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Abstract
A combinations of using efficient algorithms and well designed implementations leads to great
high performance applications. This paper show how to make the back-propagation algorithm
run faster on multi-core processors and scale to the future hardware that may have more cores
and faster memory. On two dual core Intel Xeon processors, each supports Hyper-Threading
technology, the performance of the multi-threaded SIMD implementation of the matrix back-
propagation (MBP) algorithm gives around 20 times higher than the best conventional
implementation on the same hardware. On reasonably large networks, experimental results show
that the use of Intel streaming SIMD extensions, matrix blocking, loop unrolling, and multi-
threading on eight logical processors speed up the MBP by factors of 1.4, 1.75, 1.8, 4.6,
respectively. Moreover, five single-precision floating-point operations can be performed in a
single clock cycle by exploiting the memory hierarchy, by executing multiple instructions from
multiple threads on multiple data (MIMD), and by selecting an efficient algorithm, which is
based on matrix operations (MBP algorithm) instead of matrix-vector operations (BP algorithm).

Keywords - multi-core computation, multi-threaded implementation, reusing cached data,
Streaming SIMD Extensions, back-propagation algorithm, neural computation.

The dual-core Intel's Xeon processor contains approximately 0.3 billion transistors running at
3GHz. This processor is over 600 times faster than 8088, which had 29 kilo transistors, (the Intel
microprocessor used in the first personal computer soled by IBM) [1]. The dual-core Intel Xeon
processor features multi-core, Hyper-Threading (HT) technology and supports multi-processor
platforms. This means that a dual-core Intel's Xeon processor provides four logical processors
in a physical package (two logical processors for each core due to HT technology). This
increasable number of logical processors per physical package would be used to improve the
performance of many applications. This paper shows how to exploit increasingly parallel
hardware to accelerate the learning of artificial neural networks.

It is known that learning a neural network is computationally expensive. To speedup the
learning phase, two nonexclusive approaches have been proposed. The first approach tries to find
more efficient optimization algorithm [2, 3]. The other tries to use the parallel processing



techniques to reduce the learning time of already existing algorithms [4-7]. In this paper, the
matrix back-propagation (MBP) algorithm, which is based on matrix operations (to satisfy the
first approach), is selected to be implemented on multi-core Xeon processors (to satisfy the
second approach). The target system is Dell Precision 690 running Microsoft Windows Vista
operating system. It has two duel-core Xeon processors running at 3GHz, each supports HT
technology (i.e., the system has eight logical processors), 2GB memory, and 4MB second level
cache (L2). Our results show that on Xeon processors, a good performance of MBP algorithm
can be obtained with reasonably large networks by exploiting the multi-core hardware [8],
memory hierarchy [9], and Intel Streaming SIMD Extensions (SSE) [10]. Besides, using matrix
blocking and loop unrolling [11] techniques are used to further improve the performance.

Obviously, the well designed implementations may not lead to great high performance
applications without the selection of efficient algorithms [10]. The MBP algorithm is selected to
implement on multi-core Xeon processors because it is highly parallel algorithm based on matrix
operations (the operations of choice for parallel processing). By arranging the back-propagation
(BP) algorithm, which is based on matrix-vector operations, all the computations of MBP are
mainly done through matrix computations. See [12] for more details about BP algorithm and [13,
14] for a complete description of MBP algorithm. This is an important step to switch from
matrix-vector operations, which needs O(n2) floating-point operations on O(n2) memOlI
operations, to matrix-matrix operations, which needs O(n3

) floating-point operations on O(n )
memory operations, where the matrix size is nxn. The use of matrix operations would give high
performance because of reusing the loaded data into cache memory and keeping the execution
pipeline busy with useful work for a long time [15]. These result in decreasing the total
execution time of matrix operations and improve many applications based on them.

This paper is organized as follows. The next section describes the matrix back-propagation
algorithm. Section 3 presents the best conventional (sequential) implementation of the matrix
back-propagation algorithm. It, also, discusses how to exploit the memory hierarchy to improve
the performance of the MBP. In Section 3, Intel streaming SIMD extensions are introduced and
used as a first step to improve the performance of the MBP. Reusing the cached data, which
represents our second step to further improve the performance ofMBP, is discussed in Section 4.
The result of using matrix blocking 'and loop unrolling techniques is presented in Section 5.
Section 6 introduces multi-threading and multi-core technologies and shows their impacts on the
performance ofMBP. Finally, Section 7concludes our paper.

Matrix back-propagation (MBP) is an efficient implementation of the back-propagation (BP)
algorithm because it works mainly on matrices to exploit parallel architectures [4]. Consider a
network with two fully connected layers, m neurons in the input layer, n hidden neurons and k
output neurons, as shown in Figure 1. The connections between the input and output layers are
not considered for simplicity. Let Wlmxn is a matrix containing the weights of the first layer and
W2nxk is the weights matrix of the second layer. The corresponding biases are stores in vectors
bl1xn and b21xk, respectively. The learning set consists ofp patterns. The input patterns and the
target patterns are stored in matrices SOpxm and Tpxk, respectively. Matrices Slpxn and S2pxk
contain the output of the hidden and output layers when SOpxm is applied to the input of the
network.



All these matrices are aligned and stored in memory in row order, which is proper for
programming with C/CH. The order of storing is particularly important for the efficiency of the
implementation. Additionally, by aligning frequently used data to the cache line size of a specific
processor, the cache performance is improved. Misaligned data access can incur significant
performance penalties [16]. For example, in the Xeon processors, the size of a cache line is 64
bytes (16 single-precision floating-point elements). An access to data unaligned on 64-byte
boundary leads to two memory accesses and requires several J.1opsto be executed (instead of
one).

In the first step of the algorithm, p patterns (stored in SOpxm) are applied from the input layer
to the hidden layer. As shown in Figure 1, the net sum (Net1pxn) of the input layer is computed
then the status of the hidden layer (SIPxn) is calculated by applying the activation function./( ).
(In Figure 1 and equations, x means matrix-matrix multiplication, and *, +, and - mean element-
wise matrix multiplication, matrix addition, and matrix subtraction operations, respectively)

Net1pxn = SOpxm x W1mxn (2pmn FLOPs for matrixxmatrix multiplication)
Net1pxn = Netlpxn + 1px! x bbxn (2pn FLOPs for outer-product)
Slpxn = ./(Net1pxn) (hpn FLOPs to apply the approximated tanh() )

An h floating-point operations are required for implementing the activation function, tanh( ),
however, its derivative needs only two floating-point operations (f'( ) = 1 - tanh2

( ) ). To reduce
the execution time, the approximated version of the hyperbolic function tanh( ) is used, which
requires only four floating-point operations (h = 4) [4].

The same calculations are done for computing the status of the output layer
Net2pxk = Slpxn x W2nxk (2pnk FLOPs)
Net2pxk= Net2pxk + 1px! x b21xk (2pkFLOPs)
S2pxk =./(Net2pxk) (4pkFLOPs)

Then the error between the network output (S2pxk) and the desired target (Tpxk) is back-
propagated through the network.

W2new = W201d

+17·dW2new
+a. dW201



!12pxk=f'(Net2pxk)*(Tpxk - S2pxk) (2pk FLOPsto apply fanh'() and
2pk for element-wisematrixoperations)

illpxn = f'(Netlpxn)*( !12pxk X W2Tnxk) (2pnk FLOPs for matrixxmatrixTmultiplication)
The weight variation can be calculated and stored in matrices dWl::' and dW2:: as follows
(note that the old values of dWlmxn and dW2nxk as well as the new values are needed for updating
the weights of the two layers). The same is done for biases.

dWl:e;" = SOTpxmX LlIpxn (2pmn FLOPs for matrixTxmatrixmultiplication)
dbl:; = lTpX1 x illpxn (pn FLOPs for accumulating n vectors)
dW2:e;; = Sl Tpxn X il2pxk (2pnk FLOPs for matrixTxmatrixmultiplication)
db2~:; = 1TpX1 x il2pxk (pk FLOPs for accumulatingk vectors)

Finally, the weights (Wlmxn and W2nxk) and the biases (bl1xn and b21xk) are updated. The required
operations are based on element-wise multiplication and addition of matrices and vectors.

WI::' = Wl~~n + 17. dWl::' + a. dWl~~n (4mn FLOPs)
bl:; = bl~~ + 17. dbl~e;; + a. dbl~~ (4n FLOPs)
W2:e;; = W2~~ + 17. dW2:: + a. dW2~~k (4nkFLOPs)

b2:; = b2~~~ + 17. db2~:; + a. db2~~~ (4kFLOPs)
From the above equations, the total number of floating-point operations needed to implement

the MBP algorithm (FLOPMBP) can be calculated as follows.
FLOPMBP = 4pmn + 6pnk + 9pn + 9pk + 4mn + 4nk + 4n + 4k

It is clear that the MBP algorithm is based mainly on three forms of matrix-matrix
multiplications; Cnxn= Anxn x Bnxn, Cnxn= Anxn x B\xn, and Cnxn= ATnxn x Bnxn. Assumingp = m
= n = k, Figure 2 shows the percentage of matrix products FLOPs (FLOPMatrix-Products) over the
total number of FLOPs needed for the MBP algorithm (FLOPMBP)' By applying Amdahl Law
[17], improving the performance of matrix products leads to improving the performance of the
MBP algorithm because the unparallel code is negligible especially when the matrices are large .

••l5 95%...
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The computational load of the matrix back-propagation algorithm belongs to the following
equations, as shown in Figure 2.

Netlpxn = SOpxm x Wlmxn
Net2pxk = Slpxn x W2nxk
~lpxn = ~2pxk X W2Tnxk
dWl:::; = SOTpxm X ~lpxn
dW2:: = SITpxn X ~2pxk

(conventional matrix product)
(conventional matrix product)
(matrix product with the second matrix transposed)
(matrix product with the first matrix transposed)

(matrix product with the first matrix transposed)

To improve the performance of the MBP algorithm, all these three forms of matrix products have
to be implemented efficiently.

It is known that there are six variants (ijk, ikj, jik, jki, kij, and kji) to multiply two nxn
matrices due to the tri~ly nested loops (i,j, and k) [11]. Each of these six variants has the same
number of FLOPs (2n ), however, their access patterns of memory are different. The following
variant called ijk, which is the native technique for a matrix product.
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

C [i] [j] += A [i] [k] * B [k] [j] ;
By interchanging the order of i, j, and k loops, the remaining five variants can be calculated.
Assume that the matrices Anxn, Bnxn, and Cnxn are stores in the main memory by rows (as in
C/C++ programming language). The naive technique (ijk variant) gives a poor performance and
we will explain the reason of that in details.

In ijk variant, fortunately, each element of Cnxn is accessed n times consecutively and its
elements are accessed row by row, with a stride of one within each row. The stride of an array
refers to the way in which its elements are referenced; it is equal to the difference of the
addresses of successive elements over the element size. The access patterns for the elements of
Anxn and Bnxn are different. Accesses to the inner loop elements of matrix Anxn (A [i] [k]) are
made with a stride of one within the ith row (the rows of Anxn are visited in order). However,
accesses the elements of Bnxn (B [k] [j]) are made in the kth column a stride of n in the row-
order layout of Bnxn (the columns of Bnxn are visited in succession).

Consider now the execution of this code on Xeon processor with eight set-associative cache
with a line size of 64-byte. The number of consecutive elements of the arrays that will fit into a
cache line is thus 16 (= 64/4), where the elements are 4-byte single-precision floating-point
numbers. When row order accesses are made with unit stride, in the worst case, the first access to
a row element within a cache line will result in a miss, while the remaining accesses within the
line (15 accesses) will result in cache hits. In contrast, assuming n > 16, accesses to elements
with a stride n will all result in misses in the worst case.

Assuming that the cache access time on a hit or to detect a miss is tc and miss service time to
be tm, the access times for Anxn, Bnxn, and Cnxn matrices during the execution of the ijk variant are
n2(n*tc + tm/16), n3(tc + tm), and 2n2

( tc + tm/16) clock cycles, respectively. It results in a total
access time of n3(2tc + tm) + n2(2tc + 3tm/16) clock cycles. In contrast, 2n3 floating-point
operations are needed to implement the MBP algorithm. Assuming two clock cycles are needed
for executing a floating-point operation and two floating-point units can operate in parallel, the
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total execution time of 2n3 FLOPs is 2n3 clock cycles. Figure 3 shows the percentage of memory
access time over the execution time of floating-point operations, assuming tc = 2 clock cycle, and
tm = 20 clock cycles [18]. Note that the data access time is dominated by the miss handling times.
As the CPU cycle time decreasing at a faster rate than the cache miss handling time, the
execution time will become increasingly dominated by the cache miss handling time. To reduce
the number of cache misses, stride memory accesses should be avoided as much as possible.

As shown in Figure 4, the best variant for the conventional matrix product (Cnxn += Anxn x
Bnxn) is ikj, where the inner loop is based on SAXPY (Single-precision scalar A times vector X
Plus vector Y). It can be gotten by interchange the two inner loop (iterating on j and k,
respectively) of the native technique.
for (i = 0; i < n; i++)

for (k = 0; k < nj k++)
for (j = 0 j j < n j j ++)

C [i] [j] += A[i] [k] * B [k] [j] ;

As the inner loop (iterating on j) executes, the access to the elements of matrix Cnxn (C [i] [j])
are made with a stride of one within the ith row. Besides, each element of Anxn (A [i] [k]) is
accessed n times consecutively and the elements are accessed row by row, with a unit stride
within each row. Moreover, elements of matrix Bnxn (B [k] [j]) are made with a stride of one
within the kth row. This means all elements of the three matrices are accessed with a unit stride,
which results in increasing the chance of cache hits (decreasing the number of cache misses).

The following code (ijk variant) gives the best performance of the matrix product with the
second matrix transposed (Cnxn += Anxn x BT

nxn), as shown in Figure 5.
for (i = OJ i < nj i++)

for (j = OJ j < nj j++)
for (k = OJ k < nj k++)

C[i][j] +=A[i][k] *B[j][k]j
The inner loop is based on dot-product. Because of the transposition of B matrix, all accesses are
done with a unit stride in this ijk variant.



In case of Cnxn += AT
nxn X Bnxn, the best variant is ik} (see Figure 6), where the inner loop is

based on SAXPY. Also, all matrices are accessed with a unit stride, as shown in the following
code.
for (i = 0; i < n; i++)

for (k = 0; k < n; k++)
for (j = 0; j < n; j++)

C [i] [j] += A [k] [i] * B [k] [j] ;
Figure 7 shows the best performance of the conventional MBP algorithm by selecting the

best implementation of each matrix product (ik) variant for both of the conventional matrix
product and matrix product with the first matrix transposed, and the ik} variant for the matrix
product with the second matrix transposed). The number of clock cycles per floating-point (CPF)
is selected as a metric for performance evaluation because it is more indicative than the absolute
number of clock cycles. Since the number of FLOPs is constant, the total number of clock cycles
can be calculated easily.

In the following sections the performance of the conventional MBP algorithm will be
improved step by step using Intel Streaming SIMD Extensions to process multiple data using a
single instruction, by blocking the matrices to reuse the loaded data in cache, by unrolling loops
to reduce the number of load/store operations and reuse the loaded data in registers, and finally
by using multi-core to execute multiple threads in parallel.
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Single instruction, multiple data (SIMD) technology fonns an important perfonnance extension
to Intel Architecture processors, starting with 64-bit MMX technology of Intel Pentium
processor [10]. MMX technology supports 8/16/32/64-bit integer data types. Since then, all 32-
bit Intel Architecture and Intel EM64T processors (like Xeon) have extended SIMD technology
continuously [1].

A typical SIMD instruction achieves higher perfonnance by operating on multiple data
elements at the same time, as shown in Figure 8. Streaming SIMD Extensions (SSE), is a SIMD
instruction set designed by Intel and introduced in 1999 in their Pentium III series processors.
SSE contains 70 new instructions for processing four packed single-precision floating-point
numbers stored in eight new 128-bit registers known as XMMO through XMM7. Thus, Intel
solved the two main problems of MMX: MMX reused existing floating-point registers making
the CPU unable to work on both floating-point and SIMD data at the same time, and MMX only
worked on integers. Because SSE adds floating-point support, it sees much more use than MMX.

The addition of SSE2's integer support makes SSE even more flexible. While MMX is
redundant, operations can be operated in parallel with SSE operations offering further
perfonnance increases in some situations. SSE2, introduced with the Pentium 4, is a major
enhancement to SSE. SSE2 adds new math instructions for double-precision (64-bit) floating-
point and 8/16/32-bit integer data types, all operating on the same 128-bit XMM vector register-
file previously introduced with SSE. SSE3 is an incremental upgrade to SSE2, adding a handful
of DSP-oriented mathematics instructions and some process (thread) management instructions.
SSE3 is introduced with the Pentium 4 with Hyper-Threading technology.

Finally, processors with Intel EM64T like dual-core Xeon extends the SIMD register set to
16 registers (XMMO-XMM15) [1]. Xeon processors support 8/16/32/64/128-bit integer data
types and 32/M-bit single/double-precision data types. This section shows that the use of
streaming SIMD extensions improve the perfonnance of the MBP algorithm on the same
machine with the same hardware.

Table 1 shows the implementation code of matrix products using intrinsics of streaming
SIMD instruction set, which are supported by Microsoft Visual Studio 2005. The semantic of
each intrinsic used in matrix products are explained in Table 2, where SP and FP stand for
single-precision and floating-point, respectively.



Cnxn += Anxn x Bnxn

ikjvariant
int i , j , k ;
__ rn128 x , y , Z , w;
for(i=O;i<n;i++){
for(k=O;k<n;k++){
x= _rnrn_loadlJ>s (&A [i] [k]);
for(j=O;j<n;j+=4){
y=_rnrn_loadJ>s(&B[k] [j]);
z=_rnrn_rnulJ>s(x,y) ;
w= _rnrn_loadJ>s (&C [i] [j] );
w=_rnrn_addJ>s(w,z);
_rnrn_storeJ>s(&C[i] [j] ,w);
}
}
}

Cnxn -t= Anxn x BT
nxn

ikjvariant
int i , j , k ;
__ rn128 x , y , z , w;
for(i=O;i<n;i++) (
for(j=O;j<n;j++){
w= _rnrn_xorJ>s (w,w) ;
for(k=O;k<n;k+=4){
x=_rnrn_loadJ>s(&A[i] [k]);
y=_rnrn_loadJ>s(&B[j] [k]);
z=_rnrn_rnulJ>s(x,y) ;
w=_rnrn_addJ>s(w,z) ;
}
z=_rnrn_rnovehlJ>s(w,w) ;
z=_rnrn_addJ>s(z,w);
w=_rnrn_shuffleJ>s(z,z,l);
w= rnrnadd ss(z,w);
rn;;;store - ss (&C [i] [j], w) ;}T - -

Cnxn -t=AT
nxn X Bnxn

ikjvariant
int i , j , k ;
__ rn128 x , y , z , W;
for(i=O;i<n;i++){
for (k=O;k<n;k++){
x=_rnrn_loadlJ>s(&A[k] [ill;
for(j=O;j<n;j+=4) (
y=_rnrn_loadJ>s(&B[k] [j]);
z=_rnrn_rnulJ>s (x,y);
w= _rnrn_loadJ>s (&C [i] [j] );
w=_rnrn_addJ>s(w,z);
_rnrn_storeJ>s(&C[i] [j] ,w);
}
}
}

Intrinsic Semantic

x= _mm_loadlJ's (&A[i] [k] ) Loads the single SP-FP value A[i] [k] and copying it into
all four elements of x.

y= mm loadJ's (&B[k] [j] ) Loads the four SP-FP values B [k] [j : j +3] into y.
mm storeJ's (&C[i] [j], w) Stores the four SP-FP values from w into C [i] [j : j +3]
mm store ss (&C[i] [j], w) Stores the lower SP-FP value from winto C [i] [j]. ----=--=- --

z=_mm_mulJ's(x,y) Multiplies the four SP-FP values of x and y and pass the
result to z.

w=_mm_addJ's(w,z)
Adds the four SP-FP values of w and z and pass the result to
w.

z=_mm_movehlJ's(x,y)
Moves the upper two SP-FP values of x to the lower two SP-
FP values of z and the upper two SP-FP values of yare
passed through to the result z

w=_mm_shuffleJ's(x,y,i) Selects four specific SP-FP values from x and y, based on the
mask (i) and pass them to w.
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Figure 9 shows the enhancement on the perfonnance of the conventional MBP by processing
four floating-point numbers by a single SIMD instruction. The number of clock cycles per FLOP
(CPF) decreased more than three times when the size of matrices is small (see the left part of
Figure 10). However, as the size of matrices is getting larger, the speedup of the SIMD version
over the conversional version is decrease from three to 1.3 (see the right part of Figure 10). The
main reason of decreasing the perfonnance is that as the matrices getting larger they cannot fit in
the cache memory, which results in increasing the cache misses. Moreover, matrix products are
implemented as a multiple of vector operations (dot-product or SAXPY operations), which can
not efficiently reuse the loaded data into cache memory.

To further improve the perfonnance of MBP, the loaded data in cache memory should be
reused many times before replacing them. The matrix blocking is the technique for reusing the
loaded data by processing blocks of matrices instead of processing strips of vectors using the
strip mining technique.

In general, the use of unit stride and memory alignment reduce the cache memory line miss and
is possibly to fully exploit the bandwidth between cache memory and processor, which results in
improving the perfonnance of an application [16]. However, not all the data is in the cache
memory. In fact, initially the data is in the main memory and it takes a long time to be loaded
into cache memory because of cache miss handling time.

Implementing a matrix product based on vector operations like dot-product and SAXPY is an
inefficient technique because O(n) memory operations are needed for processing O(n) floating-
point elements. Two strips of vector are loaded from the main memory to the cache and then
discarded from the cache because other strips of vectors replace them. The technique to avoid
such behavior is the matrix blocking. Matrices are partitioned into block. The block size depends
on the size of the cache memory. Thus, all calculations are done based on matrix operations
instead of vector operations. On other words, the loaded bxb blocks are reused b times before
leaving the cache memory in the worst case. The parameter b should be large enough to avoid
many load/store operations but small enough to fit the required blocks in the cache memory.



Table 3 shows the SIMD version of the conventional matrix product (ikj variant) based on
4x4 matrix blocking. The effect of using 4x4 matrix blocking on the performance of MBP is
shown in Figure II. The performance of the MBP algorithm is improved by a factor of 2.5
because of using SIMD instruction set and matrix blocking technique (see Figure 12).

To further improve the performance, the loaded data from cache memory to registers should
be reused since the speed of registers is faster than cache memory as well as the register file is
closer to the execution units. The reuse of loaded data in register file results in decreasing the
number of load/store operations, which are equal or more expensive than arithmetic operations.
The loop unrolling is the technique of choice to make a balance between the load/store
operations and arithmetic operations in the inner loop.

From Table 1, the inner loop of the conventional matrix product (ik) variant) requires three
load/store and two floating-point SIMD operations, which results in 1.5 load/store operations per
FLOP. This means that the pipeline stalls many times waiting for loading/storing data, which
decreases the throughput of the execution pipeline (see [IS] for more detail). The situation
becomes worser for a processor with multiple executions units. However, the use of loop
unrolling technique with 4x4 matrix blocking improves the fraction of load/store operations per
FLOP from 1.5 to I, see Table 4. Moreover, the use of loop unrolling technique reduces the loop
overheads. As shown in Table 4, it decreases the number of branch instructions by a factor of 16,
when the inner loops (ii and kk) in Table 3 are unrolled. Reducing the number of branch
instructions reduces the probability of flushing the pipeline (see [15] for more detail).

Int i , j , k ;
ffi128 x , y , Z , w;

for(i=O;i<n;i+4) (
for(k=O;k<n;k+4) (
for(j=O;j<n;j+=4) (
for(ii=i;ii<i+4;ii++) {

W=_ffiffi_loadys (&C[iil [j j] ) ;
for (kk=k;kk<k+4;kk++) {

X=_ffiffi_loadlys (&A [ii] [kk] ) ;
y=_ffiffi_loadys (&B [kk] [j 1 ) ;
z=_ffiffi_ffiulys(x,y) ;
w=_ffiffi_addys(w,z) ;

}
_ffiffi_storeys (&C[iil [j 1, w) ;}}}}
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The performance of the MBP after using the 4x4 matrix blocking with loop unrolling is
shown in Figure 13. Its performance is more than four times higher than the conventional
implementation (see Figure 14). To further improve the performance 8x8 matrix blocking with
loop unrolling is used, which shifts the balance of the inner loop from memory-bound to CPU-
bound (0.5 load/store operation per FLOP). The speedup of using SIMD instruction set, 8x8
matrix blocking, and loop unrolling is more than 5.5 over the conventional implementation, as
shown in Figure 14.

Table 4: Loo unrollin of the SIMD im
for ( i = 0 ; i < n ; i += 4) (

for( k = 0 ; k < n ; k += 4)(
for( j = 0 ; j < n ; j += 4 )(
x=_mm_loadys(&A[i] [k]);
y [0]=_ffiffi_loadys(&B [k] [j] ) ;
W = _ffiffi_loadys (&C[i] [j]);
xxxx=_ffiffi_shuffleys(x,x,Ox55) ;
z = _mm_ffiulys (xxxx, y[l]);
xxxx=_mm_shuffleys(x,x,OxAA) ;
Z = _ffiffi_ffiulys(xxxx, y[2]);
xxxx=_ffiffi_shuffleys(x,x,OxFF) ;
Z = _ffiffi_ffiulys(xxxx, y[31);
_ffiffi_storeys (&C[ij [j] , w);
xxxx=_ffiffi_shuffleys(x,x,OxOO) ;
W = _ffiffi_loadys (&C [i+1] [j]);

XXXX=_ffiffi_shuffleys(x,x,OxOO) ;
Z = _ffiffi_ffiulys(xxxx, y[O]);
W = _ffiffi_addys (w, z);
y [1]=_ffiffi_loadys (&B [k+1] [j] ) ;
W = _ffiffi_addys (w, z);
y[21=_ffiffi_loadys (&B[k+2] [j]);
W = _ffiffi_addys (w, z);
y[3]=_ffiffi_loadys (&B[k+3j [j]);
W = _ffiffi_addys (w, z);
x _ffiffi_loadys (&A[i+1] [k]);
z _ffiffi_ffiulys(xxxx, y[O]);
W _ffiffi_addys (w, z);
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Superscalar processors rely on instruction-level parallelism for executing multiple instructions
simultaneously on multiple execution datapaths [19]. Recently, the situation is changed after
announcing the Hyper-Threading (HT) technology in Intel Pentium 4 and Xeon processors [20].
HT technology enables software to take advantage of task-level, or thread-level parallelism by
providing multiple logical processors within a physical processor package. Each logical
processor has its own architectural state and its advanced programmable interrupt controller
(APIC) and shares the core resources of the physical processor (see Figure 15). This includes the
execution engine and the system bus interface [1]. Two or more separate code streams (threads)
can be executed concurrently using these shared execution resources, which improves the
performance of multi-threaded applications or single-threaded applications under multi-tasking
environments [16].

The next logical step from simultaneous multi-threading is the multi-core processor [1, 8].
Multi-core technology enhances hardware multi-threading capability by providing two or more
execution cores in a physical package. The dual-core Intel Xeon processor features multi-core,
Hyper-Threading technology and supports multi-processor platforms. It provides four logical
processors in a physical package (two logical processors for each processor core). The two cores
share a smart second level cache, which enables efficient data sharing between two cores to
reduce memory traffic bus, as shown in Figure 15.

Matrix products (ikj variant for conventional matrix product, ijk variant for matrix product
with the second matrix transposed, and ikj variant for matrix product with the first matrix
transposed) are easy to implement on multi-core processors using multi-threading technique. The
data access pattern of these variants makes matrix products based on these variants extremely
easy to parallelize. As shown if Figure 16, all elements of matrix Bnxn should be read by every
thread, however, matrices Anxn and Cnxn are distributed among threads. Since our system has two
physical Xeon processors, dual-core each, supports HT technology, eight threads can be
executed in parallel on eight logical processors.
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No synchronization is needed for accessing the elements of Anxn, Enxn and Cnxn matrices.
Each thread reads a block of matrix Anxn and read/write another block from/to matrix enxn. (The
block sizes are not necessarily the same.) Assuming that n is multiple of eight, thread i works on
block form row number (i*n/8) to row number ((i+l)*n/8 -1). Since each thread accesses all
elements of matrix Enxn, caching the matrix Enxn in the second level cache memory supports four
logical processors, where two cores share the second level cache. Most importantly, ikj variant,
which is used for conventional matrix product and for matrix product with the first matrix
transposed, is based on SAXPY. SAXPY produces a row of the result matrix Cnxn for each row
of Anxn used. Thus, if a block (set ofrows) of Cnxn is assigned to a thread, no synchronization is
necessary for the writes to Cnxn from the various threads. The ijk variant for matrix product with
the second matrix transposed is based on dot-product, which produces an element of the result
matrix Cnxn for each row of Anxn used. Thus, no synchronization also is necessary for the writes
to Cnxn from the various threads.

Figure 17 shows the result of implementing the MBP algorithm on eight logical processors
using multi-threading technique. One the large networks, the performance ofMBP algorithm is
around 20 times higher than the best conventional implementation on multi-core processors, as
shown in Figure 18. However, on the small networks, the performance of multi-threaded MBP is
no so good because of the overhead of creating threads (see [20 , 8] for more detail).
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Selecting the efficient algorithm and exploiting the available features of an architecture would
speed up the execution of applications tens of time. This paper exploits memory hierarchy and
increasingly logical processors per physical package to accelerate the learning of neural
networks, which is computationally intensive. For comparison, the performance of the best
conventional (sequential) implementation of the matrix back-propagation algorithm is computed.
The use of unit-stride and align memory accesses improves the performance of the
sequentiaVparallel implementation of the matrix back-propagation because of reducing cache
misses. The performance of the best conventional implementation of matrix back-propagation
algorithm is improved step by step using Intel Streaming SIMD Extensions to process multiple
data using a single instruction, by blocking the matrices to reuse the loaded data in cache, by
using loop unrolling technique to reduce the number of load/store operations and reuse the
loaded data in registers, and finally by using multi-core to execute multiple threads in parallel.
On reasonably large networks, the performance of multi-threaded SIMD implementation of the
matrix back-propagation algorithm is around 20 times higher than the performance of the best
conventional implementation on two dual-core Intel Xeon processors.
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