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Abstract
This paper describes a set of orthogonal polynomial, and based on these polynomials, a set of
nine basis operators for edge detection has been designed. Also these operators can be used to
define many well-known edge detection gradient operators such as Robert, Sobel, Prewitt,
Laplace, Isotropic, LoG, etc. which are the linear combination of these basis operators. This paper
proposes two very general purpose multi-layered neural networks -- one can compute point, line,
and edge detectors (such as Robert, Sobel, Prewitt, etc.); and other can compute all the nine
polynomial basis operators. Also it presents two possible hardware realizations -- one is a
generalized parallel pipeline VLSI for the computation of these polynomial basis operators and
other is an analog VLSI for the design of possible future neuro-computer.
Keywords - Neural networks, orthogonal polynomial, edge detection, VLSI.

In computer vision (Marr, 1982) and image processing system (Andrews & Hunt,1977; Bezdek
et aI., 1999; Jain, 1989), edge (Abdou & Pratt, 1979; Davis, 1975; Hueckel, 1971; Shin et aI.,
2001; Vliet & Young, 1989; Tadrous, 1995), line (Hueckel, 1973; Mansouri et aI., 1987; Nevatia,
1977; Smith, 1987), and point detection (Ando, 2000) are important low level image
segmentation procedures. The degree of success of any computer vision system is highly
dependent on the performance of its low level segmentation operations. The
enhancement/thresholding edge detection methods (Ando, 2000; Brown et aI., 1998; Chanda et aI.
1998; Haddon, 1988; Heath et aI., 1998; O'Gorman, 1978) became very popular because of their
simplicity and very low time complexity. In these methods, the gradient values of different orders
are computed by convolving the various gradient operators such as Robert (Roberts, 1965;
Rosenfeld, 1981), Sobel (Sobel, 1970), Prewitt (Prewitt, 1970), Laplace (Berzins, 1984; Vliet &
Young, 1989), etc. The LoG (Marr, 1980; Torre & Poggio, 1986) operator has been proposed as
an approximation of the optimal edge operator using the zero crossing (Mehrotra & Zhan, 1996)
in the directionless Laplacian. Haralick (Haralick, 1984) has proposed a method for edge
detection using the zero crossings in the second directional derivatives. The more effective edge
detection method is proposed by Canny (Canny, 1986) based on maximization of the amplitude
responses of the gradient operators. Also it is difficult to implement because the exact shape of
the optimal smoothing filter is unknown (Fleck, 1992). It cannot detect the high frequency
information (Kang & Wang, 2007). The measure of confidence level is also used to reduce the
ambiguity obtained from edge information (such as gradient estimation, nonmaxima
suppression, hysteresis thresholding) in edge detection (Meer & Georgescu, 2001). The edge
detector needs a manual adjustment of threshold to produce a reasonable output. Automatic edge
thresholding methods are developed by Fuzzy logic (Liang & Looney, 2003; Kim et aI., 2004) or
statistical approach Rakesh et aI., 2004). Also the edge detection can be viewed as an
optimization problem in which the object function depends on different edge parameters like edge
directions, edge intensity, edge map, edge direction map, non-maxima suppression criteria, etc.
(Kang & Wang, 2007).
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The low level segmentation procedures are (Frank et aI., 1985; Huang, 1989; Kanopoulos et aI.,
1988; Kittler & Duff, 1985; Milgram & Pierre, 1990; Ruetz & Brodersen, 1987) being
implemented on a single VLSI chip in order to provide a powerful back-end processor for
application specific computer vision systems. The main bottleneck in this regard is that among
the existing, numerous edge, line and point detection methods none is generalized. In the sense
that a particular method may be suitable to a particular class of images but not to all kinds of
images. Hence, instead of providing an all purpose back -end processor for low level segmentation
only application specific back-end processors are being offered.

Initially, the edge detection problem has been viewed as analogous to surface fitting vis-a-vis
orthogonal transformation problem. Because different signal/image restoration schemes have
been proposed based on different orthogonal transformations. The possible set of orthogonal
transformations is very large (Ahmed & Rao, 1975; Harmuth, 1972). Among them well known
are Fourier, Haar, Walsh, Slant, Cosine, and Karhunen-Loeve transform, some of widely used
hybrid transforms are Walsh-Hadamard, Hadamard-Haar and Hadamard-Fourier. A set of
orthogonal polynomials has been used for this purpose. The completeness criterion of this class
of polynomials has been established. Its measures of independence has also been estimated. The
design of the polynomial based edge detectors (Bhattacharyya & Ganesan, 1997; Pal, 1991) has
been discussed. Also we observed that the widely known edge detection operators such as Robert,
Sobel, Prewitt, Laplacian, etc. are the linear combinations of these orthogonal polynomial based
edge detectors.

In this paper, a neural network is designed based on the above observation. Also its hardware
realization is described. This hardware consists of pipelined array of registers and adders with a
simple and modular structure that is easily amenable to VLSI implementation. Because of the
important advantage of these basis operators which can represent the most common gradient
operators being used in low level image processing for detection of lines, edges and points, it is
possible to implement all known gradient edge detectors in a single circuit with small size, low
power requirement and quick turn-around time in order to obtain a fairly high performance. This
is because of the fact that convolutions with the orthogonal polynomial based operators can be
realized very simply by using only shift registers and adders, and not requiring any more complex
hardware units. Another concept of hardware realization of the neural network is presented.

It is well known that the process of image formation (Gonzalez & Woods, 1999; Hall, 1979; Jain,
1989; Pratt, 1978) is generally described in terms of a linear system (Eqn. (1».

00 00

g(x,y) = J JJ(u, v)h(x,y;u, v)dudv

The linear system is developed around an operator h(x,y;u, v) which maps an objectj(u, v) into an
image g(x,y).

The function h is termed as the point-spread function (PSF) of the image formation system. It
determines physically the radiant energy distribution in the image plane due to a point source of
radiant energy located in the object plane.



The equation (1) is the model for continuous-continuous image formation system. There are other
two models, they are discrete-continuous and discrete-discrete. From the computer application
point of view discrete-discrete model is preferable. For discrete-discrete system. the equation (1)
can be written as the equation (2).

N N
gij = I I fp,A,j;p,q for i.j=I.2,.··.N. (2)

p=Iq=I

Introducing lexicographic or stacking operators the image and object can be represented as
vectors g andfrespectively. and the PSF operator as [H]. Thus the equation (2) can be written in
matrix form as equation (3)

g = [H]f (3)
If it is assumed that the object is sampled in a square array with N x N points as is the image. then
[H] is an N2x N2 matrix.
When in an imaging system the PSF is separable space-invariant (SSI), the separable assumption
refers to the rectangular co-ordinate separability of the impulse response resulting as in equation
(4).

where [A] and [B] are two matrices of size N x N and ® is the direct or kronecker product of
matrices. Considering rectangular separability and using unstacked matrix notation the equation
(3) can be written as

[G]= [A] [F] [Bf, (5)
In equation (5). [A] blurs the columns ofthe object [F] and [B] blurs the rows of [F].

With the above mentioned image formation concept. image processing technique can be
considered as a reverse process of deblurring.

As we know. different signal/image restoration schemes have been proposed based on different
orthogonal transformations such as Fourier. Haar, etc. Here. we are considering a set of
orthogonal polynomials (Pal. 1991; Bhattacharyya & Ganesan. 1997)

Po(x.ll.n).PI(x.ll.n),. .. of degree 0.1,.·· (6)
1

where, x = a sample. n = sample size. ll=meanofx=E(x)=- Ix. Po(x.ll.n)=1 and
n1<x<n

PI (x. Il.n) = x - Il for this signal/image model.
The generating formula for the above set of polynomials (6) is as follows

~+I(x.ll.n)=(x-Il)~(x.ll.n)-bj(n)~_I(x.ll.n) for i~l

(~.~)
where. bj(n) = ( ). [see Appendix I]

~-b~-I

In case of digital signal/images, the range of values of the spatial coordinate x may be considered
to be
x = i. i = 1,2•...• n. Ifx = i for i = 1.2 •...• n we obtain biS using (7) as



Hence, for signal or image processing applications we get the following set of orthogonal
polynomials as shown in Eqn. (10).

Po(x,l-t,n)=1
n+l

P1(x,l-t,n) =x-I-t, where, I-t =--
2

2 n2-1
P2(x,l-t,n)=(x-l-t) -1"2" (10)

2
P3(x,l-t,n)=(x-I-t)3- (x-I-t)~~n -7)

The approximation g(x) of any piecewise continuous function g(x) by the set of orthogonal
polynomials
Po, Ph ... , in Eqn. (10) can be obtained as follows

g(x):::::~(x) = Lf3lj~-I(x,ll,n) (11)
l';i51

where, l3isare expansion coefficients and can be obtained easily as follows.

Let 13:= Lg(X)p;(x,l-t,n) then 13j = 13i!( L pj(x,l-t,n)).
I:>x:>n l:Sx:>n

Equation (11) is an approximation of g(x) by using only a specific set of 1orthogonal polynomials
{Po, Ph ... , PI-d.
Also in case of signaVimage processing environment, any function g(x) can be completely
approximated by these 1 orthogonal polynomials {Po, Ph ... , PI-d. So the Bessel's inequality
(Courant & Hilbert, 1975) is as follows.

( J
2

n 2 n2 t, 2
L [g(x)- LI3i-1P;-I(x,l-t,n)] >0 or, Lg (x)~ L 13i-1/ LP;-I
X=1 l:>i:>1 X=1 X=1 'I I:>x:>n

In order to approximate g(x) in the highest order of accuracy, the value of 1(the highest degree of
polynomial PI_)used in the approximation) will be such that the Bessel's inequality will become
an equality. Hence, the completeness relation may be stated as follows.

n 2 t 2 2 '2/ 2Lg (x) = LZi-1 where, Zi = l3i LP;
x=1 x=1 I:>x:>n

According to the classical theory of approximation the value of 1 can be obtained by
measuring the linear independence of the set {Po, Ph ... , PI-d of orthogonal polynomials for the
largest value of 1.
Theorem 1. The set of orthogonal polynomials shown in (10), the highest degree (1 -1) of the
polynomial used in the approximation must be equal to n - 1 for linear independence.
Proof: For a set {Po, Ph ... , PI-d of orthogonal polynomials, the Gram-Determinant
1(PO,P1, .. ·,Pt-l) may be defined as follows.

(po,po)

(li,po)
1(Po,Pl>"',Pt-l)= :

(PO,l}-l)

(li ,l}-I)

(l}-l> po) (l}-l>li) (l}-l>l}-l)
It is well known (Courant & Hilbert, 1975) that the vanishing of Gram-Determinant
1(Po,Pl>"',Pt-l)of the set {Po, Ph ... , PI-d, of orthogonal polynomials is equivalent to the
vanishing of the measure of linear independence of the set of polynomials. Moreover, the



vanishing of the Gram-Determinant is a necessary and sufficient condition for the linear
dependence of a set of orthogonal polynomials (Courant & Hilbert, 1975).

Therefore, r(PO,P1,' ',Pt-1) = (po,po)(li ,li)" '(Pr-l>Pr-l) (14)

. (p;,p;) . _ (li,li)
Smce bi(n) = ( ). So for I-I, q(n)=-( --)'

P;-1>P;-1 Po,Po
Hence, (li,li) = nq [Since (po,po) = n].

Similarly, (P2,P2)= nqb2 and (p;,p;)=nqb2···bi.

Now,

( )
t k2(n2 _k2)

['(PO,P1,",Pt-1)=n IT(p;,p;)=n IT n ITbk =n IT IT 2 [Using (9)]
l$i$t-l l$ig-l l$k$i l$i$t-ll$k$i 4(4k -I)

Hence, in order to make ['(Po,Pl>"',Pt-1) non-zero the maximum value (integral) of t must be
equal to n.
Corollary I: If t > n then the set of polynomials used in the approximation will be linearly
dependent.
Corollary 2: If t < n then the completeness criterion (Eqn. (12)) ofthe approximation by the set of
polynomials may not be satisfied.

Assuming the rectangular coordinate separability and using the discrete-discrete two dimensional
model of image g(x,y) formulation, we may obtain the following.

m n m n t
gkl = L L 13ijP;(Xk)Pj(Xl) or, [gktl= L L 13ijPiPj (15)

i=O j=o i=O j=o
where Pi is a column vector of size n x I consisting of values of the polynomial P,{x) at x = xl, x

X2, .•. , x = Xn respectively.
Let [M] = [Po,Ph ... , Pm-d and [N] = [Po,Ph ... , Pn-d.
Hence, [gkl] = [M] [13ij] [N]t.
In general, the image formation is modeled as [G] = [M] [F] [Nt
where [M] ® [N] is the point spread function (PSF). [M] blurs the columns of the object [F] and
[N] blurs the rows.

The image processing, in general, is termed as the reverse process of blurring i.e., deblurring,
assuming [M] and [N] are unitary, we obtain

[F]= [Mr [G] [N] (16)
Note: In this case, m = n and [M] is not unitary. As a result (16) may be written as

[F] = ([M]t [M])-l [MnG][M]([MnM])-l (17)
Forn=2andxl=l, x2=2

[M] = [po pd= [Po(X1) P1(X1)] = [1 -t] =: [I -1] (Scaled) (18)
PO(x2) P1(x2) I t I I

The four basis matrices (with rank I) spanned by [M] are computed by Eqn. (19).
0J=p;pJ,O:S;i,j:S;l. (19)



Similarly, for n = 3 and Xl = I, X2 = 2, X3 = 3

[

PO(X1) P1(x1) P2(X1)] [I -1 t 1 [1 -1 I]
[M] = [po PI pz]= PO(x2) P1(x2) P2(xz) = 1 0 -+ = I 0 -2.

PO(X3) P1(x3) P2(x3) 1 I t 1 1 1

The nine rank I basis matrices span by [M] are computed as ot = p;p}, O:s;i,1':S; 2.

For example,

OJ1 =popl =[:~~:~](P1(X1) P1(x2) P1(X3))=[~](-1 0 1)=[=~ ~ ~]
PO(x3) 1 -1 0 1

0[1 =/ipl =[::~:~](P1(X1) P1(Xz) P1(X3))=[~I](-1 0 1)=[ ~ ~ -0
1
]

P1(x3) I -1 0 I

The basis matrices 05 s and oj s are shown in Table l(a) and (b).
In terms of these basis matrices the image formation can be represented as follows using
equations (15) and (19).

We call the polynomial basis matrices, namely 05 s and oj s, as polynomial operators and
discuss here their usage in line, edge and point detection.



Enhancement/threshold type edge, line or point detection may be expressed by the general
convolution relation

e(iJ) = W[gij] (21)
where, gij is the discrete gray level intensity value at the (iJ)th pixel of the input image; e(i,j) is
the convolution output for the processed image and W is the convolution mask defined over some
neighborhood of (iJ). The mask W is chosen so as to detect a given property in an image.

If a set of 3 x 3 matrices is used for the mask W, the convolution output in the neighborhood of
a pixel (iJ) is shown in Eqn. (22).

e = n}19i-l,j-l + n}2gi-l,j + n}3gi-l,j+1 + W2Igi,j-1 + W22gi,j +

W23gi,j+1+ W3Igi+l,j-1 + W32gi+l,j+ W33gi+l,j+1 (22)
Here, Wkr (for k, r = 1,2,3) are the elements of the mask W. If the elements Wkr are limited to
only 0, ±1, ±2 or ±4, it has been observed that the convolution can be realized very simply by
using only shift registers and adders, and not requiring more complex hardware units. An
important usage of this property will be discussed in Section 5.

It is well known that various types of differentiation operations when performed on an image,
give high values at points lying on edges and low values at points lying in the smooth regions.

In the neighborhood of a pixel (iJ) of an image, if 3 x 3 polynomial matrix [M] is used to
transform the image matrix [gkJ] into the coefficient matrix [~~] following the matrix operation

[Mt[gkl ][M], the elements of the coefficient matrix vis-a-vis the convolution output of the nine
3 x 3 basis matrices are written as equations (23) - (31).

, 3
1: ~oo = 0oo[gij] = gi-l,j-l + gj-l,j + gi-l,j+l + gj,j-l + gi,j +

gi,j+l + gi+l,j-l + gi+l,j + gi+l,j+l
, 3

2: ~Ol = °01[gij]= (gi-l,j+l +gi,j+l +gi+l,j+l)-(gi-l,j-l +gi,j-l +gj+l,j-l)
, 3

3: ~02 = 002[gij] = (gi-l,j-l + gi,j-l + gi+l,j-I)-2(gi-l,j + gj,j + gi+l,j)

+ (gj-l,j+l + gi,j+l + gi+l,j+l)
, 3

4: ~1O= Oio[gij] = (gi+l,j-l + gi+l,j + gi+l,j+l) - (gi-l,j-l + gj-l,j + gi-l,j+l)
, 3

5: ~11 =Oil[gij]=(gi+l,j+l-gj+l,j-l)-(gj-l,j+l-gj-l,j-l)
, 3

6: ~12 = 0i2[gij] = (gi+l,j-l - gi-l,j-l) - 2(gi+l,j - gi-l,j) + (gi+l,j+l - gi-l,j+l)
, 3

7: ~20 = 020[gij] = (gj-l,j-l + gi-l,j + gi-l,j+l) -2(gi,j-1 + gj,j + gj,j+l)

+ (gj+l,j-l + gj+l,j + gi+l,j+l)
, 3

8: ~21 = 021[gij] = (gj-l,j+l - gi-l,j-l) - 2(gj,j+1 - gj,j-l) + (gi+l,j+l - gj+l,j-l)
, 3

9: ~22 = 022[gij] = (gj-l,j-l -2gi-l,j + gi-l,j+l) - 2(gj,j-1 - 2gi,j + gj,j+l)

+ (gi+l,j-l - 2gi+l,j + gi+l,j+l) (31)

The operations corresponding to ~~l + ~~2 and ~;(i)+ ~;oare the operations sensitive to vertical
and horizontal edges, respectively. These operations are equivalent to blurring the image in the
vertical (horizontal) direction and then taking a second or first difference in horizontal (vertical)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)



direction. The operations corresponding to 062 and O~o are respectively, sensitive to vertical

and horizontal lines. Laplacian operators are obtained by combining the operations 062, O~o and

0~2 (Table 2), and this operation is sensitive to points. 060 is the local averaging operator.
Other operators which are being used as edge detectors, namely, Roberts (Davis, 1975;Rosenfeld
& Kale, 1982), Sobel (Davis, 1975; Rosenfeld & Kale, 1982), Prewitt (Davis, 1975; Prewitt,
1970; Rosenfeld & Kak, 1982), and Frei and Chen (Gonzalez & Woods, 1999). Among these
only Frei and Chen masks span the nine dimensional space of 3 x 3 basis matrices. But
convolution with Frei and Chen masks is diffiault to realize in hardware because of the
occurrence of the matrix element .fi. Whereas use of these polynomial operators for
convolution with the image matrix can be realized very easily, as shown in Section 5 by using
only registers, shift registers and add/subtract units.

Moreover, the widely used line/edge operators can be expressed in terms of these polynomial
operators as shown in Table 2.

Table 2: Somewell-knownoperatorsand their relationswith polynomialoperators.
Operjltors

Standard Polynomial Standard Polynomial
Roberts

»1 =[ 0 ~] 1(061 -O?o)
W2=[~ ~I]

-1(061 +O?o)
-I

Sobel

Wj 0[: 0 -I] t(O~1 -4061) [-I -2 ~I] t(4ofo -of2)
0 -2 W2= ~ 0
0 -I 2

[-' -I ~1
3 3

W,o[~-I -'] 3 3(001+ Ojo) (001-OjO)

W3 = ~I 0 0 -I

I I 0
Prewitt

[-I o I] 3 [-I -I -~I] ofo001
W1= -I o I W2= ~ 0

-I o I I
Point Average

[-I -I -11 0~2 -(062 +O~o)
W, 0[; :]

0&
»1 = -I 8 -I

-I -I -I

Line [-I -I ~I] 3 [-I -1 :1] 1(0~2 -3ofl)-020
»1= 2 2 W2= ~I 2

-I -I -I -I -I

[-I 2 -( 3 w,fl -I -I] 1(0~2 +3ofl)-002
W3 = -I 2 -I 2 -I

-I 2 -I -1 -1 2



Table 2: Somewell-knownoperatorsand their relationswith polynomialoperators. (Cont.)
o era ors

tandardStandard
Laplace

~ = [-112 -4
2

_12]
-2 -1

W,=[~~4 ~]

Isotropic

[

-1 0 1] 2+.,fi 0,3 .,fi -103 r 1 ..{i ~111
~ = -..{i 0 ..{i12 ~1~1381:;1~O.l~81~11 JlV2= ~ - 0

-1 0 1 ..{i
3 x 3 LoGcr =0.35 3 x 3 LoGcr =0.26
LoGcr=0.35 = -10.7(062 +oio) LoGcr=0.26 =

[
_-3

1
0 ~~~ _-3

1
0] +20.30i2 [-~O ~~~ --;0]

-1 -30 -1 -1 -30 -1
The gradient amplitude values of the noise free ideal edges under Roberts, Sobel and Prewitt
operators have been calculated as follows. The edge amplitude has been computed using the
expressions shown in equations (32) and (33).
Amplitude response utilizing r.m.s. (root mean squaI1e)point nonlinearity

A(j,k) = ~(el (j,k»2 +(e2(j,k»2 +...
Amplitude response utilizing magnitude point nonlinearity

A(j,k) = I~(j,k)1 +le2(j,k)1 + ,.. (33)
where ej (j, k) = WJg jk] , ~ is the ith operator in the set of operators, viz. Roberts, Sobel or

Prewitt, etc.
The binary edge Eoptj,k) is computed by the followiIilgrule

E . k _ {I A(j,k) ~T opr
opr{], )- 0 th .o erwlse

where, Topris the threshold value of the edge amplitUde for an operator.

3 [-' I -I'] 03 3022 -( 02 +020)
J.Y2= I 4

-2 I -2

t(062 +oio -20i2)

2 +..[20{0 _ ..[2 -10{2
3 3

~ 1.13810{0 - 0.13810{2

3 3-0.33(002 +020)
3+0.67022

Edge orientation 8(j,k) with respect to the horizontal axis can be computed as

Roberts: 8 (j,k) = ~+ tan-1[e2 (~,k)]
4 el(J,k)

Sobel and Prewitt: 8 (j,k) = tan-l[e2(~,k)]
el{],k)



The neural network (Haykin, 2001) architecture of widely used edge detection operators such as
Robert, Sobel, Prewitt, etc. is a multi-layered netw~k. There exists some connections between
the consecutive layers but no connection within a layer (Fig. I).

1/2

Figure I: A generalized neural network architecture for operator based well-known edge detectors.

The first layer of this network is the input layer, it accepts a gray level image for edge detection.
In figure 1, the connections are shown only to proctlss the (i,j)th picture element of the input. The
first layer contains 9 neurons, Ni+uj+v where u,v = -1, 0, 1. Since the processing of (i,j)th element
depends on either 2x2 or 3x3 neighboring elements. Therefore, the input of the neuron Ni+uj+v is
gi+uj+v for u,v = -I, 0, 1.

The second layer of this network contains 13 neurpns in which 4 neurons, N~ for iJ = 0,1 are

used for 2x2 polynomial operators and 9 neurons, 1'1&for i,j= 0,1,2 are used for 3x3 polynomial
operators. So the connection between the first $d the second layer is as follows. For the
computation of convolution by 2x2 polynomial opetators: each neuron Ni+u,j+v, for u,v = -1,0 in

the input layer are connected with N~q for p, q =!' 0, 1 in the second layer. Similarly, for the

computation of convolution by 3x3 polynomial opel'ators: each neuron Ni+u,j+v for u,v = -1, 0, 1

in the input layer are connected with N~q for p, q 0= 0, 1,2 in the second layer. The connection

weight between first and second layers are as follows. The weight between Ni+u-2,j+v-2 and



N2. 2pqlS Opq(U,v) for p, q = 0,1 and u,v = 1,2. Similarly, the weight between Nj+u-2,j+v-2and

N~q is O~q(u, v) for p, q = 0,1,2 and u, v = 1, 2, 3 . Therefore, the output of a neuron in the

second layer is computed as follows. The output of N~q is L O~q(u, v)x gj+u-2,j+v-2 for p,
l::O;u,v::O;2

q = 0,1. Similarly, the output of N~q is L O~q~U,v) x gj+u-2,j+v-2 for p, q = 0, 1,2.
l::O;u,v::O;3

The third layer ofthis network is designed based onlTable 2 where the well-known operators such
as Roberts, Sobel, Prewitt, etc. are the linear combipations of polynomial operators. In this layer,
the number of neurons depends upon the considbration of well-known operators. In Fig. 1,
Roberts operator require 2 neurons, R1 and R2, Average operator require one neuron A, Sobel
operators require 2 neurons Sl, S2, Prewitt operators require 2 neurons Ph P2, Point operator
require one neuron PPh Line operators require 4 netrrons Lh L2, L3, L4• Similarly other operators
in Table 2 can also be implemented in this layer. Neurons R1 and R2 are both connected with
N 61 and N fo· The connection weights between (.N61 ,R1), (N fo ,Rd, (N 61 ,R2) and ( Nfo ,R2)

are -t, t, t and t respectively. TheoutputofRiI is

-t L061(U,V)xgj+u-2,j+v-2 +t LOfo(u,V)X~j+u-2,j+V-2
l::O;u,v::O;2 l::o;u,v::O;2

and the output of R2 is

t L061 (u, v) x gj+u-2,j+v-2 +t LOfo(U, v) x gl+u-2,j+v-2 .
l::O;u,v::O;2 l::O;u,v::O;2

Other connections and connection weights betwe€1nthe neurons of second and third layer are
shown in the Fig. 1. Similarly, the output of o~r neurons in the third layer can be easily
computed as in R1 and R2.

The fourth layer of this network is designed base<llon the consideration of the structure of the
third layer. The objective of this layer is to c~culate edge magnitude and orientation (if
necessary). An activation is applied on the edge magnitude for binary edge. Here the activation is
basically a step function in Eqn. (34).

The VLSI realization of Fig. 1 is not simple. An alternate representation of the network in Fig. 1
is shown in Fig. 2. Its hardware realization is described in Section 5.

The first two layers of the neural network in Fig. 1 <l:anbe realized by a detailed neural network in
Fig. 2 using two input neurons where these two input neurons are easily realized by simple
hardware like adders, subtractors and shift registers ..

In figure 2, the nine input nodes are Nl w!,Nt Nl,N!,NtN1,N§ and N~. The
2 2 2 3 3 3 4 4 4 .1,5 5 5 6 6 6 dd fnodesN1,N4,N7, N2,N5,Ng, N1,N2,N4, lr5,N7,N9, N1,N2,N3 are a ers 0 two

input neurons. Also Nl,Nl,N~, Nf,Nl,Nf, Nt,Nt are the neurons equivalent to shift
registers. The weight between the nodes N1 and N2 is represented by W(NhN2)' Here

1 2 1 2 w(NI N2) 1 1 2 1 2w(Nj,Nj)=l, w(Nj,Nj+1)=-1, ;+1' j F= , w(Nj+l>Nj+1)=1, w(Nj+2,Nj+2)=2,
1 3 2 3 N2 3 2 3w(Nj+2,Nj+1) =1, w(Nj ,Nj+1)=1, w( j ,Nj+2)=1, w(Nj+l>Nj )=2 and

w(N;"2,Nf+2) = -lfor i= 1,4, 7. Similarly, we carl set the weights for other connections.
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Figure 2: A neural network for the computationof basis qperators(equivalentto the combinationof First
and second layers of Fig. I).

One of the usages of this polynomial based opetators is to implement edge, line and point
detection on the same hardware circuit. The desigij of this circuit consists of pipelined array of
registers and adders with a simple and modular! structure that is easily amenable to VLSI
implementation.

The hardware architecture becomes very simpltl and regular because of the fact that the
polynomial operators contain mostly 0, ±l and ±2 ielements (Table I). From a close scrutiny of
the polynomial operators, it is also observed that \:me single pipeline can generate convolution
with the operators 0&,0[0 and O~o (Figure 3(a)); !another with 062,0[2 and 0~2 (Figure 3(b))

while a third can provide convolutions with 06Ho[l and O~l (Figure 3(c)). This hardware
handles a set of nine operators.

The architecture of this image processing chip i~own in Figure 3. There are two major blocks
-- (1) one for generation of convolution output and 2) the other for detecting edge/line magnitude
and direction as well as isolated points. The s cture is fully pipelined and synchronous. It
requires the control of a two phase non-overlappingi clock pulse CKI and CK2. There is an initial
computational delay of five cycles while the pipelitte is being filled. Afterwards the convolution
output are produced at every clock cycle. The chip ¥:cepts 8 bit words representing the gray level
intensity of pixels in a raster scan sequence, i.e. frotP left to right in a line and subsequent lines in
a top-down fashion. A off-chip line memory supp~ies data in a sequence such that three data
values gi,j-l>gi,j and gi,j+l are available si~ltaneously at the windows for computing
convolutions centering around the (iJ)th pixel.
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Figure 3: Hardware realization of basis operator for edg4Jdetection: Symbol A for adder, S for subtractor,
R for register, SR for shift register, CKI for clock pulsq and CK2 for clock pulse with reverse in phase of
CK1: (a) processor 147 : gi,j-j,gi,j,gi,j+l but moves ~cording to the clock pulses and produces output

P~o,P;o,p;o ' (b) processor 369: input gi,j-j,gi,j,14,j+l but moves according to the clock pulses and

produces output /3~2,/3;2'/3;2' (c) processor 258: input I gi,j-j,gi,j+l but moves according to the clock

pulses and produces output /3~)./3;). /3;\, and (d) fombined edge detection processor: It accepts

gi,j-j,gi,j,gi,j+l as input and in the first phase produpes convolved output by the polynomial operators
I

and then in the second phase it produces different edge rpagnitude in 0 or 1 form with direction if exists in
the operator also it has two clock pulse line as well as th~shold inputs.



The polynomial convolution processor comprises i three subprocessors such as processor 147,
processor 258, and processor 369 for handling the three pipelines. The functional block diagram
of the subprocessor (processor 147) for convolution; with the operators 0&,ofo and oio is shown
in Figure 3(a). The other two subprocessors, prqcessor 258 and processor 369 have similar
architecture as shown in Figure 3(c) and Figure 3(~) respectively. Each subprocessor consists of
12 bit adders/subtractors, simple registers and Shiftt·gisters. As all the coefficients in polynomial
operators are related by powers of 2, any multiplica ion can be accomplished by a shift in the data
bit position. Taking advantage of common subex ressions, the number of adders and registers
have been reduced to 7 and 14, respectively, in the etombined pipeline for o&o,ofo, oio (Figure
3(a)) from the corresponding number of at least II-t2 adders and 18 registers for separate parallel
pipelines.

Let us consider a sample input image in Table 3, w~ere gi,j is the gray value or intensity at (iJ)th
location, to explain the operations of processor 147i

In Figure 3(a), a two phase non-overlapping clo¢k pulse CKI and CK2 controls the circuit
operations. This circuit have 10 levels with 21 components in which 7 adder like components for
addition/subtraction, 13 registers for storage and 1 Ishift register for division/multiplication by 2.
In this circuit, first level contains 2 components, fjach of the second to fifth level contains one
component and each of the sixth to tenth level cdptains 3 components. Levell, 3, 5, 7, 9 are
simultaneously activated by clock pulse CK1 and ~imilarly level 2, 4, 6, 8, 10 are activated by
clock pulse CK2. Also each level between 6 to ~O contains 3 components. Activity of each
components with clock pulse ofthe circuit in Figurfj 3(a) are shown in Table 4.

Initial input vector is (gl.h gl.2, gl,3)' After clock p~lse CKI, at levell, the circuit component R
accepts gl,2 and component A adds to (gl,l+ gl,3).1Similarly, level 3, 5, 7 and 9 describe their
outputs as in serial number 1 of Table 4. Also thq input vector changes to next (g2,h g2,2,g2,3)
(say). At the same time, the outputs of the compone~ts in levels 2, 4, 6,8 and 10 remain the same.
After the next clock pulse CK2, at level 2, the cirpuit component A adds to (gl,l+gl,2+g1,3)and
similarly others outputs at level 4, 6, 8 and 10 are ~escribed in serial number 2 of Table 4. Also
the outputs of the components in levels 1, 3, 5, 7!and 9 remain the same. Now the next clock
pulse is CKI and the results of each component areldescribed in serial number 3 of Table 4. This
process is continued as described in Table 4. The Ilpeline is filled after 5 full cycle (CKI +CK2)



then each full cycle produces the respective conyplution output as the operators O&,ofo and

oio·
Table 4: Activity of each components of processor 147.

Sl Ck 1 2 3
1 1 g\ 2,gl 1+g13 0 0

4 5
0 0
6 7 8
0,0,0 0,0,0 0,0,0
9 10
0,0,0 0,0,0

2 2 1 2 3
gl 2,g\ 1+g13 gl +gj ,+g13 0
4 5
0 0
6 7 8
0,0,0 0,0,0 0,0,0
9 10
0,0,0 0,0,0

3 1 1 2 3
g2.2,g2 1+g2 3 gl.l+gl.2+g1.3 gll+g12+g13
4 5
0 0
6 7 8
0,0,0 0,0,0 0,0,0
9 10
0,0,0 0,0,0

4 2 1 2 3
g2 2,g2 1+g2 3 g2.1+gb+g2,3 gl,1+g1,2+g1,3
4 5 ,

gl,1+g1,2+g1,3 0
6 7 8
0, 0, 0,
2(gl ,1+g1 ,2+g1,3), 0, gl,1+g1,2+g1,3,
gl,l+gl,2+g1,3 0 gl,1+g1,2+g1,3

9 10
0,0,0 0,0,0

5 1 1 2 3
g3,2,g3,I+g3,3 g2,1+1 2,2+g2,3 g2, 1+l!2,2+l!2,3
4 5
gl,1 +gl,2+g1,3 21,1+ 1,2+g1,3
6 7 8
0, -2(gl.1!+gl.2+g1,3), 0,
2(gl,l+gl,2+g1,3), 0, gl,l+gl,2+g1,3,
gl,l+gl,2+g1,3 gl,l+gb+gl,3 gl,l+gl,2+g1,3
9 10
gl,l+gl,2+g1,3, 0,
gl,l+gl,2+g1,3, 0,
gl,l+gl,2+g1,3 0



Table 4: Activity of each compodnts of processor 147 (contd.).
Sl Ck 1 2 3
6 2 1 2 3

~3 2,~3 1+~3 3 gll+g3,+i'3 g2 l+g2 2+11:"
4 5
g2 l+g22+g2 3 gll+g, ,+ 13
6 7 8
gl,l+gl,2+gl,3, -2(gl,l+gl ~+gl,3)' -2(gl,l+gl,2+gl,3),
2(g2,I+g2,2+g2,3), 0, g2,I+g2,2+g2,3,
gl,l+gl,2+gl,3+g2,I+g2,2+g2,3 gl,l+gl,2+$1,3 gl,l+gl,2+gl,3+

11:21+11:2,+11:23
9 10
gl,l+gl,2+gl,3, gl,l+gl,2+ 1,3,

gl,l+gl,2+gl,3, gl,l+gl,2+ 1,3,

gl I+gl 2+g1 3 gll+~12+ 13
7 1 1 2 3

11:4.2,11:4.1+11:4.3 g31+g3'+ t13 11:31+11:3,+g3 3
4 5
g2 l+g2 2+g2 3 11:21+11:,,+2, 3
6 7 8
gl,l+gl,2+gl,3, gl,l+gl,2+$1,3 -2(gl,l+gl,2+gl,3),
2(g2,I+g2,2+g2,3), -2(g2,I+g212+g2,3), g2,I+g2,2+g2,3,
gl,l+gl,2+gl,3 gl,l+gl,2+ 1,3 gl,l+gl,2+gl,3
+g2,I+g2.2+g2,3 gl,l+gI,2+ 1,3+g2,I+g2,2+g2,3 +g2, 1+g2,2+g2,3

9 10
g2, 1+g2,2+g2,3 gl,1+gl,2 gl,3,
-2(gl, 1+gl,2+g1 ,3), gl,1+gl,2gl,3,
g2, 1+g2,2+g2,3, gl,1+g1,2tgl,3
gl,l+gl,2+g1,3
+g2, 1-t-g2,2+g2,3

8 2 1 2 3
g4,2,g4, 1+g4,3 g4, 1+g4,2tg4,3 g3 l+g3 2+g3 3
4 5 i

l!:31+l!:3,+l!:33 l!:21+l!:12+223
6 7

,
8

g2,I+g2,2+g2,3, (gl,l+gl,2-tgl,3)- gl,l+g1,2+g1,3
2(g3,I+g3,2+g3,3), 2(g2,I+g2rg2,3), -2(g2,I+g2,2+g2,3),
g2,I+g2,2+g2,3 gl,l+gl,2+ 1,3, (g3,I+g3,2+g3,3)
+g3,I+g3,2+g3,3 gl,l+gl,2+ 1,3 -(gl,l+gl,2+gl,3),

+(g2,1+g2,i+g2,3) L.15i,j5Jgi,j

9 10
g2,I+g2,2+g2,3 g2,I+g2,2+'2,3,
-2(gl,l+gl,2+gl,3), -2(81,I+gl{+gl,3),
g2,I+g2,2+g2,3, g2,I+g2,2+ 2,3,
gl,l+gl,2+gl,3 +g2,I+g2,2+g2,3 gl,l+gl,2+ 1,3+g2,I+g2,2+g2,3

The hardware for realizing edge amplitude and ori~tation, which is not shown in Fig. 4 in detail,
is also accomplished by a fully pipelined architecnlrre of adders/comparators, simple registers and
shift registers.



Table 4: Activity of each comOOllentsof processor 147 (contd.).
81 Ck 1 2 3
9 1 gS.2,gS1+gs 3 g'I.l+14.2+ t4.3 141+142+g43

4 5
g3 l+g3 2+g3 3 gH+g12+ 3
6 7 8
g2,I+g2.2+g2.3, (g2.I+g2.2 g2.3)- (gl,l+gl,2+gl,3)
2(g3,I+g3,2+g3,3), 2(g3,I+g3,2 f+-g3,3), -2(g2,I+g2,2+g2,3),
g2,I+g2,2+g2,3 +g3,I+g3,2+g3,3 g2,I+g2,2+ ~,3, (g3,I+g3,2+g3,3)

g2,1+g2,2+ 2,3+(g3,I+g3,2+g3,3) -(gl,l+gl,2+g1,3),
L,1$i,j53gi,j

9 10
g3,I+g3,2+g3,3+ gl,l+gl,2+gl,3) (g2,I+gz,2-t]g2,3)
-2(g2,I+g2,2+g2,3), -2(gl,l+glt+gl,3),
g3,1+g3,2+g3,3-(g I,1+g 1,2+g 1,3), g2,I+g2,2+ ,3,
L,1$i,j$3gi,j gl,l+gl,2+$1,3+g2,I+g2,2+g2,3

10 2 1 2 3
gs 2,gS I+gs 3 gs l+gS.2+gs 3 14.1+14.2+14.3
4 5
141+142+143 g3 l+g12+Ji!;33
6 7 8
g3,I+g3,2+g3,3, (g2,I+g2,2-tjg2,3)- (g2,I+g2,2+g2,3)
2(~,I+~,2+gd, 2(g3'1+~fgJ,J), -2(g3,I+g3,2+g3,3),
g3,I+g3,2+g3,3+ g2,I+g2,2+ 2,3, (~,I+~,2+g4,3)-
(~,1+~,2+~,3) (g2,I+g2,2 g2,3)+ (g2,I+g2,2+g2,3),

+(g3,I+g3,1+gJ,J) L,2$i$4 L,1$j$3 g i,j

9 10
g3,l+g3,2+g3,3+ (g3,I+g3,2 g3,3)+
(gl,l+gl,2+gl,3)- (gl,l+gl,2 g 1,3)-2(g2, 1+g2,2+g2,3),
2(g2,I+g2,2+g2,3), (g3,I+g3,2 g3,3)-(g I,1+g 1,2+g 1,3,
(g3, 1+g3,2+g3,3)-(g I,1+g 1,2+gl,3), L,1$i,j$3,gi,j
L,1$i,j$3 gi,j

11 1 1 2 3
g6 2,g6 l+g63 gSI+g, 2+ ~S3 gs I+gs 2+gS 3
4 5
141+142+14.3 14.1+14.2+ ~43
6 7 8
g3,I+g3,2+g3,3, (g3,I+g3,21g3,3)- (g2,I+g2,2+g2,3)
2(~,1+~,2+~,3)' 2(g4,1+~, +~,3), -2(g3,I+g3,2+g3,3),
g3,I+g3,2+g3,3+ g3,I+g3,2+ ~3,3' (~,I+~,2+g4,3)-
(g3,I+g3,2+g3,3) (g3,I+g3,2 g3,3) (g2,I+g2,2+g2,3),

+(~,I+~, +~,3) L,2$i$4 L,1$j$3 gi,j

9 10
~,1+~,2+~,3 (g3,I+g3,2 g3,3)+
(g2,I+g2,2+g2,3)- (gl,l+gl,2 g 1,3)-2(g2, 1+g2,2+g2,3),
2(g3,I+g3,2+g3,3), (g3,I+g3,2 [g3,3)-(gl.l+gI,2+gl,3),
(~,1+~,2+~,3)- (g2,I+g2,2+g2,3), L,1$i,j$3~i,j
L,2$i$4L,1$j$3gi,j



Figure 4: Circuit for edge orientation determination: "Notations are used as R for register, SR for shift
registers, A for adder, C for comparator, e for orientatiOIj.

Computation of edge orientation is done by a simp~e procedure of resolving the edge orientation
to 45° using the Freeman chain coding. The signs otthe angles (i.e., the quadrants) can be directly
determined from the sign of the convolution outputlel and e2by the operators WI and W2. This is
because, the edge direction can be computed as e i= tan -I .:L . In case of Prewitt edge detectors,

e2

we use Wi = OJI and W2 = 0[0' In order to decidtl the actual direction of the edge in a quadrant,
one has to make sure whether 22.5° < e < 67.5°,; i.e., orientation is 0° if e < 22.5°, similarly
orientation is 90° ife > 67.5" otherwise orientation Is 45°. This can be decided, el tan 22.5° ~ e2~
el tan 67.5°. Hardware realization of el tan 22.5° add el tan 67.5° can be accomplished by simple
shifts of 2, 3, 5 and 7 bits, because

o 1 1 1 1tan22.5 =0.414=-++-+-+-
41 8 32 128

A simple Boolean logic can be developed for the d~termination of orientation as follows.

{
I if e2 > 2.4l4~ • {I if e2 > 0.4l4el

Let p= a~ q=o otherwise . 0 otherwise



j 0° if p = ~,q = 0
Then we have the edge direction e = 45° if p = O,q = 1

90° if p = ~,q = 1

The circuit diagram for finding the edge orientatiqn is shown in Figure 4. In this figure, shift
registers are used for multiplication or division by! a power (positive or negative) of 2 using a
clock pulse. Subsequent results are shown in the Fig~re 4.

To all other
neu:ons
inlayer

Multiplexe d
Input Mj,Utiplicative Summing
Multiplexed weight s~apse Successive and axon

Bl ck products Block
Weight of input

Storage and weight

Block value

Weights Reset

Multiplexe d
Input

Mlultiplicative
Successive

Summing
Multiplexed weight

st
apse and axon

Bock products Block
Weight of input

Storage and weight

Block value

Out from
previous Input
layer

Multiplex
Unit

Weights

Figure 5: The functional decomposItion of the task ofa neuron.

With the convolved output of the polynomial oper~tors at our disposal, generation of operators
for point or line detection is quite straightforward as!discussed in Section 3. The division by 2 and
multiplication by 3 are achieved by suitable shifts Imd adds as done in case of hardware design
for direction processor. Similar procedures can tie applied for computing convolutions with
Sobel, Prewitt, Roberts or Laplacian operators ~ terms of the output of the polynomial
convolution processor.

5.2. Analog VLSI Architecture

An analog VLSI architecture (Mead, 1989) for the reural network of Fig. 1 is presented in Fig. 5
and 6. The task of a neuron used in Fig. 1 is divid~d into different functional blocks such as the
weight storage unit, multiplicative synapse, summih unit, axon (Fig. 5). In this neural network
(Fig. 1), the connection weight is not updated duri~g processing, that is, it maintains the initial
weights.
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Figure 6: The hardwarerealizationof (a) the weight storlj,geblock of a neuron using an array of capacitors,
(b) the multiplicativeblock and (c) the summingblocks.

Assumption: The neural network in Fig. 1 is a laye~ architecture and fully connected between the
layers but no connection within a layer. If there is np connection between two neurons that means
the connection weight between them is set to O.

Initialize the weight storage unit block of each neur~musing the given weights as well as reset the
summing unit. A multiplex unit for a layer of the n~twork (Fig. 1) helps to transmit an input from
the previous layer of the network to each neuron qf this layer. It also selects the corresponding
weight from its weight storage unit block. The multiplicative synapse unit of each neuron of this
layer computes the product of input and its weighti The product output of each neuron is stored
into its summing unit. This multiplexing process cot\ltinuestill at finishes all inputs.

The weights for a neuron are stored as voltages in lU1 array of capacitors C\, C2, .•• as shown in
Fig 6(a). A significant capacitor is selected and its output as weight is realized by the common
output line.



The multiplex block, select an input and its corresponding weight that is (input, weight) pair for a
neuron. Each of the (input, weight) pairs is applied in turn to the multiplicative synapse block of
the neuron and produces an output as the product of Ithe input and the weight of the pair. This task
is performed by using the standard Gilbert multiplier (Mead, 1989) circuit (Fig 6(b)).

This summing circuit is very simple, it is only a c~pacitor. The axon is also a simple amplifier
circuit (Fig. 6(c)). The input of the axon circuit i$ taken from the capacitor and the resulting
output of it provides the activation level of the neurdn.

This paper describes a set of basis operators for edg~ detection. These are designed based on a set
of orthogonal polynomials for which the complet¢ness criterion has been established and the
measure of independence during approximation estitnated. It has also been shown that other well-
known edge detection gradient operators like Rob~rt, Sobel, Prewitt, etc. can be expressed in
terms of these polynomial based operators as a lin~ar combination of them. A neural network is
designed from these basis edge detection operator$ and that can be viewed as a class of well-
known edge detection operators. Also a possible hlrrdware realization has been described using
simple hardware components like registers, shift registers, adders, subtractors, comparators and
simple AND/NOT gates. Analog VLSI architecture i~ also proposed for future neuro-computer.

The author gratefully acknowledges Prof. N. R. Pal and the reviewers for their valuable
comments that led to considerable improvements oHhis paper.

Since Pi belongs to a set of orthogonalpolynomialsfor al[ I ::;i::; n then
(p;,p;)= Lp;2and (p;,Pj)= L P;Pj=O, i'i4j.

!$x$n !$x$n
Now, bi's can be computedas follows.

(l't,l't) 1 2
Let i=l,q(n)=-( --)=-L(x-Il) =var(x)

PO,PO n
then P2(x, Il,n) = (x-Il)l't (x, Il,n) - q(n)PO(x,Il,n)

Let i=2 then, P3(x,ll,n)= (x-Il)P2(x,ll,n)-b20'l)l't(x,ll,n)
Both sidesofEqn (40) is multipliedby l't (x, Il,n) and t$ing L overx then

Ll'tP3 = L(x -1l)l'tP2 -b2Ll't2. That is, b2(l't,l't) = LXl'tP2

Again, LP£ = L(x-Il)l'tP2 -qLPOP2 [byEqn. (39)]

(39)

(40)



2 () (~,~)Therefore, LX?J P2 = L P2 = P2,P2 . Hence, b2 =~) .
~?J,?J)

Similarly, for i = 3,P4(x, fJ,n) = (x - fJ)P3(x, fJ,n) - b3(n)P2 (x, fJ,n)

Both sides of Eqn. (41) multiplied by P2 (x, fJ, n) and talqng L over x then

LP2P4 = L(x- fJ)P2P3-bJLPf. Therefore, bJ(P2i,P2)= LXP2P3·

Again LPl = L(X- fJ)P2P3-b2L?JJ3, that is, LxJ1'2P3= LPl = (J3,P3).

(P3,P3)
Hence, bJ = ---

(P2,P2)
Let us assume that the relation in Eqn. (8) is true for i = k < n.

Pk+1(x, fJ,n) = (x- fJ)Pk(x, fJ,n) - bk(n)Pk-1 (x, fJ,n)

(PkoPk)
Pk(x,fJ,n) =(x- fJ)Pk-1(x,fJ,n)-bk-1(n)Pk-2(x,fJ,n) and bk(n) = ( ).

Pk-loPk-1

Now it is true for i= k+1, that is, Pk+2(X, fJ,n) = (x - fJ~Pk+1(x, fJ,n) - bk+1(n)Pk(x, fJ,n)

Now both sides of Eqn. (44) is multiplied by Pk(x, fJ,n)i and taking L over x then

LPk+2Pk = L(X- fJ)PkPk+1-bk+lLP[.

Therefore, bk+1(PkoPk) = LXPkPk+1.

Again LPf+1 =L(X-fJ)PkPk+1-bkLPk-1Pk+1 and LXPkPk+1 = LPf+1 = (Pk+loPk+1)

Th"' b (n) = (Pk+loPk+1)
erelore, k+1 (PkoPk)

Since P; 's are orthogonal polynomials then LP; (x, fJ, It) = 0 for i> 1.

n+l
Now, ?J (x, fJ,n) = x - fJ, where, fJ = E(x) = - => [?J (x, fJ,n) = 0

2
Again, P2(x, fJ,n) = (x - fJ)?J (x, fJ,n) - q (n)PO(x,fJ"n) and LP2 (x, fJ,n) = O.

2 2 (n+l)2 n2 -1 12(n2 _12)Therefore, q (n) = 1.L(X - fJ) = 1. Li - - ;:::-- = 2
n n1::;;:>n 2 12 4(4xl -1)

~(n)JP2,P2) _ LPf = L[(x- fJ)?J -q(n)Po]2 =_1 L[(X- fJ)2 -qf
(?J,~) L?J2 L?J2 nq

= n~ (Lx4 +4nqfJ2 +n(fJ2 +q)2 -4fJLX3+2(fJ2 -q)LX2)

4 n5 n4 n3 n 2 n5 n4 n2 n
Now, LX =-+-+---, 4nqfJ =-+-----,

l:>x:>n 5 2 3 30 12 6 6 12

2 2 n5 n4 13n3 n2 n 3 n5 3n4 3n3 n2
n(fJ +q) =9+4+~+6+ 36' 4fJLX ==-2-2-2-2' and

2 2 n5 n4 7n3 n2 n. n5 n3 n
2(fJ -q)LX =9+2+9+2+"9' That IS, nqb2 = 180 - 36 + 45'



nZ-4 2z(nz_2z)
Therefore, bz(n)=--=----. (48)

15 4(4x2z -1)
Since equation (9) is true for i = 1,2. So by mathematic ailinduction we can prove that the equation (9) is
also true for any i = 1,2, ... , n.
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