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Abstract
In this paper, a stable robust adaptive control approach is presented for a class of unknown nonlinear
systems in the strict-feedback form with disturbances. The key assumption is that neural network
approximation errors and external disturbances satisfy certain bounding conditions. By combining neural
network technique with backstepping method and introducing a special type of Lyapunov functions, the
controller singularity problem is avoided perfectly. As the estimates of unknown neural network
approximation error bound and external disturbance bound are adjusted adaptively, the robustness of the
closed-loop system is improved and the application scope of nonlinear systems is extended. The overall
neural network control systems can guarantee that all the signals of the closed-loop system are uniformly
ultimately bounded and the tracking error converges to a small neighborhood of zero by suitably choosing
the design parameters.The feasibility of the control approach is demonstrated through simulation results.

Since the late 1980s, great deals of approaches have been developed on the adaptive
control of nonlinear systems with linearly parameterized uncertainty. However, the research
results during that period are required to satisfy some assumptions, such as matching conditions,
or extended matching conditions (Isidori, 1989; Nam & Arapostations, 1988). Recently, many
new results emerge and they do not rely on these assumptions (Krstic, Kanellakopoulos &
Kokotovic, 1995; Seto, Annaswamy & Baillieul, 1994). In these papers, adaptive control laws
are obtained by adopting backstepping method for strict-feedback or lower triangular systems.
For systems with high uncertainty, for example, the uncertainty that cannot be linearly
parameterized or is completely unknown, the adaptive neural network control approach based on
backstepping is developed further.

Although significant progress has been made by combining backstepping method with
neural network technique, there are still lots of problems that need to be solved in practice. In
(Polycarpou, 1996; Polycarpou & Mears, 1998), an adaptive NN theorem with boundedness was

mailto:liuyisha@dlut.edu.cn


proposed and estimated values of unknown bounds of the neural network approximation error
were on-line adaptively adjusted. ill (Kwan & Lewis, 2000; Zhou, Feng & Feng, 2005) by using
fuzzy and neural network approaches and based on backstepping, a robust adaptive control
scheme was developed for a class of MIMO nonlinear systems with modeling uncertainties. An
adaptive fuzzy controller with Hoo tracking performance was designed in (Wang, Chan, Lee &
Liu, 2000). Hoo tracking performance was applied to substantially attenuate the effect of the
modeling errors and disturbances. However, in order to avoid the controller singularity problem,
the gain functions g,(X;).i=1,2 •... ,n (see system (1) in section II) are assumed to be constants

(Polycarpou, 1996; Polycarpou & Mears, 1998) or known functions (Kwan & Lewis, 2000; Zhou,
Feng & Feng, 2005). This assumption cannot be satisfied in many practical systems. The
situation that the gain functions are unknown has been studied in (Zhang, Ge & Hang, 2000; Ge
& Wang, 2002). By introducing the integral-type Lyapunov functions, an adaptive backstepping
neural network scheme is presented in (Zhang, Ge & Hang, 2000). However, because of the
introduction of the integral operation, this scheme is very complex and difficult to apply in
practice. Shuzhi S. Ge (Ge & Wang, 2002) proposed an adaptive neural network control
approach without the requirement for the integral-type Lyapunov functions and the stability of
the closed-loop systems is guaranteed. But the derivatives of the virtual controllers are included
in the neural networks so that computational burden increases. ill addition, authors in (Zhang, Ge
& Hang, 2000; Ge & Wang, 2002) assumed that unknown bounds of the neural network
approximation error are less than bounded constants. If unknown bounds are larger than the
assumed bounds, the performance of systems cannot be guaranteed. In most research results, the
systems do not have external disturbances. Even though external disturbances exist, they are
required to satisfy square integrable conditions (Chen, Lee & Chang, 1996; Wang, Chan, Lee &

Liu, 2000). These requirements are also difficult to realize in practice.
Taking above disadvantages into account, a stable robust adaptive control approach is

presented for a class of unknown nonlinear systems in the strict-feedback form with disturbances
in this paper. This approach does not require that the gain functions g, (X;),i =1.2"",n are known.

The key assumption is that neural network approximation errors and external disturbances satisfy
certain bounding conditions. ill addition, the derivatives of the virtual controllers are not
included in the neural networks so that the computational burden is reduced. By combining
neural network technique with backstepping method and introducing a special type of Lyapunov
functions, the controller singularity problem is avoided perfectly. As the estimates of unknown
neural network approximation error bound and external disturbance bound are adjusted
adaptively, the robustness of the closed-loop system is improved and the application scope of
nonlinear systems is extended. Simulation results demonstrate the effectiveness of the control
approach.



Xi =f,(X;)+gi(X;)X,+! +d, l:S;i:S;n-l

Xn =fn(Xn)+g.(:xn)u+dn n~2

y=~

where X; =[~,X2""'X.r e R',i=I,2, ... ,n, ue R, ye R are state variables, system input and output,

respectively, and di is external disturbance. The control objective is to design an adaptive neural

network controller for system (1) such that 1) all the signals in the closed-loop remain semi-
globally uniformly ultimately bounded and 2) the output y follows a desired trajectory Yd'

Note that in the following derivation of the adaptive neural network controller, neural
network approximation is only guaranteed within some compact sets. Accordingly, the stability
results obtained in this work are semi-global in the sense that, as long as desired, there exist
controllers with sufficiently large number of neural network nodes such that all the signals in the
closed-loop remain bounded.

Since g,(.),i=I,2, ... ,n are smooth functions, they are therefore bounded within some

compact sets. Accordingly, we can make the following two assumptions as commonly being
done in the literature.

Assumption 1: The signs of g,(.) are bounded, i.e., there exist constantsg" >gm >0, such

thatg" ~Ig, 01~ gm' 'fin e ile Rn.

The above assumption implies that the smooth functions gi (.) are strictly either positive

or negative. Without losing generality, we shall assume g" ~ gi 0~gm' 'fin e ile Rn .

Assumption 2: There exist constants gid > 0 such thatlg, (·)I:s; g'd' "fin e ile Rn •

The controller design presented in this paper employs RBF neural networks to
approximate the nonlinear functions. Now let us review the approximation property of RBF
neural networks briefly. The general form of RBF neural networks is (jIq (x), where BeRN is a

vector of adjustable weights and q(X)=[(l(X)'''''(N(X)J eRN is a vector-valued function with

basis functions (j (x),j =1,. .. ,N being chosen as commonly used Gaussian functions, which have

the form

(j (x) =exp[ _llx~~[ ],a~O,j =1,· .. ,N

where,uj (x) e Rn, j = 1,.··,N is the centre of basis functions and a is the width of basis functions.

According to the approximation property of RBF neural networks, for a continuous
functionf(x): ile Rn ~ R, given a large enough integer N , by choosing ,uj(x)e Rn, j =1,. .. ,N and



(J' suitably, there exists an optimal weight vector t}' E RN such that
I (x) = (J'T q(x)+o(x)

where o(x) denotes the approximation error of the neural networks. Since (J' is unknown, we

will use (J to denote the estimate of (J' and design adaptive laws to adjust (J.

The detailed design procedure is described in the following steps. For clarity and
conciseness, Step1 are described with detailed explanations, while Step i are simplified, with the
relevant equations and the explanations being omitted.

Step 1: Let x,.d = Yd and define e1= x,.- x,.d . Its derivative is

1\ = ~ -~d = /t (x,.)+ g, (x,.)x2 +d1 -~d = g, (x,.)[ g;' (x,.)/t (x,.)+x, +g;' (x,.)d1 -g;' (x,.)~d ]

If we view X2 as a virtual control input, there exists a desired control input

X;d =X2 =-g;'(x,.)/t(x,.)-g;'(x,.)d, +g;l(x,.)~d -k,e,

fun· 12 .where k, is a positive constant and a Lyapunov ction V; =-e, such that V; =-g,(x,.)k,e,2
2

~ - glOk,e: ~ o. Therefore, e, is asymptotically stable.

However, since the functions I, (x,.) and g, (x,.) are unknown, the desired controller cannot

be implemented. Instead, RBF neural networks can be used as follows to approximate
g;'(x,.)/t (x,.) and g;'(x,.)

g;' (x,.)/, (x,.) = tf q, (x,.)+ p, (x,.)

g;' (x,.) = o;T 1], (x,.)+q, (x,.)

where (J,o and 0; are the optimal weight vectors of g,-' (Xi)/t (x,.) and g,-'(x,.) , respectively.

p, (Xi) and ql (Xi) are approximation errors.

Throughout this paper, we introduce 8;T q; (x,) and t5,T 1]; (x,) as RBF neural networks to

approximate g;' (x,) J; (x,) and g;' (X,) , respectively and make the following assumptions for

p; (X,) and q; (x,).

Assumption 3: On the compact region Q;

Ip;(x,)I~VJ>p,(x,) i=I.2 •...•n

Iq, (x,)1 ~ VJ";,Sq;(x,) i= 1. 2, ...• n

whereVJ";;~Oand VJ";;~Oare unknown bounding parameters andsp;(x,):uc ~R+and Sq;(x,):uc ~R+

are known smooth bounding functions.
We make the following assumptions for the external disturbance d; of system (1).



Assumption 4: On the compact region ili

Idi (x;)1 ~ V:Sdi (X;) i= 1.2•...•n

where V: ~o is an unknown bounding parameter and Sdi(X;):Uc ~R+ is a known smooth

bounding function.
Let the virtual control input be chosen as

Xid = -tf ~ (~)+b;T Ih (~)~d -k,e, + H,

where 8, and 8, are estimates of 8; and 0; , respectively and H, is a bounding control function

which will be defined later on.
Defining ez = Xi - Xid' e, can be obtained as

e, = j;(.x,)+ g, (~)xz +d, -~d = g, (~)[g;' (~).t; (~)+ez +Xu +g;' (~)d, -g;' (~)~d J
Substituting (6), (7) and (11) into (12), we can obtain

e, = g, (~)[(8;T q, (~)+ P, (~))+ (_8,Tq, (~) +b;T77,(~)~d +e2 + g,-'(~)d, -( ~ 77,(~)+q, (~) )~d]

= g, (~)[ 8,Tq, (~)- ~T 77, (~)~d -k,e, +e2 + P, (~) - q, (~)~d + g;,(~ )d, +H,l

where 8, = e; - 8, and 8, = 0; - b;. Throughout this paper, we shall define (~)= (.)' - (.) .

Consider the following Lyapunov candidate
1 z 1 -T ,- 1 -T , ~ 1 -T-

\t; =--( -)e, +-8,1';,0, +-0, 1';2°, +-V, V,
2g, ~ 2 2 2.•,

where rl1 = r~,> 0 and r,z= r~z> 0 are adaptive gain matrices, .•, > 0 is an adaptive gain scalar and

Vi, = V', -V, with Vi, = [VipI'ViqI'Vid,J ' V; = [V;1' V;1' V;, r 'v, = [Vp"Vq"Vd,r· V,denotes the estimate

of V',.

The derivative of \t; is

. eA 8, (~) 2 -T " ;;T , ., 1 -T'
\t; =-( -)--2-( -)e, -8,1';,0, -0, 1';zo,--V, V,

g, ~ 2g, ~ .•,

= e,ez -(k, + 8'~~)Jet +8ne,q,(~) -1';iO,J-~T [e,77,(~)~d +1';;8,.J+A, (15)
2g, (~)

where A, =e,p, (x,)-e,q, (~)~d +e,g;' (~)d, +e,H, -~Vi;Vi, ...,
Choose the following adaptation laws

0, =rl1[e,q, (x,)-O',8,J

8,. = r12 [ -e,77,(~ ) ~d - rA J
where 0', > 0 and Yi> 0 are given scalars.

Substituting (16) into (15), we can obtain



By completion of squares, we have

-T -T(' -) 11-1111'11 11_112 O",llo;W 0",11((11
2

O"A 6}=0"}6, ~ -6, :S;O",6, ~ -0",6, :S;--2-+-2-

r,Sr (j, = r,~T(0; -~):s; r, 11~1110;11-r, II~r :s;- r, I~W + r, 11;1r

where ~ is chosen such thatk,' = k, -~ > O.
2g,0

Choose the bounding control function H, as follows

H, =-v1w,

where JJ, > 0 is a given scalar, ",,0 = [",~"",~"",~,ris the initial estimate of",,, the scalar e is a small

design constant and tanh(.) denotes the hyperbolic tangent function.

For any e > 0 and for II e R, the following inequality holds
o:s; IIII-Il tanh(II/ e):s; ~

where Kis a constant that satisfies K= exp( -(K+ 1)), i.e., K= 0.2785.

Using (21), (22), (23), assumption 1, assumption 3, assumption 4 and the inequality (24),
we have



(25)
Substituting (18), (19), (20) and (25) into (17), we can obtain the following inequality

V: < -IS 2_[0"'1I8t1r r,llsllr ,u,IIVidI
2
] [O"lll~t r,11b711

2
,u,lllV;_lV?11

2
] II 'II1- e1e2 et 2 + 2 + 2 + 2 + 2 + 2 + KE lV11

where the coupling term e1e2 will be cancelled in Step 2.

Step2: Similar to the procedure in Step 1, the virtual controller X'd will be designed to

make the error e2 = X2 -Xu as small as possible, The derivative of e2 is

e2 = x2 -X2d
= 12 (x2)+ 82 (x2)x, +d2 - Xu

= 82(x2)[ 8~1(x2) 12 (X2 )+e, +X,d +8~'(x2)d2 -8~' (x2)XU ]

= 82(x2 )[( 8;rq2(x2)+ P2 (:t,))+ e, + X,d +8~'(x2 )d2 -( 8;r7]2(x2) +q2 (x2) )X2d ]

Introduce the error variable e, = X, - X,d and let the virtual controller be chosen as

X,d = -e1 -82
rqJx2 )+0/7]2 (x2 )xu -k2e2 + H2

Substituting (28) into (27), we can obtain
e2 = 82(x2)[ 82rq2(x2) -8/7]2 (x2 )xu -e, -k2e2 +e, + P2 (:t,) -q2 (x, )xu + 8~1(x, )d2 + H2 ]

Consider the following Lyapunov candidate
1 2 1 -r 1- 1 -r 1- 1 -r - (3V = \0; +-(_ ) e2 +-82 r;A +-82lz:A +-lV2lV2 0)

282 Xi 2 2 2'Z'2

where r21=r;t > oand r22=r~ > oare adaptive gain matrices and'Z'2>0 is an adaptive gain scalar.

The derivative of v2 is

, , ei2 82(X2)2 -r-,' ~r-t" 1."r,v2 =\0; +-(_ ) -----,-(_ )e2 -82 r2182-u2 r22u2--'f'2lV2
82 x2 282 x2 'Z'2



where A, = e,p, (Xz )-e,q, (Xz )x2d + 8~' (x,)d, +e,H, -~Vi; Vi,·",
Choose the following adaptation laws

8, = r21 [e,~,(x,)-O"A]

8, = r" [-e,17, (x,)x2d -rA]

where 0", > 0 and r, > 0 are given scalars.

Choose the bounding control function H, as follows

H, =-11'; W,

[

w ] [Sp, tanh(e,sp,/e) ]p'
W, = wq' = Xusq, tanh (e,x2dsq, / e)

Wd, (Sd' / 820)tanh(e,sd' /820e)

where jJ, > 0 is a given scalar, \V~= [\V~" \V~" \V~,J is the initial estimate of \V, , the scalar e is a

small design constant and tanh(.) denotes the hyperbolic tangent function.

By using (32)-(35), assumptions 1, assumptions 2 and with some completion of squares
and straightforward derivation similar to those employed in step 1, the derivative of v, is

obtained as

v, < "" - t" ;,;-t,[ u, ~,r+ r,I~,f+P,tJ'hlu, I~Lr,I~I'+ P, Iv;,-01 I} ~t,lv;L(36)

where k, is chosen such that k; = k, - 8,~ >0and the coupling term e,e, will be cancelled in Step 3.
2820

Step i (3:::;i :::;n -1): Similar to the procedure in Step 2, the virtual controller x;,jwill be

designed to make the error ei = Xi - x;,jas small as possible. The derivative of ei is

el =xj-x/d
= f, (X;)+ gi (X; )Xi+1+ d, -Xid

= gi (X;)[ g;' (X;)f, (X; )+e'+1 + X(i+1)d+g;' (X; )d, - g;' (X; )x" ]

= 8, (X; )[( B;T~, (X;)+ p, (X; ))+e'+l +X(i+1)d + 8;' (X; )d, -( o;T17,(X; )+qi (X; ))Xid 1
Introduce the error variable ei+1= Xi+l - X(i+1)d and let the virtual controller be chosen as

x1i+l)d = -ei_1 - 9; T ~i (X; ) + o,T 17i (X; ) Xid - k;e, +Hi



Consider the following Lyapunov candidate
1 2 1 -r I - 1 -r 1 - 1 -r-

V, = V,-I +-(_) ei +-Oi r;; 0i +-8; 1,28;+-Vli VIi
2gi Xi 2 2 21'i (40)

where ril = r~ > 0 and ri2 = r;2> 0 are adaptive gain matrices and 1'i > 0 is an adaptive gain scalar.

Choose the following adaptation laws

e. =ril[ei~(X;)-oAJ

8, = ri2 [ -eiTJi (X; )xid - rib; ]

Where O"i > oand r. > 0 are given scalars.

Choose the bounding control function H, as follows

[
W'J [SPitanh(eiSPile) ]P'

Wi = Wqi = XidSqitanh(eiXidSqJe)

Wdi (SdJ giO) tanh (eiSdi I glOe)

where f.Ji > 0 is a given scalar, VliO= [VI~i,VI~i'VI~iJ is the initial estimate of VI" the scalar £is a small

design constant and tanh(·) denotes the hyperbolic tangent function.

By using (41)-(44), assumptions 1, assumptions 2 and with some completion of squares
and straightforward derivation similar to those employed in step 1, the derivative of V, is

obtained as

where ki is chosen such that k; = ki - gid2 > 0 and the coupling term eiei+1 will be cancelled in
2giO

Stepi+l, i =3, ...,n-l.

Stepn: This is the final step. Defineeo =Xo -x"". Its derivative is

= fo (x.) + g.(:to )u+ do -xnd

= go (x.) [ g~1 (xo) f.(xo )+u + g~1 (xo )do _g~l (xo )xnd ]

= go (x.)[( O:r ,go (x.) + Po (xo))+ u + g~1 (xo )do -( g;r TJo (xo)+ qo (xo) ) x"" 1



Let the practical control input be chosen as

u = -e._1 -8} q. (x.)+ a.T17.(x. )Xnd - k.e. + H.

Substituting (47) into (46), we can obtain

e. = g. (x.) [ B.Tq. (x. )_J.T 17. (x. )xnd -e._1 -k.e. + P. (x.) -q(x. )xnd + g:1 (x. )d. +H.l

Consider the following Lyapunov candidate
1 ,1-T 1- I-T ,- 1,7,1'-

V. = V._1 +z-(- )e. +'28.1,;,8. +'2°.1,;,0.+21" • Iff.
gn XII "/I (49)

where r.1= r~1> oand r., = r~,> 0 are adaptive gain matrices and .••> 0 is an adaptive gain scalar.

Choose the following adaptation laws

B. =r.1[e.q.(x;,)-CT.e.]

J. = r., [-e.17. (x. )xnd - rA]

where CT. > 0 and r. > 0 are given scalars.

Choose the bounding control function H. as follows

ifF.= .••[e. w. - ,u. (Iff. -Iff~ )]

[

e. wpn - ,u. ( Iffpn - vl'pn )]

=... e.Wq• - ,u. (Iffq• -Iff:. )

e.W<in - ,u. (Iff<in -Iff <in )

where ,u. > 0 is a given scalar, Iff~= [~,Iff~.,Iff1. J is the initial estimate of Iff. , the scalar e is a

small design constant and tanh(·) denotes the hyperbolic tangent function.

By using (50)-(53), assumptions 1, assumptions 2 and with some completion of squares
and straightforward derivation similar to those employed in step I, the derivative of v. is

obtained as

where k)S chosen such that k: = k. - g~ > 0
2g.o



choose kj such that kj ~(Pt2gjO)+(gjdt2g~o) , where p is a positive constant. Choose

(1j' Yj , Pj ,rj1 ,rj2 and1"j' such that(1j ~ PAmax {fj;}, Yj ~ PAmax {rj~} andpj ~ pt1"jrnin' where Amax {-}

is the largest eigenvalue of matrices. Then, from (54), we have the following inequality

V. ~ _ ~);e~_t[(1j IIOjl12+ Yj II OJ 11

2
+ Pj ~Vij112J+1ft

j=l j=l 2 2 2

~ -/lV. + 1ft (55)

The following theorem shows the stability and control performance of the closed-loop
adaptive system.

Theoreml: Under the assumptions 1-4, consider the closed-loop system consisting of (1)
and the known bounded reference signalYd(t).t~O, and choose the virtual control inputs (11),

(28) and (38), the practical control input (47), the neural network weight adaptation laws(16),
(32), (41) and (50). Assume that there exist sufficiently large compact sets n.; , nO, , nl" and

n; i = 1,···.n with proper dimensions, such that 0, E n •. , 0, E nO,, /fI, E nll'iand e, E n, for all t ~ 0 .

Then for bounded initial conditions, all signals in the closed-loop system remain bounded and
the output tracking error converges to a small neighbourhood around zero by an appropriate
choice of the design parameters.

Proof'
From (55), we have

V. ~ _k':""lleI12 (1rnin\1011' + Yrnin11~12+ PrninIiVil1
2

+ 1ft
2

where e=[el'e2, •••• eJ ' O=[~T.Oi ....,o:J ' S=[J,.T,oi •....o:J ' Vi=[Vi;r.Vii,...•Vi~r and Ominis the

minimum of(·),.i = 1.2 •... ,n .Therefore, the derivative of global Lyapunov function is negative as

long as

eEn=Hlell~Jt} (57)

or BE n. ={BIIIBII~~} (58)

or OE n6 ={oIIIS~~~} (59)

or ifiE nl' ={Vililifill~~:~n} (60)



According to a standard Lyapunov theorem extension, these demonstrate the uniformly

ultimately boundedness (DUB) of e, Ii, 8 and Vi. Since e1 = -'1 - -'1d and -'1d is bounded, we have

that -'1 is bounded. From e, = x, -xU/,i = 2,3,···nand the definitions of virtual controlsxjd' we have

that xjd remains bounded. Using (47), we conclude that the control input u is also bounded.

According to the assumption of the system that the functions j, (x) and g, (x) are continuous, the

functions j, (x) and g, (x) are bounded in any certainty compact. Thus, the optimal weights e; and

S;are bounded, and the weights fJ, and 0, of the neural networks are bounded. So, all the signals

in the closed-loop system remain bounded.
Let p =!p1 P , then (55) satisfies

o ~ v. (t) ~ P+(V(o)- p)exp( -pt)

From (61), we have
• 1L-e; < p+(v. (0)- p)exp( -pt) < p+ v. (O)exp( -pt)

'=12g,

l' • 1--Le; ~L-e,2<P+V.(O)exp(-pt)
2g""" '=1 '=1 2g,

Ie; < 2g"""p+2g"""V.(O)exp(-pt)
w ~

which implies that given l!J. >~2g"""p , there exists T(l!J.), such that for all t ~ T(l!J.), the tracking

error satisfies 1111 = 1-'1 - -'1d 1= Iy - Yd I< l!J. • This concludes the proof.

Remarkl: In (Ge & Wang, 2(02), a neural network is adopted to approximate the
nonlinear function (j,(x,)-xU/)1 g,(x,). However, the derivatives of the virtual control XU/ are

included in the neural networks, so the dimensions of the input vectors of the neural networks
become twice as much as those of the corresponding state vectors and the computational burden
increases. Therefore, the approach in (Ge & Wang, 2(02) is difficult to implement and apply in
practice. In this paper, although two neural networks are adopted to approximate nonlinear
functions g;1 (X)j,-l (x) and g;1 (x) respectively in every step, there are no dimensional increments

and no additional parameters must be calculated. Compared with the approach in (Ge & Wang,
2002), the method presented in this paper is much simpler to understand and apply in practice.



In this paper, two examples are used to verify the performance of the proposed controller.
Example 1

In this example, we discuss a real nonlinear system with nonlinear functions f (x), g (x)

and disturbances d (x) . Let Xi be the angle of the pendulum with respect to the vertical line. The

dynamic equations of the inverted pendulum system are
~ =X2

. ( ) mLx; cos(x,.)sin. (Xi) COS(Xi}
gasm Xi - --

. me+m me+m dX,=---------·+--~--U+1(4 mcos
2

(Xi)) 1(±- mcos
2

(Xi })
3 me +m 3 me +m

= f(~}+ g(x2}u+d2

d =0.01 sin (20t)

ga =9.8mls2

me =lkg

external disturbance;

acceleration due to gravity;

mass of the cart;

m = 0.1 kg mass ofthe pole;

1= 0.5m half-length of the pole;

U applied force (control signal).
It is noticed that this system is non-triangular. The initial condition is

Xo = [ Xi (o}.x2 (O)J = [O.I,Ot and the desired reference signal of the system is Yd = O.lsin(t). In this

example, we only need neural networks 8/;2(~)and g/t12(x2) to approximate g;I(X2}f2(~} and

g;' (~) .In this paper, all the basis functions of the neural networks have the following form

G(-}- [(X;-Uif(X;-Ui)]
Xi -exp 2

Vi

where Ui = [uiJ,Ui2 •...• uijTis the centre of the receptive field and Viis the width of the Gaussian

function. The neural networks 8/;2 (~) and g2T t'!2<x2) all contain 169 nodes, with centers Uj

evenly spaced in [--6. 6] x [--6. 6] and widths Vj= 1 (j =1.2 •...•169).

Step 1: Let Xid = Yd and define e, = Xi - Xid • The virtual controller is chosen as

Step 2: Definee2 = X2 -x2d• We obtain the control law

U = -e, -8/;2 (x2)+ 82
T772(x2 }X2d - k2e2 + H2



and adaptation laws
82 =r21 [e2;2 (x2) -<T,t},]

82 =r22 [ -e2172 (x2 )x2J - r202]

The bounding control function H 2 is chosen as

H2 =-v1w2

Fig. I The output y and the reference signal Yd

( Y -solid line and yd -dash line)

Fig. 2 The state X2 and the reference signal Yd

(~-solid line and Yd -dash line)

Fig. 4 ~ norms of the neural network weights

( 82-solid line and 02 - dash line)



The design parameters of the controller are Is = k2 = 5, r2 = diag {5}, a2 = Y2 = 0.2, Z'2= 10 ,

.tl2 = 0.1 and e = 0.05. The initial weights B2 are all given arbitrarily in [-1,1], andg2 in[o,l]. The

initial values of updating parameters are !fI2(0)=[l,l,lf. For simplicity, letsp2 =S.2 =Sd2 =1. The

simulation results are shown in Fig. 1-4.
From Fig.1 and 2, it can be inferred that the system output and state track the desired

signals very well by the proposed controller. The boundedness of the control input u and neural
network weights are shown in Fig.3 and Fig.4. The inverted pendulum simulation results
demonstrate the effectiveness of the proposed approach. It also indicates that this method can be
used for non- triangular systems.

Example 2
The model of the strict-feedback systems is described as follows

i; = O.5Xj+(1+0.lxnx2 +d,

x2 = XjX2+[ 2+cos(Xj)]u +d2

y=Xj

where Xjand X2are states, y is the output of the system, and d, = -sin Xjand d, = -o.5(e-'! +e--'!) are

external disturbances. The initial condition is Xo = [ Xj ( 0), X2 (0)J = [1,0f and the desired reference

signal of the system is yd = sin (t ) .

Step 1: Let Xjd = Yd and define e, =Xj - Xjd . The virtual controller is chosen as

Xu = _~T;, (Xj )+g,T 11, (Xj)i;d -k,e, +H,

Choose the following adaptation laws

il, = rll [e,¢; (Xj)-a,B,]

~ = r12[-e,11,(Xj )i;d -Yi~]
and the bounding control function H,

[

w ] [sp,tanh(e,sp,/e) jp'
w, = W., = i;dS., tanh (e,i;ds" / £)

Wd, (Sd' / g1O)tanh(e,sd,l 810£)



Step 2 is the same way as that of example 1.
The neural networks ot q, (~) and ~T III (~) all contain 13 nodes, with centers U j evenly

spaced in [-6,6] and widths Vj =1(j =1,2,...,13). The neural networks 0,' q2(X2) and O,'lh(x2) all

contain 169 nodes, with centers uj evenly spaced in[-6,6]x[-6,6] and widthsvj =1(j=1,2, ...,169).

The design parameters of the controller are k, = k2 = 2 , r1 = r2 = diag{2} , 0'1 = 0'2 = r. = r2 = 0.2 ,

1'1=1'2=10, f.4= Ii> = 0.1 and e = 0.05. The initial weights 0, and O2 are all given arbitrarily in [-1,1],

and ~and o2in[0,I]. The initial values of updating parameters are ¥,,(O)=¥'2(0) =[1,1,1]' . For

simplicity, let sp' = Sp2 = Sq' = Sq2 = Sdl = Sd2 = I. Fig.5-8 show the simulation results.

From Fig.5 and 6, we can see that tracking convergence is very fast and good tracking
performance is obtained by applying the design controller. Fig.? and 8 show the boundedness of
the control input U and neural network weights, respectively. The simulation results demonstrate
the feasibility of the proposed approach.

" (\ f\ I
-1 \"" \J \/

Fig. 5 The output y and the reference signal Yd

(y -solid line and Yd -dash line)

Fig. 6 The state ~ and the reference signal Yd

( ~ -solid line and Yd -dash line)
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Fig.8 L,. norms of the neural network weights
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In this paper, a stable adaptive neural network control approach is proposed for a class of
unknown nonlinear systems in the strict-feedback form with disturbances based on backstepping.
The developed approach can avoid controller singularity problem perfectly. As the estimates of
unknown neural network approximation error bound and external disturbances bound are
adjusted adaptively, the robustness of the closed-loop system is improved and the application
scope of nonlinear systems is extended. All the signals of the closed-loop system are guaranteed
to be uniformly ultimately bounded, and the output of system is proven to converge to a small
neighbourhood of zero. The simulation results demonstrate the feasibility of the control approach.
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