notation {c;r}. Combining Carstensen's result [3] concerned with
Gershgorin's disks and the localization of polynomial zeros, and the enclosure
approach recently presented in [23] and [26], we can derive the following useful
inclusion which has the main role in our consideration (see [26] for details).



Theorem 1. Let the condition (1) with Cn < 1I(2n) be valid, then the disks Di

defined by

Dj={Zj; IWjl }=k;pj} (iEln)
1-ncn

are mutually disjoint and each of them contains exactly one zero of P.

Let us assume that the centers Zi of disks Di are calculated by an iterative
method that converges under some suitable conditions, then we generate the
sequences of disks D/m) (m = 0, 1,...) whose radii p/m) =1W/(m) I /(l-ncn)

converge to O.To provide a high computational efficiency it is necessary to apply
only those methods which use quantities already calculated in the previous
iterative step, in our case the corrections Wi since the radii Pi depend on
Weierstrass' corrections Wi.For this reason, we restrict our choice to the class of
derivative free methods which deal with Weierstrass' corrections, the so-called
W-class.

In this paper we will consider the following derivative free simultaneous me-
thod:

(m+!) _ ((m))._ (m) _ (m)( _ n wjm) ). ._Zj -<I>Zj .-Zj ~ 1 L (m) (m) (IEln,m-O,l, ... ).
j=!Zj -Zj
I*j

This method was derived in various ways by M. Presic [29] and later by G. Milo-
vanovic [14] and Tanabe [30]. For this reason we will call this method PMT method,
for brevity. Kanno, Kyurkchiev and Yamamoto [12] have shown that the
method (2) can be obtained by applying classical Euler-Chebyshev's method (see
Traub [31, pp. 81-84]) to the system of nonlinear equations (known as Viete's
formulae)

where ({Jidenotes the k-th elementary symmetric function:
({Jk = L Zj\ Zh ...Zh .

!SN:""hSn
Using a procedure for accelerating convergence of iterative processes, G. Mi-

lovanovic proved [14] that the iterative method (2) has cubic convergence. It is
obvious that (2) belongs to W-class. Another iterative methods of W-class are
given in [2], [8], [15], [16], [24], [27], [28] and [34].

Combining the results of Theorem 1 and (2), we can state the following
inclusion PMT method:

A posteriori error bound PMT method: A posteriori error bfund me-
thod (shorter PER method) is defined by the sequences of disks {Dj(m) (i E In),

D~O)= {z~o).lw(z}O) )I}
I I' l-nc 'n

D}m) = ~}m);p}m)}, (i E In;m = 1,2, ... ), (3)



jw(z(m) )/
z}m) = <I>(z}m-l») by (2), pj(m) = 1 I ,

-ncn

assuming that the initial condition (1) (with Cn ~ 1/(2n» holds.

Remark 1. The sequences of disks given by (3) can be regarded as a quasi-interval
method, which differs structurally from usual interval methods that deal with
disks as arguments; for instance, let us present the following circular interval
method of the third order which does not use the polynomial derivatives

Z(m+l) _ (m) _ ~(m)
j - Zj ----W-(-m-)-

n .
1+ L }j=I-Z~Jm~)-_-Z-)~.m~)

jpj

proposed by Petkovi6 in [17]. Here Z/m) is a disk with center z/m). Both
methods (3) and (4) possess the crucial inclusion property: every of the
produced disks contains exactly one zero in each iteration. More about interval
methods for solving polynomial equations can be found in [18] and [25].

In the convergence analysis and practical realization of the PEB method
(3), we encounter the following important tasks:

1) Establish computationally verifiable initial conditions that guarantee the
convergence of the sequences of radii p/m) of the inclusion disks D/m). This
very important problem has attracted a great attention during the last two
decades (see [22] for details).

2) Determine the convergence order of a posteriori error bound method
when the centers z/m) of disks

D(m) = {z(m).lw(z}m) )I}
I I' I-nc

n

are calculated by the PMT iterative method (2).
3) Compare the computational efficiencies of the PEB method (3) and the

corresponding circular interval methods (4).
4) Using numerical experiments, compare the size of inclusion disks

produced by the PEB method (3) and the corresponding interval method (4).
The study of these tasks is the main goal of this paper.

In this section we consider the tasks referred to as 1) and 2) in the previous
section. In the case of algebraic polynomials, initial conditions should depend only
on attainable data - initial approximations, polynomial degree and polynomial coeffi-
cients. First we prove two necessary assertions given in Lemmas 1 and 2.



d
0)<-

3n
holds, thenfor the iterativemethod (2) and i E In we have

'" WJ. n-l(i) 1-L...-'::""-I < -;
IF-izi - Zj 3n

(ii) Ii. -z.1 < 4n-llwl < 4n-l d'
I I 3n I 9n2 '

(l'l'l') I~ I 9n
2

- 4n + 1d 'zi -Zj > 2 '
9n

2
(l'V) 1 ~ ~ 1 9n - 8n+ 2 d '

zi -Zj > 2 '
9n

n W· 1
L- J +1<-;
j=lzi-Zj 6

W·
Proof. Of (i): Let us introduce (Ji = L J • Using (6) and the definition of d

j#iZi-Zj
one obtains

I '" Wj I I I n -1 4n -11-L...--~I+ (Ji <1+--=--.
j#iZi -Zj 3n 3n

Of(ii): By (i) and (6) we get from (2)

Iii -Zil=Iw;(I- L-W-j-)I~IWilll- L_W_j_I<_4n_-lIWil<_4n_~1d.
j#iZi-Zj j#iZi-Zj 3n 9n

Of(iii): Using (ii) we find

I
~ 1 I 1 1- I 4n-l 9n

2
-4n+lz·-z· >z·-z· -z·-z· >d---d=----d

I J - I J I I 9n2 9n2 .
Of(iv): By (ii) one gets

_ ~ ~ ~ 4n-l 9n2 -8n+2
Iz. - Z ·1 > Iz. - Z ·I-Iz.- z'I-lz . - Z ·1 > d - 2, -d =--d

I J - I J I I J J 9n2 9n2 .

Of (v): Let us introduce
n W.

Ti=L_ J +1.
j=lzi-Zj



From the iterative formula (2) we obtain

~ 1

1 1 3n--<--=--I-la-I 1- n-l 2n + 1
I 3n

lad ;~l n-l
--<--=-- (11)
1-la-I 1- n-l 2n + 1

I 3n

Starting from (9) and using (10) and (11) we find

ITJ,;-l-lzi-zdL~ Iwjl +~L~IWjl
l-Iail I;ci IZi - Z jllZi - Z jl l-Iailj",dZi - Z jl

<~.4n-ld. (n-l}w + n-l. (n-l)m
2n + 1 9n2 9n2-4n+l d .d 2n + 1 9n2-4n+l d .

9n2 9n2

After short rearrangement we obtain

ITd < (n -1)(3n
2 + n -1) <.!... (12)

(2n + 1)(9n2 - 4n + 1) 6

Lemma 2. Let us consider the PEB method (3) based on the PMT method (2). If the
inequality (6) holds, then for i E In we have

(i) IWiI< tl~1 ;
() ~ Jii w<_·

3n'



(iii) Pi <-;'[plLPj + Pie LPj)2].
9d I*i j~i

Proof. Now we use the well known result from the interpolation theory: if Zl, ... ,zn
are distinct complex numbers, then the polynomial P can be expressed by the La-
grange interpolation formula

(n W )n
p(z)= L-j-+l n(z-Zj).

j=lZ -Zj j=l
Putting Z = zi in (13) one gets

(
n W. )

P(Zi) = (zi - zi) L ~ } + 1 n(zi - Zj) .
j=lZi-Zj j~i

After dividing P(Zi) by n(Zi - Zj ), we find
j~i

W. =(z, -z.)(~ Wj +1)nZi -Zj =(z, _z.h".nZi -Zj. (14)
I I I £...~ ~ ~ I IPI ~ ~

j=l zi -Zj j~i zi -Zj j~i zi -Zj
Using (ii), (v) and (vi) of Lemma 1, we start from (14) and find

~ 4/9

IWiI=lzi-ziIlTdID;; =;~1=4~~llffil~<1IWil,

which proves the assertion (i).
2

From Lemma 1 (assertion (iv» we observe that d > 9n - 82n+ 2 d . According
9n

to this and (i) of Lemma 2, we find
2 -

I-I 11 I 1 d 1 9n ~ dffi <-Wi <-·-<-·-----d<-.
3 3 3n 9n 9n2 -8n+2 3n

This proves the implication (assertion (ii»
d _ d

01<- ~ 01<-.
3n 3n

According to the estimates (ii), (iii) and (iv) of Lemma 1 and (10), from the last
relation we obtain

I ~ I .± 4n -1 1Wi 1 [ - " I Wj I " I Wj 1 " I Wj I ]W < e9 ---- 1z· - z· 1£...------+ £...---£...---
I 3n l-IO"il I I j~il zi -Zj II zi -Zj 1 j~il zi -Zj Ij~il zi -Zj I

<et4n-lIWI~[4n-lIWIL IWjl +LIWjIL IWjl ]
3n I 2n + 1 3n I .. 9n2-4n+ld d .. d .. 9n2-4n+ld

J~I 9n2 . J~l J~I 9n2
4

< 2e: [I ffi 12 LIW) + I Wi I (LI Wj 1)2].
d j~i j~i

for every n ~ 3.
Multiplying both sides of the last inequality with V( 1-ncn)=3/2, we get

Pi=%IWil<9~2[pl~pj+Pi(~Pj)2] 0 (15)
J~I J~I



The initial disks D/O) for cn=I/(3n) are given by

Dj(O)= {z}O);%lw(z}O) )I} (i E In)'

By (3) we define the sequences of inclusion disks

D(m) = {z(m)'~lw(z(m»)I} = f (m)'p(m)} (i E I .m = 12) (16)
I I' 2 I f" I n" , ... ,

where z/m) is calculated by the PMT iterative formula (2) and p}m) = %Iw(z}m) )1.
Theorem 2. The PEB method (3), based on PMT method (2), converges cubically if
the initial condition

(0) d(o)
OJ <--

3n

Proof. We recall that the order of convergence of an interval method in circular
complex arithmetic is actually the order of convergence of the radii of inclusion
disks. Therfofe, we have to prove that the sequences of a posteriori error bounds
{p}m)} (i E In) converge cubically. The proof is by induction with the
argumentation used in the proofs of Lemmas 1 and 2.

First we note that the initial condition (17) coincides with (14), which implies
that all assertions of Lemmas 1 and 2 hold for the index m = 1. The inequality (ij) of
Lemma 2 again reduces to the condition of the form (14) and, therefore, the
assertions of Lemmas 1 and 2 hold for the next index, and so on. In fact, the
implication

() d(m) () d(m+l)
OJ m < __ ~ OJ m+l < _

3n 3n
plays a key role because it involves the initial condition (17) which further provides
the validity of all inequalities given in Lemmas 1 and 2 for each m=O,I, .... In
particular, we have for every i E In

p}m+l) < 9(d~})2 [(p}m»)2 ~p)m) + p}m)( ~p)m»)2], (18)
J~ J-I

d(m) 9n2
~<----, (19)
d~m+l) 9n2-8n+2

Hm+l) _ z}m)1 < 4~:llw/m)l.

Let us introduce the substitution
(m)

h(m) = Pi A-
I d(m} n'

Then the inequalities (18) become
8 d(m)

h(m+l) < _. [(h(m»)2 ~ h(m) + h(m)( ~ h(m»)2]
I 9A- d(m+l} I ~ J I ~ J

n J~ J~

Taking into account (19), from (23) there follows

A- = 2.J2n(n -1)
n .J9n2 -8n+2



hi(m+l)< 1 2[(hi(m))ZLh)m)+hi(m)(Lh)m))2] (iEIn). (24)
(n -1) j~i j~i

Using (22) we find

h~o) < pJO) A = tlffj(O)1 2.J2n(n-l) < .J2(n-l) <.J2 <l.
I --;;cor n d(o) .J9n2-8n+2 .J9n2-8n+2 3

Starting from the inequality h/O) < 1 (i E In), by successive application of (24) we
find that the sequences {h/m)} (i E In) monotonically converge to O.

By successive application of (20), (21) and the condition (17), we find the
lower bound of cfm) :

d(m) > Iz(m) - z(~)1 > !z(m-l) _ z(~-1)I_IAm) _ Am-l)I_lz(~) _ z(m-l)1
-, j-' j , I j j

> d(m-l) _ 2. 4n -1 w(m-l) > d(m-2) _ 2. 4n -1 w(m-2) _ 2. 4n -1 w(m-l)
3n 3n 3n

> d(O) _ 8n -2 (w(O)+w(l) + ... + w(m-l))
3n

>d(O)_ 8~:2W(O>[l+H~r+...+Gr'}
wherefrom

d(m) > d(o) _ 4n -1 w(o) > d(o) _ 4n -1. d(o) = 3n
2

- 4n + 1d(o) :?: ~d(o). (25)
n n 3n 3n2 27

Since cfm) is bounded, in regard to the substitution (22) we infer that the sequences
{p/m)} (i E In) also converge to o. Setting the inequality d(m) > 3n2_~n+ld(o) in (18)

3n
we obtain

p~m+l) < ( 3n
2

) 8 [(p~m))2" p(m) + p~m)(" p(m))2] (i E In).
I 3n2 _ 4n + 1 9(d(o»)2 I f;; j I f;; j

Let p(m) = maxp}m). From the last inequality we obtain
l:S:i:S:n

pJm+l)« 23n2 )2 8 [(n-l)(p(m))'+(n-l?(p(m))']
3n -4n+1 9(d(O)j

=( 23n2 )28(n
2
-n)(p(m))',

3n -4n+1 9(d(O)j

which means that the sequences of PEB {p/m)} converge cubically. 0

In this section we give some practical aspects of the presented theoretical
results and calculating procedures in the implementation of the proposed
method. We emphasize that the PEB method (3) possesses high computational
efficiency since the quantities W/O), WP), ... (i E In), necessary in the ca-
lculation of the centers z/m+l) (by the iterative formula (2)), are again



used in the calculation of PEB plm) = -tlw;(m)! (taking Cn = 1/(3n). Such

approach causes that the PEB method (3) requires less numerical operations
compared to its counterparts (4) in complex interval arithmetic. Total number of
numerical operations per one iteration, reduced to real arithmetic operations, is
given in Table I with the following abbreviations:

AS(n) (total number of additions and subtractions)
M(n) (multiplications)
D(n) (divisions)

A calculating procedure can be described by the following
algorithm:

PEB algorithm:

2° Calculate the radii plm) = -t1w;(m)1 (i = I,...,n);

3° If ~~plm) < r, then STOP

Employing PEB algorithm we realized many numerical examples and, for de-
monstration, we select the following one.

p(z) = z12 - (2 + 5i)zll - (1-lOi)zlO + (12 - 25i)z9 - 30z8

- z4 + (2 + 5i)z3 + (1-IOi)z2 - (12 - 25i)z + 30

=(z8 -1)(z2 -2z+5)(z-2iXz-3i}



Starting from sufficiently close initial approximations Zl (0), .•• , ZI2(0) we applied the
PEB method (3) and obtained the inclusion disks D/m)={z/m);p/m)} (iEI12).

The approximations z/m) (m ~ 1) were calculated by the iterative formula (2), and
the corresponding inclusion method is referred to as (I-PMT). For the comparison
purpose, we also tested the interval methods (4). The largest radii of the disks
obtained in the first four iterations are presented in Table 2, where A(- q) means
A x 10-q . For both methods max p/O) has been equal to 0.287.

Methods maxpP) maxpp) maxpP) maxp/4) CPU time (1 iter.)
(I-PMT) (2)-(3) 4.89(-2) 2.00( -4) 1.41(-11) 4.18(-33) 6.9 msec
Interval BS (4) 6.33( -1) 2.95(-3) 3.29(-12) 4.44(-39) 13msec

In our calculation we employed multi-precision arithmetic since the tested meth-
ods converge very fast producing very small disks. From Table 2 we observe that
the disks obtained in later iterations by the interval method (4) are slightly smaller
than those obtained by the PEB method (2)-(3), but the PEB method requires al-
most twice less CPU time per iteration. A number of numerical experiments showed
similar convergence behavior of the tested methods.

We note that the PEB method (3) always produces inclusion disks, while the
ordinary interval methods (like (4» can encounter the inversion of zero-disk, which
breaks the process. Furthermore, the PEB method automatically generates initial
disks. This is another advantage of PEB methods.

Parallel implementation. The error bound method (3) is very convenient for
the implementation on parallel computers since it runs in several identical versions
providing that a great deal of computation can be executed simultaneously. More
details about the implementation of simultaneous methods on parallel processing
computers can be found, e.g., in [4], [5], [6], [9], [20].

Let
w(m) = (Wl(m), ... ,w~m)} p(m) = (p}m), ... ,p~m)} z(m) = (z}m), ... ,z~m))

denote vectors in the m-th iterative step, where pfm) = tlw(zfm))1 and

z/m) is calculated by the iterative formula (2). The model of parallel impleme-ntation
is as follows: It is assumed that the number of processors k ($; n) is given in
advance. All processors Pl, ...'pk find the starting vector z(o) using some suitable
globally convergent method based on a subdivided procedure and the inclusion
annulus {z: r $; Izi $; R} which contains all zeros, where

r =1.. min I~II/k, R = 2 maxl!!.!..lI/k
21:<;;k:<;;nan-k l:<;;k:<;;nao

(see [10, Theorem 6.4b, Corollary 6.4k]).



The next steps of the algorithm consist in sharing the calculation of ~(m), Pi(m), z/m+l)

among the processors and in updating their data through a broadcast procedures
(shorter BCAST(W(m),p(m), BCAST(z(m+l)). As in [5], let II, ...,h be
disjunctive partitions of the set {1,... , n} where nI; = {l, ... ,n}. Good load bal-
ancing between the processors is provided choosing the index sets h,...,Ik in such a
way that the number of their components." (!.i) U = 1,...,k) is determined as

.. ' (!.i)~ [1.]. For all i E !.i the processor Pj U = 1,... , k) computes W/m) , p/m)

and, if necessary, z/m+l) and then it transmits these values to all other
processors using a broadcast procedure. The program terminates when a
suitable stopping criterion is satisfied, say, if for a given tolerance T the
inequality

m~xlp}m)1 < T
l$z$n

holds. A program written in pseudocode for a parallel implementation of the
PEB method (3) is given below:

Program A POSTERIORI ERROR BOUND METHOD
begin

for all} = 1,... , k do determination of the approximations z(o);
m :=0
C :=fa1se
do

for all} = 1, ... , k do in parallel
begin

Compute w,.(m) iEL .
I, "

Compute p~m) = 1.lw(m)1 iEL'
z 2 z ' J'

Communication: BCAST(W(m),p(m));

end
if maxlp~m)1< T; C:=true

l$i$n z

m:= m + 1
for all } = 1, ... , k do in parallel
begin

Compute z/m), iEI;, by (2);
Communication: BCAST(z(m);

end
endif

until C
OUTPUT z(m) ,p(m)

end
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