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Abstract

In this paper, a stable robust adaptive control approach is presented for a class of unknown nonlinear
systems in the strict-feedback form with disturbances. The key assumption is that neural network
approximation errors and external disturbances satisfy certain bounding conditions. By combining neural
network technigue with backstepping method and introducing a special type of Lyapunov functions, the
controller singularity problem is avoided perfectly. As the estimates of unknown neural network
approximation error bound and external disturbance bound are adjusted adaptively, the robustness of the
closed-loop system is improved and the application scope of nonlinear systems is extended. The overall
neural network control systems can guarantee that all the signals of the closed-loop system are uniformly
ultimately bounded and the tracking error converges to a small neighborhood of zero by suitably choosing
the design parameters. The feasibility of the control approach is demonstrated through simulation results.
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1. INTRODUCTION

Since the late 1980s, great deals of approaches have been developed on the adaptive
control of nonlinear systems with linearly parameterized uncertainty. However, the research
results during that period are required to satisfy some assumptions, such as matching conditions,
or extended matching conditions (Isidori, 1989; Nam & Arapostations, 1988). Recently, many
new results emerge and they do not rely on these assumptions (Krstic, Kanellakopoulos &
Kokotovic, 1995; Seto, Annaswamy & Baillieul, 1994). In these papers, adaptive control laws
are obtained by adopting backstepping method for strict-feedback or lower triangular systems.
For systems with high uncertainty, for example, the uncertainty that cannot be linearly
parameterized or is completely unknown, the adaptive neural network control approach based on
backstepping is developed further.

Although significant progress has been made by combining backstepping method with
neural network technique, there are still lots of problems that need to be solved in practice. In
(Polycarpou, 1996; Polycarpou & Mears, 1998), an adaptive NN theorem with boundedness was
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proposed and estimated values of unknown bounds of the neural network approximation error
were on-line adaptively adjusted. In (Kwan & Lewis, 2000; Zhou, Feng & Feng, 2005) by using
fuzzy and neural network approaches and based on backstepping, a robust adaptive control
scheme was developed for a class of MIMO nonlinear systems with modeling uncertainties. An
adaptive fuzzy controller with Heo tracking performance was designed in (Wang, Chan, Lee &
Liu, 2000). Heo tracking performance was applied to substantially attenuate the effect of the
modeling errors and disturbances. However, in order to avoid the controller singularity problem,
the gain functions g,(%),i=12,-,n (see system (1) in section II) are assumed to be constants

(Polycarpou, 1996; Polycarpou & Mears, 1998) or known functions (Kwan & Lewis, 2000; Zhou,
Feng & Feng, 2005). This assumption cannot be satisfied in many practical systems. The
situation that the gain functions are unknown has been studied in (Zhang, Ge & Hang, 2000; Ge
& Wang, 2002). By introducing the integral-type Lyapunov functions, an adaptive backstepping
neural network scheme is presented in (Zhang, Ge & Hang, 2000). However, because of the
introduction of the integral operation, this scheme is very complex and difficult to apply in
practice. Shuzhi S. Ge (Ge & Wang, 2002) proposed an adaptive neural network control
approach without the requirement for the integral-type Lyapunov functions and the stability of
the closed-loop systems is guaranteed. But the derivatives of the virtual controllers are included
in the neural networks so that computational burden increases. In addition, authors in (Zhang, Ge
& Hang, 2000; Ge & Wang, 2002) assumed that unknown bounds of the neural network
approximation error are less than bounded constants. If unknown bounds are larger than the
assumed bounds, the performance of systems cannot be guaranteed. In most research results, the
systems do not have external disturbances. Even though external disturbances exist, they are
required to satisfy square integrable conditions (Chen, Lee & Chang, 1996; Wang, Chan, Lee &
Liu, 2000). These requirements are also difficult to realize in practice.

Taking above disadvantages into account, a stable robust adaptive control approach is
presented for a class of unknown nonlinear systems in the strict-feedback form with disturbances
in this paper. This approach does not require that the gain functions g, (x,),i=1,2,---,n are known.

The key assumption is that neural network approximation errors and external disturbances satisfy
certain bounding conditions. In addition, the derivatives of the virtual controllers are not
included in the neural networks so that the computational burden is reduced. By combining
neural network technique with backstepping method and introducing a special type of Lyapunov
functions, the controller singularity problem is avoided perfectly. As the estimates of unknown
neural network approximation error bound and external disturbance bound are adjusted
adaptively, the robustness of the closed-loop system is improved and the application scope of
nonlinear systems is extended. Simulation results demonstrate the effectiveness of the control
approach.
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2. PROBLEM FORMULATION

The model of many practical nonlinear systems can be expressed as a special state-space
form

y=x 1)
where X, =[x,,%,,...x] € R,i=12,...n, ue R, ye Rare state variables, system input and output,
respectively, and 4, is external disturbance. The control objective is to design an adaptive neural

network controller for system (1) such that 1) all the signals in the closed-loop remain semi-
globally uniformly ultimately bounded and 2) the output y follows a desired trajectory y, .

Note that in the following derivation of the adaptive neural network controller, neural
network approximation is only guaranteed within some compact sets. Accordingly, the stability
results obtained in this work are semi-global in the sense that, as long as desired, there exist
controllers with sufficiently large number of neural network nodes such that all the signals in the
closed-loop remain bounded.

Since g,(),i=12,..,n are smooth functions, they are therefore bounded within some
compact sets. Accordingly, we can make the following two assumptions as commonly being
done in the literature.

Assumption I: The signs of g (-) are bounded, i.e., there exist constants g, > g, >0, such
that g, 2 Igi ()‘ 2 g, VX, €eQeR".

The above assumption implies that the smooth functions g, () are strictly either positive
or negative. Without losing generality, we shall assume g, > g, (}) 2 8,0, V%, € Qe R".

Assumption 2: There exist constants g,, >0 such that|g, (-)| < 8., V%, € Qe R".

The controller design presented in this paper employs RBF neural networks to
approximate the nonlinear functions. Now let us review the approximation property of RBF
neural networks briefly. The general form of RBF neural networks is ¢'¢(x), where 6e R" is a

vector of adjustable weights and &(x)=[¢,(x).-~.¢, N(x)]T e RY is a vector-valued function with

basis functions ¢;(x),j=1-,N being chosen as commonly used Gaussian functions, which have

the form

2
¢ (x)=exp{—“x—;:7j"—],azo,j=1,...,1v

@

where 1, (x)e R”,j=1,-,N is the centre of basis functions and o is the width of basis functions.
According to the approximation property of RBF neural networks, for a continuous

function f (x): Qe R - R, given a large enough integer N , by choosing 4, (x)e R", j=1--,N and
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o suitably, there exists an optimal weight vector 6" e R” such that
£(x)=67¢(x)+8(x) 3
where &(x) denotes the approximation error of the neural networks. Since g is unknown, we

will use @ to denote the estimate of ¢"and design adaptive laws to adjusté.

3. CONTROLLER DESIGN

The detailed design procedure is described in the following steps. For clarity and
conciseness, Stepl are described with detailed explanations, while Step i are simplified, with the
relevant equations and the explanations being omitted.

Stepl: Let x, =y, and definee, =x, —x, . Its derivative is

b=t -ty = £ (1) + 8 (%)% +d 5, = 8 (1) &7 (1) £ (x)+ 3% + &7 (x)d, =87 () & ] @
If we view x, as a virtual control input, there exists a desired control input

Xa=x =g (0)fi(x)-g" (5)d,+8" (x) 4 —ke, )
where k is a positive constant and a Lyapunov function V, =%e12 such that V, =-g, (x)ke’
<—g ke’ <0, Therefore, ¢ is asymptotically stable.

However, since the functions f,(x)and g, (x)are unknown, the desired controller cannot
be implemented. Instead, RBF neural networks can be used as follows to approximate
&' (%) fi(x) and g (x)

& (1) fi(x) =676 (x)+p (%) ©)

g (n)=8"m(x)+a(x) I
where & and & are the optimal weight vectors of g(x)f(x) and &' (x) , respectively.
p,(x)andg (x) are approximation errors.

Throughout this paper, we introduce /¢ (%)and 47, (%) as RBF neural networks to
approximate g;'(%) f,(%) and g’ (%) , respectively and make the following assumptions for
p(%)andg,(%).

Assumption 3: On the compact region Q,

|p. (%) s¥p5, (%) i=12...m 8)
|a: (%) S Wisu (%) i=12,m ©
wherey, 20and y, 20are unknown bounding parameters and s, (%,):U, > R"and s, (% ):U, > R

are known smooth bounding functions.
We make the following assumptions for the external disturbance 4, of system (1).
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Assumption 4: On the compact region £,

|d |<Vd4sdl( ) i=12,..,n 10)

where v, 20 is an unknown bounding parameter and s,(X):U.—>R" is a known smooth
bounding function.
Let the virtual control input be chosen as
X, =07 & (%) +8 (%)%, —ke +H, an
where 6, and &, are estimates of 6§ and & , respectively and H,is a bounding control function
which will be defined later on.
Defininge, = x, - x,, , ¢,can be obtained as
b= fi(x) 8 ()% +d — 5, = & (x)[ 87 (8) £ (1) + e+ 20 + 87 (5)di =87 () ] (12)
Substituting (6), (7) and (11) into (12), we can obtain
6= 8 (5)[(676 (x)+ 2 (x)+ (876 (%) + 87 () oy e, + 87 (0, =(87m (%) +4: () ) )

= gl(xl)[élr‘fl(xl)_g;rﬂl (%) &g —kie +e, + Py (%) =4, (%) A + 817 (0)d +H, ] (13)

where 8 = -6, and §, = &, -4, . Throughout this paper, we shall deﬁne() () -().

Consider the followmg Lyapunov candidate
Vg ey T+ 38T 5l
2g,(x) (14)

where T, =T, >0and T, =T, >0are adaptive gain matrices, 7, >0is an adaptive gain scalar and

¥ = W‘l -¥ with V.= [prﬁqudl] ’ '//; =|:'//;1J//;1J//,;1] W= [Wpl’qu’Wdl:I 4 denotes the estimate

ofy’,.
The derivative of V, is
s eé  &(x0) o sy sreas 1 ory
Y =zl(-;5—mef -6T,,6,-8T,9, _ZWH,‘
=e1ez—[kl+2gg}ff,:))el+e’[e,<f,<x1> R AR AT ACI LY T (1)
1

where A, = e, (x)-aaq (%), +ag (x)d +eH, —%v?f ¥
Choose the following adaptation laws
6,=T,[e& (x)-08 ]
8 =Ty [~em (x) 5~ 7d] a6)
where o, >0and  >0are given scalars.
Substituting (16) into (15), we can obtain
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; & (%)
V, =¢e, —(kl + 2glz (Xl)
1

By completion of squares, we have

}fwléfw&fml

~ 12 <112
ol , ala
+

2 2

u N B N 5 &
1= (5 -8) <ot oy =L 2021

afl6,=f (4 -8)sa[alla]-a el <-

According to assumption 1 and 2, the following inequality holds
&(x) ). 84 J 2 ( 8ia j 2 « 2
k= < k- <—| by -2 | < ke
["‘ 2gf(x1)]e ["‘ 2 (m) 2t ST

where , is chosen such thatk =k - Zg“ >0.

2

810
Choose the bounding control function H, as follows
H =-y/w,
W,y Sp1 tanh(elspl /e)

W=\ Wy | =] Sy tanh(e1xusq1 /E)
Wa (S41/ 810) tamh (€5, ! 8,0€)
¥ =17 [elwl —H (WI "'/’f ):l
ew, —H (Wpl —y/:l)

=T aw,—H (qu —'//21)
ewy, "/‘1(7’41 _'/61)

Liu, Wang and Liu

an

(18)

19)

(20

@1

(22)

(23)

where 4 >0 is a given scalar, y; = [wj’,,,w},’,,wf}l :]T is the initial estimate ofy,, the scalar ¢ is a small

design constant and tanh(-)denotes the hyperbolic tangent function.

For any &> 0 and forIle R, the following inequality holds
0 <|TT|-Itanh(T1/ ) < k&

where «is a constant that satisfies k¥ =exp(-(x+1)), i.e., x=0.2785.

(24

Using (21), (22), (23), assumption 1, assumption 3, assumption 4 and the inequality (24),

we have

. _ )
A =e1pl(x1)_elql(xl)xld +eg8, (x)d, +eH, _;'//117/’1
1

. , . 1 .
s |31|'/’plsp1 +|elxld|'//;lsql +|61|W41s.11 ! 810 _EIWITWI _?71!”11 [e1W1 —H (Vl -
1

)]
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el

=[Wo¥¥i || lekalsa |-l w +mdl (n—v7)

_|e,|s,“ /80

_|el|s‘u1 s, tanh(es,, /£)

=(V, W W || lekalsy —ekusy tanh (e ks, 7€) |+ (W - -9))
_|e1|s,,l /80 —(€5,,/ 8 )tanh{e;s, / g,€)

mwli-vi  wmiwl
2 2

- . .
< l//plkt'+y/qlk‘£+l/1dlklz‘+

. 2 _
wlyi vl _wlol

2 2 (25)
Substituting (18), (19), (20) and (25) into (17), we can obtain the following inequality

e ke _[a, ol , xIf +ﬂl||w.|r]+[al 6l I,

.
=yl +

2 12 2
nlol wmlw -v .
el ubi-vll), .,

2 2 2 2
(26)

where the coupling term e,e, will be cancelled in Step 2.
Step2: Similar to the procedure in Step 1, the virtual controller x,, will be designed to
make the error e, = x, - x,, as small as possible. The derivative of e, is
by =i~y
=L@+ 8 (B)x+d - %,
=5,(%)[ 8 (B) £ (R)+e + 5, + 87 (B)d, 85 (%) % |

=8 (fz)l:(ozqu (%)+p, (72))'*'53 +x,+8; (%,)d, _(J;T'Iz (%)+e. (% ))5‘2.1] @

Introduce the error variablee, = x, —x,, and let the virtual controller be chosen as
x,, =—e, =6, & () +8,71,(%,) &,y ~kye, + H, (28)
Substituting (28) into (27), we can obtain
b= 8, (B[ BTE (587 (B) by e ~kies v+ 21 (B) -0 (B) s+ 85 (R)A +H.] o9
Consider the following Lyapunov candidate

1 Vs Loz 1 g
v, =V, +m€§ +3921F§1'92 +552TF£§52 +'272%T% (30)

where T, =I', >0and T,, =T, >0are adaptive gain matrices andz, >0 is an adaptive gain scalar.
The derivative of V, is

&é & (Iz)

V, = 2 Z
: 8(%,) 283 (%,)

1 n P 1 ...
e; -9271"2?‘92 —5271"2;52 _T_Wg'/’z
2

& (%)

2¢;(%,)

=V —ee, +ee, "[kz + je; +6] [9252 (fz)-r?f%]-sf [92772 ALY +F;2152:|+Az

€2y
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- - = 1 7.
where A, =¢,p, (%) -4, (%) 1, + &7 (B)d, + &, H, _T_'/’zTW2 .
2
Choose the following adaptation laws
6,=Ty [ezéz (%) _0'202]

52 =Iy [_ezﬂz (%) 5~ 7252]

(32)
where o, >0and , >0are given scalars.
Choose the bounding control function H, as follows
Ho=vw, (33)
W, S, tanh(e2sp2/€)
Wy =| W, [=] %48, tanh(ezjcmsq2 /8)
Waa | | (427 8 )tanh(e,s,, / gx€) 34)
v, =0, ewy— 1, (v~ 3]
e,y =t [V, —¥5 |
=1,| ey =t [Woo ¥ |
eWar =1 [V Vs | 35)

where u, >0 is a given scalar, y; =[y/22,w22,y/32:r is the initial estimate ofy,, the scalare is a
small design constant and tanh(-) denotes the hyperbolic tangent function.

By using (32)-(35), assumptions 1, assumptions 2 and with some completion of squares
and straightforward derivation similar to those employed in step 1, the derivative of V, is

obtained as

- n2 2 R L 12 2 . 2
VzSezea—ik}ef-i[aj||:jll *yj"fj“ +ﬂ,«||;/,-|| ]+€;L"f|2‘91" +7,-||;5','-|| +#,-l|%2-V5-’|| millvéﬂl
= pr

j=1 i1 Jj=

(36)
where &, is chosen such that &, =k, - zgzg
20

>0and the coupling term e,e, will be cancelled in Step 3.

Step i (3<i<n-1): Similar to the procedure in Step 2, the virtual controller x, will be
designed to make the error ¢, =x, —x, as small as possible. The derivative of eis

=f(®)+ 8 (%) xa+di— %y
= gl(fi)[gi_l @) (E)+en * Xy +g;' (%)d, -8 (Ei)xu]

=8 (71 )[(0:151 (7: )+ P (3‘-: )) +en T Xme t &' (%), _(Jiqﬂi (%)+a (= ))Xid]

Introduce the error variablee,, = x,,, —x,,,, and let the virtual controller be chosen as

& =X —x,

@37

Xisya = "€ "airé‘ (Ei)+5irﬂi (Ei)f‘m —ke, +H,; (38)

Substituting (38) into (37), we can obtain
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6 =g, (%) B (%) -6 () ks —ecs—ke+eu + P () -0, (F)hu+ 8 (R)d + H, ] (39)
Consider the following Lyapunov candidate
V=Vt o e+ ATRA A SO TAE i,
28(x) " 2 (40)

where T, =T, >0and T, =I", >0 are adaptive gain matrices andz, >0 is an adaptive gain scalar.
Choose the following adaptation laws
é.‘ =Ty [eigi (’_‘.)_o'xax]
5.' =T, I:—ei”i (f.)x.d—}’.é'.] (41)
Where o, >0and 7, >0are given scalars.
Choose the bounding control function H, as follows
H =-y/w, (42)
W, S, tanh(e,sp,/e‘)
w, = w, | = %8, tanh(e XSy /€)

Wai (84 /gio)tanh(eisdi/giog)
V=1, l:e,.w,. —H; ('/’i _'/’;o)]
Wy —H; (y/ﬂl '//2")
=T, eW, — M (V’qi _ng)
Wy~ M (Wd.‘ - '/’3.') 44)

(43)

where x>0 is a given scalar, y = [l/lg,»,w,‘,’,-,wg,- ]T is the initial estimate of y,, the scalar ¢is a small
design constant and tanh(-) denotes the hyperbolic tangent function.

By using (41)-(44), assumptions 1, assumptions 2 and with some completion of squares
and straightforward derivation similar to those employed in step 1, the derivative of V, is

+;{ ‘

where k is chosen such that & =k,.—553"2—>0 and the coupling term ee,, will be cancelled in
8io

obtained as

ol % Ilé‘ [, ||% vl

i || [ nIIJ [~ II%II

el

V, <ee,, —Zk;ej

J=1 j=1

(45)

Stepi+1,i=3,..,n-1.
Stepn : This is the final step. Definee, =x, - x,, . Its derivative is
by =%, — Ky
=f,(Z)+ 8. (%, )u+d, ~ %,
= 6, (%) & B L E)+u+ 8 (5)4, -8 ()]

A A TN e T A AT L XCATTACA) L4 IO
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Let the practical control input be chosen as

W= e =06 (5)+010,(5,) tu ke, +H, 7
Substituting (47) into (46), we can obtain
¢, =8.(% )06 (%) -8, (%) % —er~koe, + 2, (3.) = 4(T,) 5o + 87 (,)d, +H, ] “8)
Consider the following Lyapunov candidate

V.=V, +

e Lgrrig 16ris e,
28,(%.) 2 2 2z, (49)

where ', =T, >0and T,, =T, > 0 are adaptive gain matrices andz, >0 is an adaptive gain scalar.
Choose the following adaptation laws
6,=T.[04(%)-0,6,]
o,=T, [—e,.ﬂ,. (%)%, - 7,.5»] (50)
where o, >0and ¥, >0are given scalars.

Choose the bounding control function H, as follows

H, =-yw, (51)
W] | Sor tanh(e,,sp,, /£)
W, =| W, |=| £uaSen tanh(e,,icndsq,, /€)
Wan (5.7 8,0 ) tanh(e,s,, 18,4€) (52)
v, =7, e, -1, (v, -¥3)]
€Won — H, ('//pn _Wﬁn)
=7,| €&Ws —H, (an _Wfl)")
eWy —Hy (de _Wgn ) (53)

where z, >0 is a given scalar, y. =[y/g”,u/2n,y/f,‘]T is the initial estimate ofy,, the scalare is a
small design constant and tanh(-) denotes the hyperbolic tangent function.

By using (50)-(53), assumptions 1, assumptions 2 and with some completion of squares
and straightforward derivation similar to those employed in step 1, the derivative of Vv, is

obtained as

w12 = |12 . n .
V,,S—z":k;ef —zn:{aj";f" +7j||ji" +.uj||;’jl| ]+§[aj |20/'

j=1 J=l

2 2 " 2
I + ¥ “;5; “ W “'//12— v; “ + mi“%
=

1

(54)

where &, is chosen such that k, =k, - 2g 250
8no

*

2 2 N 2
Let¢=z":[aj 29:“ + Y; “j" +l‘i "%2"/’?" ]4, ngn"“%"l .Choose k; such thatk} > fr2g,, ie.,
j=1 =l
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choose &, such that k;2(B/2g,)+(g./28%) . Where B is a positive constant. Choose
0,., »4; ;T ,T,, andr;, such thato, > . {T;i}, ¥, 2 A (T} and 4, 2 Bi7,, , Where 4, {}

is the largest eigenvalue of matrices. Then, from (54), we have the following inequality

~ 2 = |12 e
‘CS—ik;ef‘i[aj":j“ +7,-||25,-|| +#’“:/j|| ]+¢

=t =l

< _i 'B e% —ﬂi éJTr;;éJ + SITF;;SJ WJTW] +¢
j=1 281»0 J j=1 2 2 21'].
<-p i 1 .5 91'11—7110}+51‘Tr7125i+'/7fv71 +é
Jj=1 2gj0 ! Jj=1 2 2 27,'}.
S-pv,+¢ (55)

The following theorem shows the stability and control performance of the closed-loop
adaptive system.

Theoreml: Under the assumptions 1-4, consider the closed-loop system consisting of (1)
and the known bounded reference signal y,(s),z20, and choose the virtual control inputs (11),

(28) and (38), the practical control input (47), the neural network weight adaptation laws(16),
(32), (41) and (50). Assume that there exist sufficiently large compact setsQ, ,Q, , <, and
Q, i=1,--,n with proper dimensions, such that§eQ,, 5eQ,, ¥,eQ, and ¢, € Q, for allt20.

Then for bounded initial conditions, all signals in the closed-loop system remain bounded and
the output tracking error converges to a small neighbourhood around zero by an appropriate
choice of the design parameters.

Proof:

From (55), we have

~|I2 2 o
, ko el - 2= o] + 7 ﬂ"“ P

(56)
where e =[e,e,,e,] » é=[é’,é{,...,§f]r , 5:[51’,32’,...,5"’]T , W:[y”lf,y?{,...,y?f]r and (-) is the

minimum of (), i =1,2,....n .Therefore, the derivative of global Lyapunov function is negative as

long as
ceQ= {e e < k—"’-} 7)
or Geo, ={9 I < l} (58)
Oin

or SeQ, ={5‘||5|| < J;Z} (59)
or veQ, ={y7‘||y7||s ’3—‘”} (60)
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According to a standard Lyapunov theorem extension, these demonstrate the uniformly
ultimately boundedness (UUB) ofe, §, §andy . Since ¢ =x —x, and x,is bounded, we have
that x is bounded. From ¢, = x,—x,,i=2,3,-nand the definitions of virtual controls x,,, we have
that x, remains bounded. Using (47), we conclude that the control input u is also bounded.
According to the assumption of the system that the functions f,(x)and g, (x) are continuous, the
functions f,(x)and g, (x)are bounded in any certainty compact. Thus, the optimal weights 8 and
& are bounded, and the weights 6, and ¢, of the neural networks are bounded. So, all the signals
in the closed-loop system remain bounded.
Let p = ¢/ B, then (55) satisfies
0<V, (1)< p+(V(0)~ p)exp(-4r) 61)
From (61), we have
&1
2-2——42 < p+(v,(0)-p)exp(-pt) < p+V,(0)exp(-pt)
=1 <8; (62)
Letg,. = Ilrsl_z;x{gﬂ} . Then we have
-z—l—zn:e,.z < iz—lg—ef < p+V, (0)exp(—pt)
B rmax i=1 i=1 i (63)
that is
367 <2800+ 28V, (O)exp (A1)
it 64)
which implies that given A>.[2g...p, there exists T(A), such that for all r27(A), the tracking
error satisfies |e|=|x —x,|=]y- .| <A . This concludes the proof.

Remarkl: In (Ge & Wang, 2002), a neural network is adopted to approximate the
nonlinear function (f,(x)-x,)/g(x). However, the derivatives of the virtual control x, are

included in the neural networks, so the dimensions of the input vectors of the neural networks
become twice as much as those of the corresponding state vectors and the computational burden
increases. Therefore, the approach in (Ge & Wang, 2002) is difficult to implement and apply in
practice. In this paper, although two neural networks are adopted to approximate nonlinear
functions g;*(x)f*(x)and g;*(x) respectively in every step, there are no dimensional increments

and no additional parameters must be calculated. Compared with the approach in (Ge & Wang,
2002), the method presented in this paper is much simpler to understand and apply in practice.
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4. SIMULATION

In this paper, two examples are used to verify the performance of the proposed controller.
Example 1

In this example, we discuss a real nonlinear system with nonlinear functions f(x), g(x)
and disturbancesd (x). Let x, be the angle of the pendulum with respect to the vertical line. The

dynamic equations of the inverted pendulum system are

n=x
s P snls)  eon(s)
i = m +m . m +m wid
. 4 _mcos’(x) | 4 mcos® (x)
3 m+m 3 m+m
=f(%)+8(%,)u+d,
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where
d =0.01sin(20¢) external disturbance;

g, =98mi/s acceleration due to gravity;
m, =1kg mass of the cart;

m=01kg mass of the pole;

1=05m half-length of the pole;

u applied force (control signal).

It is noticed that this system is non-triangular. The initial condition is
% =[%(0),%,(0)] =[0.1,0]" and the desired reference signal of the sysiem is y, =0.1sin(r). In this
example, we only need neural networks 8,7{,(%,) and 8, n,(%,) to approximate g,'(%,)f,(%,) and
¢;*(%,) .In this paper, all the basis functions of the neural networks have the following form

G(E,.)=exp{—(i__”-'_)2(_iﬂ2}

v,

(66)
where u, =[u,.l,u,,2,...,u,.].]1 is the centre of the receptive field and v,is the width of the Gaussian
function. The neural networks 6,4,(%,) and &8,77,(%,) all contain 169 nodes, with centers u;
evenly spaced in[-6,6]x[-6,6] and widthsv; =1 (j=12,...169).
Step 1: Let x, =y, and define ¢, =x, -x, . The virtual controller is chosen as
Xy = hy —kie, 67)
Step 2: Definee, = x, - x,, . We obtain the control law

u=-¢ -6/¢, (Ez)"'azr’h (%)%, —k,e,+H, (68)
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and adaptation laws
6,=T, [ezfz (%)- 0292]

82 =Ty [_eznz (fz ) Xyy = 7282] (69)
The bounding control function H, is chosen as
H, =y, w, (70)
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e e e e o wowow e e Fig. 2 The state x, and the reference signal y,

Fig. 1 The output y and the reference signal y, (x,-solid line and 3, -dash line)

(y -solid line and y, -dash line)
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Fig. 4 L, norms of the neural network weights

Fig.3 The control input « of the system (6,-solid line and 4, - dash line)
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The design parameters of the controller are k, =k, =5, [, =diag{S}, 0,=7,=02, 7, =10,
4, =0.1 and £=005. The initial weights 6, are all given arbitrarily in[-11], and 4, in[0,1]. The
initial values of updating parameters are ¥,(0)=[1,11}" . For simplicity, lets,, =s, =s,, =1. The
simulation results are shown in Fig.1-4.

From Fig.1 and 2, it can be inferred that the system output and state track the desired
signals very well by the proposed controller. The boundedness of the control input « and neural
network weights are shown in Fig.3 and Fig.4. The inverted pendulum simulation results

demonstrate the effectiveness of the proposed approach. It also indicates that this method can be
used for non- triangular systems.

Example 2
The model of the strict-feedback systems is described as follows
% =0.5% +(1+0.1% ) x, +4,
i = X% +[2+cos(x1)]u +d,
y=x 73)
where x and x,are states, yis the output of the system, and 4, =-sinx, and d, =—-0.5(¢* +¢™) are
external disturbances. The initial condition is x, =[x (0),x, (0)] =[1.0]" and the desired reference
signal of the system is y, =sin(r).
Step 1: Let x, =y, and define ¢, =x, —x, . The virtual controller is chosen as
X ==67& (%) +8"m () %, — kg + H, (74)
Choose the following adaptation laws
6, =Ty[e(x)-0.6]
8 =Ty~ (%)~ %4 ] (75)
and the bounding control function H,
H =-y{w (76)
w,] | s tanh(es, 7€)
w=| W, |=| %5, tanh (e 3,5,/ £)

Wa (Sdl / glO)t’anh(elsdl /glog) an

v = [eon ~ 14 (v -w?) ]
Wy~ 14 (Vi —¥i)
=7 lew,— 4 (V/ql —'/’31)
oW =t (W —¥ir) 78)
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Step 2 is the same way as that of example 1.
The neural networks §7& (x,) and 677 (x)all contain 13 nodes, with centers »; evenly

spaced in[-6,6] and widths v, =1(j=12,..,13). The neural networks 6,’¢,(%,) and &,'7,(%,) all
contain 169 nodes, with centers u; evenly spaced in[-6,6]x[—6,6] and widthsv, =1(j=12,..,169).
The design parameters of the controller are & =k, =2, T, =T, =diag{2},0,=0,=y=5,=02,
7, =7,=10, g =4, =0.1 and £=0.05. The initial weights 6 and 6, are all given arbitrarily in[-11},
and 8 and 8,in[0,1]. The initial values of updating parameters are y, (0)=y, (0)=[LL1] . For
simplicity, lets,, =s,, =s, =s,, =5, =5, =1. Fig.5-8 show the simulation results.

From Fig.5 and 6, we can see that tracking convergence is very fast and good tracking
performance is obtained by applying the design controller. Fig.7 and 8 show the boundedness of

the control input » and neural network weights, respectively. The simulation results demonstrate
the feasibility of the proposed approach.
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5. CONCLUSION

In this paper, a stable adaptive neural network control approach is proposed for a class of
unknown nonlinear systems in the strict-feedback form with disturbances based on backstepping.
The developed approach can avoid controller singularity problem perfectly. As the estimates of
unknown neural network approximation error bound and external disturbances bound are
adjusted adaptively, the robustness of the closed-loop system is improved and the application
scope of nonlinear systems is extended. All the signals of the closed-loop system are guaranteed
to be uniformly ultimately bounded, and the output of system is proven to converge to a small
neighbourhood of zero. The simulation results demonstrate the feasibility of the control approach.
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