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ABSTRACT. The congestion control algorithms have an important influence on the quality of
service of communication network. In this paper, a class of rate-based congestion control algorithms
with communication delays is studied. Based on the Lyapunov-Razumikhin theorem, the Lyapunov
stability of the algorithm is analyzed. The global attractability of the algorithm is proved by applying
Barbalat Lemma. A more concise criterion to ensure the global asymptotical stability is obtained.
The new result presents a simple upper delay bound, and enlarges the admissible upper delay bound.
Finally, many examples are given to support the result.

With the development of network communication, the quality of service (QoS) of
Internet becomes more and more important. For ensuring the QoS and the capacity
of Internet, the sources of Internet apply TCP congestion control algorithms to avoid
network congestion, such as TCP Reno[l] (and its variants), and the link nodes use
active queue management (AQM) schemes to improve the serving capacity of Internet,
such as DropTail[l], RED[2]. However, the existing congestion control algorithms
which are based on "trial-and-error" methods employed on small test beds may be
ill-suited for future networks [3, 4] where both communication delay and network
capacity can be large, which has been proved by the fact of two times to revise
the parameters of the RED algorithm [5, 6]. This has motivated the research on
theoretical understanding of TCP congestion control and the search for protocols
that scale properly so as to maintain stability in the presence of these variations.

From a point of view of the control theory, congestion control problems are com-
plex and challenging because they are high-dimensional, nonlinear, and dynamic equa-
tions for the mathematical modelling of the network[7, 8, 9]. In order to improve the
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throughout and decrease the queue vibrating of Internet, there are many new Inter-
net congestion control algorithms (ICCA) presented [10, 11, 12, 13, 14, 15]. Rollt
et al[12] analyzed the TCP flows of Internet and designed a PI controller for AQM
routers which can improve the serving capacity of Internet. Athuraliya et al[13] pre-
sented an ameliorated RED algorithm: REM, and an adaptive virtual queue (AVQ)
algorithm for active queue management is introduced by Kunniyur and Srikant[14],
which can enhance the quality of service, largely.

Based on the views of the network's optimization, Kellyet al [15] have developed
a network framework with an interpretation of various congestion control mechanisms.
They proposed a prime algorithm for TCP rate control and a dual algorithm for AQM
scheme, which generalize the Additive Increase/Multiplicative Decrease (AIMD) con-
gestion avoidance strategy [1] to large-scale networks. The advances in mathematical
modeling of Kelly's primal algorithm have stimulated the research on the analysis of
the behavior such as stability, robustness and fairness.

The convergence of Kelly's primal algorithm has been established in the absence
of the communication delays in [15]. The stability of this algorithm with the commu-
nication delays has drawn much attention in the past few years. The continuous-time
model and the discrete-time model of Kelly's primal algorithm with homogenous com-
munication delays for different TCP connections have been investigated in [16, 17],
respectively. For a more general case of networks with heterogeneous round-trip de-
lays, they proposed a conjecture on the local stability of the algorithm, respectively.
Recently, their conjectures have received much attention [18, 19], where Tian and
Yang [19] have studied their conjectures and obtained a more general stability cri-
terion. The new criterion in [19] is stronger than the conjecture, and enlarges the
stability region of control gains and admissible communication delays.

In this paper, we study the global asymptotical stability (GAS) of Kelly's primal
algorithm with the communication delay in a single link accessed by a single source.
The algorithm model is described as

x(t) = { K,(w - x(t - D)p(x(t - D))), x> 0;
(K,(w - x(t - D)p(x(t - D))))+, x = o.

where K, > 0 is the control gain of the system, D is the communication delay, x(t) is
the sending rate of the source at time t. The function p(.) is the congestion indication
probability (or congestion control rate) back from the link node, which is assumed to
be increasing, nonnegative, concave and not identically zero, satisfying 0 ~ p(.) ~ 1.
x(t)p(t) denotes the marked packets number of the source at time t, w is a desired
target value of marked packets received back at source. (J(x))+ = max{j(x),O}.
From the description of the system (1.1), we know that the solution of Eq.(1.1)

should be x(t) 2: O.



We note that the GAS problem of the system (1.1) has been studied in [20, 21],
which pointed out that the global asymptotic stability of system (1.1) can be ensured
if the product of the control gain and the delay constant, KD, is upper bounded.
However, the upper bound given in [20]is very complicated and might be inconvenient
for practical application. In [21], a simpler and more explicit formula of the GAS
condition was proposed as

1
KD< 4.

To prove this result, the authors of [21] used an assumption that x(t) ~ 0, and then
all the discussion were based only on the first equation in (1.1). Although x(t) ~ 0
is a direct result of the second equation in (1.1), a rigorous proof of stability should
be based on the switched model rather than a smooth one. In this note, we obtain a
less conservative GAS criterion given by

1
KD<2·

And more importantly, our proof does not depend on the supposition x(t) ~ O. We
consider the problem based on the switched model of the original Kelly's algorithm.

The rest of this paper is organized as follows. The Lyapunov stability of Kelly's
prime algorithm is analyzed by applying Lyapunov- Razumikhin theorem in Section
2. In Section 3, based on the global attract ability of the algorithm from Barbalat's
Lemma, the criteria of the GAS is presented. An extended result for GAS is obtained
in Section 4. In Section 5, a lot of simulations are used to test the results. Finally,
the conclusions are showed in Section 6.

In this section, we discuss the Lyapunov stability of the system (1.1) by applying
Lyapunov-Razumikhin theorem. From the description of the system (1.1), we know
that there exists a unique equilibrium point x* satisfying

Proof. From the description of the system (1.1), all solutions x ~ O. Since p(x) is a

increasing, concave function, satisfying

xp'(x) ~ lx
p'(s)ds = p(x) - p(O) ~ 1,



Throughout the _paper we use the following definition of derivative

'(t ) - '(t+) - l' x(t) - x(to)Xo-xo-lm .t-.t6 t - to

Knowing from the system (1.1), there is x(t) = 0 or x(t) = f(x(t-D)), and f(x*) = O.

Suppose x(t) = x* + x(t), when x(t) = f(x(t - D)), we obtain

Proof. Let x(t) = x* + x(t), the system (1.1) can be transformed into

:i(t) = { f(x(t - D)), x(t) > -x*;
(f(x(t - D)))+, x(t) = -x*.

-",x(t - D)p(x(t - D) + x*)
-",x*(p(x(t - D) + x*) - p*).

where p(x(t - D)) = p(x(t - D) + x*), x = ax(t - D) + x*, a E [0,1].

Supposing the solution x(t) = x(t, rp) of the system (2.3) with rp E [-2D,0], and
Lyapunov function

V(x(t)) = ~X2(t),

we know that the function V(x(t)) is a continuous function in t E [-2D,00). Based
on the Lyapunov-Razumikhin theorem [23], for any () E [-2D,0], let



In the following, we will compute the derivative of the Lyapunov function along
the trajectories of (2.3). Firstly, when x(t) = -x*, we derive from the derivative
definition,

V(t) x(t)±(t)
x(t)f(x(t - D)
-/ix(t)x(t - D) [P(x(t - D)) + x*p'(x)].

x(t - D) = x(t) -it ±(s)ds.
t-D

V(t) = -/iX2(t) [P(x(t - D)) + x*p'(x)]
+/ix(t) [P(x(t - D)) + x*p'(x)] fLD ±(s)ds.

Substituting inequation (2.2) and inequation (2.6), we obtain

V(t) < [P(x(t - D)) + x*p'(x)]
(-/iX2(t) + /ilx(t)12/i fLD Ix(s - D)lds)

< -/iX2(t) [P(x(t - D)) + x*p'(x)]
+2/i2Dx2(t) [P(x(t - D)) + x*p'(x)].

V(t) < -/i(l- 2/iD)x2(t) [P(x(t - D)) + x*p'(x)]
< o.

Therefore, the system (2.3) is Lyapunov stable by the Lyapunov-Razumikhin theorem[2:
We finish the Proof of the theorem 2.2. 0

In Section 2, we have known that the system (2.3) is Lyapunov stable. If the
system (2.3) is the global attractable, the global asymptotical stability can be derived
immediately from the definition of the GAS. In the following, we are going to prove
the global attractability of the system (2.3). Now, let's firstly investigate several
important results.

Lemma 3.1. All solutions x( t) of the system (l.t) will never go to infinite at a finite
time to.



Proof. Supposing that there exists a solution x(t, cp) going to the infinity at a finite
time to with the continuous function cp E [-2D,0], i.e.

lim x(t) = +00.t.-to

x(to) x(to - D) + ft:o_DIi(w - x(s - D)p(x(s - D)))ds
x(to - D) + IiwD - ft:o_DIix(s - D)p(x(s - D)))ds.

lto
Iix(s - D)p(x(s - D)))ds ~ 0,

to-D

lim x(t) = +00.
t--+to-D

There exists a 80 > 0 for any sufficiently large number M1 > 0, when t E [to - D -
80, to - D + 80], getting

M1P(M1) > x*p(x*) = w.

When t E [to - 80, to + 80], since

x(t) Ii(w - x(t - D)p(x(t - D)))
< Ii(w - M1P(M1))
< O.

it implies x(t) is strictly decrease. When t E [to - 80, to + 80], we obtain

x(to) < x(to - 80).

i.e. x(to) is a bounded number, which is in contradiction with limt--+tox(t) = +00.

Then, we finish the proof of the Lemma 3.1. 0

Lemma 3.2. All solutions x(t) of the system (1.1) does not escape to infinite when
t -t 00.

Proof. The proof is similar to that for Lemma 3.1. By contradiction we suppose
that lim x(t) = +00. Then, for any sufficiently large number M2 there exists a T2

t--+co
such that x(t) > M2 for all t ~ T2. Without loss of generality, we can assume that
M2 > x*. Since p(x) is an increasing function, we have



which contradicts the assumption lim x(t) = +00. The lemma 3.2 is thus proved. 0
t->oo

The proof of Lemma 3.1 and Lemma 3,.2 shows that when x(t) is increasing, it
is going to achieve a maximum at some time. After that time, it will decrease. For
convenience of further discussion we denote

To = inf{t > D : x(t) < O},
T = inf{t > To: x(t) > O},
T1 = inf{t > T : x(t) ~ O}
T2 = inf{t > T1 : x(t) ~ O}.

Lemma 3.3. There exists a positive number M such that for any t > T, x(t) satisfies
0< x(t) ~ M.

Proof As x(t) is differentiable, and we have excluded the possibility of escaping to
infinity for x(t), to prove this lemma it suffices to show all the extreme values of x(t)
are greater than zero and upper bounded by M.

Now, let us consider all the staying points of x(t). Suppose x(t) reaches a staying
point at t = h, i.e.,

There are three possibilities for the derivative of x(t1 - D) at the time tl - D, namely,
X(tl - D) > 0, x(t1 - D) < 0, or x(t1 - D) = o. We discuss these three cases below.

(1) X(tl - D) > o. Without loss of generality we assume that t1 - D E (T, T1).

Next we prove that x(t) achieves a maximum at t1 in this case. Indeed, when tl -D <
t < t1 and max(T, h - 2D) < t - D < h - D, since x(t - D) < x(h - D), we obtain

When tl < t < tl + D and t1 - D < t - D < min(t1, T1), since x(t - D) > x(t1 - D),
we get



Now, we prove that X(tl) is upper bounded by a positive number denoted by M.
Since

x(h) x(h - D) + ftt,'_D K,(w - xes - D)p(x(s - D)))ds
x· + K,wD - ft:'-D K,x(s - D)p(x(s - D)))ds,

i
t,

K,X(S - D)p(x(s - D)))ds ~ 0,
t,-D

By carrying out this procedure we can prove that any maximum achieved by x(t) for

t > T, satisfies

(2) :i:(h - D) < O. Without loss of generality we assume that t1 - D E (T1, T2).

Using a procedure similar to that used in case (1) we can show that x(t) achieves a
minimum at tl in this case (see Figure 2).



x(h) = x(h - D) + ft:1_D ~(W - XeS - D)p(x(s - D)))ds
= x· + ~wD - ft:1_D ~x(s - D)p(x(s - D)))ds,

where x(t) ~ M, p(x) ~ 1, it follows that

x(tl) > x· + ~wD - ~MD
x'(l - ~D) + ~wD(l - ~D).

x(h) > O.

(3) x(h - D) = O. In this case, by integrating Eq. (1.1), we get

Summarizing the above three cases, we know the extreme points of x(t) are
greater than zero and upper bounded by M. So the lemma 3.3 is proved. D

Proof . We will split the proof of this theorem into four parts.

1). For all t > T + D, the function x2(t)P(x(t - D)) is uniformly continuous.

Based on the Lemma 3.3, for all t > T + D, there are 0 < x(t) ~ M. Since
x(t) = x(t) - x', we obtain

So x(t) is uniformly continuous, i.e. x(t) is uniformly continuous.

For all t E (T + D, +00), we derive x(t) > 0 from the Lemma 3.3. Since p'(x) ~ 0
and p" (x) ~ 0, it follows that

Because x(t) is uniformly continuous, this implies that x(t)p(x(t - D)) is uniformly

continuous, for all t E (T + D, +00). Therefore, the function x2(t)p(x(t - D)) is uni-
formly continuous since x(t) and x(t)p(x(t-D)) are bound and uniformly continuous,

for all t E (T + D, +00).

2). limt-++oo x2(t)p(x(t - D)) = O.



Based on the Lemma 3.3, x(t) > 0 for all t > T + D when K,D < ~. Since
p(x) ~ 0, p'(x) ~ 0, we derive from Eq.(2.9)

V(x(t)) :::::-1',(1 - 2K,D)x2(t)p(x(t - D)).

V(x(t)) ::::: V(x(T + D))
-1',(1 - 2K,D) j;+D x2(s)p(x(s - D))ds.

Since V(x(t)) is bounded with Ix(t)1 :::::M, it follows that

Hm t x2(s)p(x(s - D))ds < +00.
t->+ooJT+D

When x2(t)p(x(t-D)) is uniformly continuous for all t > T+D, Barbalat's Lemma[22]
ensures that

lim x2(t)p(x(t - D)) = O.t-++oo

3). limt-++oop(x(t)) i- O.

Supposing limt-++oop(x(t)) = 0, then there exists Ta > T + D for any co > 0,
when t > Ta - D, we have

x(t) x(Ta) - I', J;,[x(s - D)p(x(s - D))
+x·(p(x(s - D)) - p·)]ds

> x(Ta) + K,(t - Ta)x·(P· - co)
-I', J;3 x(s - D)p(x(s - D))ds.

where Ix(t)1 :::::M, for all t > Ta, it follows that

x(t) > x(Ta) + K,(t - Ta)(x· p. - x·co - Mco).

x*p·
co < M'x· +

Hm x(t) = +00.t-++oo
This is in contradiction with Ix(t)1 :::::M, i.e. Hmt-++oop(x(t)) i- O.

4). The system (2.3) is global attractable.

We have known that

lim x2(t)p(x{t - D)) = 0,t-++oo



lim p(x(t)) = litn p(x(t)) oJ o.
t--++oo t--+-it-oo

lim X2(~) = O.
t--++oo

Since x(t) is bounded when t > T, it follow$ that

lim x(t) = O.
t--++oo

Therefore, the system (2.3) is global attra¢table.
Theorem 3.4.

Then, we finish the proof of the

o

In this section, we will extend our results for the GAS based on the upper bound
of the rate x(t). By Lemma 3.3, there are exists a positive number M such that for
any t > T, x(t) satisfies 0 < x(t) ~ M. Let

Proof The proof is similar to that for Lemma 2.1. From the description of the system
(1.1), all solutions x ~ O. Since p(x) is an increasing, concave function, satisfying

xp'(x) ~ lx

p'(s)ds = p(x) - p(O),



By the definition of derivative in the s~tion 2, the following result is similar to
Eq.(2.2)

(4.2) Ix(t)1 = If(x(t - D)) - f(x*)1 ~ /'\;Qlx(t - D)I.

Proof. We can give a proof similarly to the Theorem 2.2. With the notation x(t) =

x* + x(t), the system (1.1) can be transforIll1ed into

~(t) = { f(x(t - D)), x(t) > -x*,
[f(x(t - D)~]+, x(t) = -x*,

-/'\;x(t - D)p(x(t - D) + x*)

-/'\;x*(p(x(t - D) + x*) - pO).

where p(x(t - D)) = p(x(t - D) + x*), x = ax(t - D) + x*, a E [0,1].

Supposing the solution x(t) = x(t, cp) of the system (4.3) with cp E [-2D,0],
and Lyapunov function V(x(t)) = ~X2(t), we know that the function V(x(t)) is a
continuous function in t E [- 2D, 00 ). To apply the Lyapunov- Razumikhin theorem
[23], we suppose that V(x(t + 8)) ~ V(x(tH for any 8 E [-2D,0], which implies that

In the following, we will compute the derivative of the Lyapunov function along
the trajectories of (4.3). Firstly, we consider the case when x(t) = -x*. By definition
of derivative introduced before we know thljl,t~(t) exists at the equilibrium point and

Now, we consider the case when x(t) > -x*. It follows from Eq.( 4.5) that

V(t) x(t)~(t)
x(t)f(x(t - D)
-/'\;x(t)x(t - D~[P(x(t - D)) + x*p'(x)].



x(t - D) = x(t) -it ±(s)ds,
t-D

V(t) -I\;X2(t) [P(x(t - l'J)) + x·p'(i)]
+ I\;X(t) [P(x(t - D~) + x·p'(i)] fLD ±(s)ds.

Substituting (4.2) and (4.6) into the above equation yields

V(t) < [P(x(t - D)) + xY(i)]
X [-I\;X2(t) + I\;lx(t)II\;Q fLD Ix(s - D)lds]

< [P(x(t - D)) + x·p'(i)]
X [-I\;X2(t) + 1\;2DQx2(t)].

When I\;DQ < 1, we get

V(t) ~ -1\;(1 - I\;DQ)x2Gt) [P(x(t - D)) + x·p'(i)]
< O.

Therefore, the system (4.3) is Lyapunov stable according to the Lyapunov-Razumikhin
theorem. Then, we finish the proof of TheQfem 4.2. D

We can obtain the following Theorems by applying the proof process similarly to
the section 3.

Theorem 4.3. Ifl\;DQ < 1, then the solutit;m of the system (4.3) is global attractable.

Theorem 4.4. The system (1.1) is GAS, if I\;DQ < 1.

Simulation 1. Firstly, we simulate the result to validate Theorem 3.5. Since our
result is only a sufficient condition to ensure the global stability of the system (1.1), it
may be stable for Internet congestion contI1o1algorithm with the parameter kD > ~.
In this simulation, our example is used to test that the system (1.1) is sable when
kD >= ~ but kD < ~. Suppose that the congestion control function of the network
is set to next expression,

p(x) = 1- e-x,

we apply this function to analyze the dynamics of this algorithm when the parameter
k = 0.005, w = 0.04, D = 80ms. By Eq. (21.1), the equilibrium point can be obtained

x· = 0.21, p. = 0.1915.

Since kD = 0.4, we follow from the Theorem 3.5 that the system (1.1) is GAS. Let
the initial value x(O) of the system (1.1) be 0.02,0.04, ... , lO(Mb/ms), in return, the
computer simulations show that the system is global asymptotically stable. Here, we
only present Figure 3 and Figure 4 with x(O) = 0.02Mb/ms and x(O) = IMb/ms,



respectively, to illuminate the simulation results. Our criterion for GAS is sustained
by these computer simulations.

Simulation 2. Now, we analyze the r¢sults of Theorem 3.5 and Theorem 4.4.
Suppose that the congestion control functi(])n of the network is similar to simulation
1, and the system parameter w = 0.04, $till. Therefor, the equilibrium point of
the system is invariable x' = 0.21. We plot the admissible upper bound of the
communication delay on the control gain (Figure 5). From Figure 5, the admissible
in Theorem 3.5 is the areas of the dash line and the axes, the admissible in Theorem
4.4 is the areas of the solid line and the axes. We can know that the admissible value
in the extended result of Theorem 4.4 is larger than that in Theorem 3.5.

Simulation 3. In this simulation, our example is used to test that the system
(1.1) is sable when kD >= ~ but kDQ < 1. Suppose the system parameter k =

0.005, w = 0.04, D = 200ms. At this time, the equilibrium point of the system
is invariable x' = 0.21, still. Since kD cl= 1, Theorem 3.5 can not been used to
judge the GAS of the system. We can calculate K DQ < 1, which is satisfied for
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FIGURE 5. Admissible upper bound of the communication delay on
the control gain .

the requirement of Theorem 4.4. Let the initial value x(O) of the system (1.1) be
0.02,0.04, ... , lO(Mb/ms), in return, the computer simulations show that the system
is global asymptotically stable. Here, we only present Figure 6 and Figure 7 with
x(O) = 0.02Mb/ms and x(O) = 1Mb/ms, respectively, to illuminate the simulation
results.

In this paper, we have studied the GAS of Kelly's primal algorithm with com-
munication delay in a single link accessed by a single source. The Lyapunov stability
of Kelly's prime algorithm is analyzed by applying Lyapunov-Razumikhin theorem.
Based on the global attractability from Barbalat's Lemma, the criteria of the GAS
of the algorithm is obtained. An simple ensured upper delay bound guaranteeing



the GAS is presented, and it enlarges the admissible upper bound of the communi-
cation delay. The switched model of the original Kelly's primal algorithm without
any suppositions for the state (the source tate) is investigated, therefore the proof
method applied in this paper is more strictly than that in [20, 21]. Finally, simulation
examples are given to support the new results.
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