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Abstract

Let D be a bounded convex m-dimensional domain with a piecewise smooth boundary
aD, iJ be the closure of D, T (:'S • ) be an extended real number, Q = D x (0, T), and
S = aD x (0, T). This article introduces a computational method for the critical domain of
the singular semilinear problem,

ut-Au=l(u) inQ,
u(x,O) = uo(x) oniJ,

u(x,t) = 0 on S,

where 1and Uo are given functions such that limu-tc- 1(u) =. for some positive constant
c, 1(0) > O,j' (u)? 0, f" (u)? 0, O:'SUo< c, Auo+ I(uo)?' 0 inD and Uo=0 on aD. By
using delta-shaped basis functions and an iterative technique, we solve for the steady-state
solution corresponding to the above problem on domains of a given shape. The delta-
shaped basis functions are easy to construct and are easily extended to higher dimensions.
They are very effective in overcoming the difficulty of meshing an irregular domain. An
algorithm for determining the critical domain for domains of a given shape is designed and
it is used for one dimensional (I-D) and 2-D quenching problems. The numerical results
show that our proposed method can be considered as a unified approach for both regular
and irregular domains. Furthermore, the technique can be used for higher dimensional
problems.
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Let D be a bounded convex m-dimensional domain with a piecewise smooth boundary
aD, iJ be the closure of D, T (:'S • ) be an extended real number, Q = D x (0, T), and



S = aD x (0, T). Let us consider the following singular semilinear problem,

ut-li.u=/(u) inQ, }
u(x,O) = uo(x) onD,

u(x,t) =OonS,

where I and Uo are given functions such that limu--->c I (u) =. for some positive constant
c,f (0) > O,f' (u) ? O,f" (u) ? 0, 0 ~ Uo< c, li.uo+I (uo) ? 0 in D and Uo= 0 on aD. In

accordance with Kawarada [10], a solution u is said to quench if there exists a finite time T
such that

The time T when (2) occurs is called the quenching time. When u is an increasing function

of t, a necessary condition for (2) is

The spatial point where u reaches c is called a quenching point. Chan and Ke [5] showed

that (3) implies (2), and hence the two conditions are equivalent.

A domain D* is said to be a critical domain for the problem (l) if a solution u exists for
all time t > 0 when D CD*, and there exists a finite time T such that (3) (namely quenching)

occurs when D JD*. With Uo == 0, Acker and Kawohl [1] showed that within the family of
nested domains, each of which has a sufficiently smooth boundary, the problem (1), without

requiring I (u) to be convex, has a critical domain, determined by the steady-state problem.

Since domains of different shapes have different critical domains, we consider domains of

the same shape in order to determine D* uniquely. We note that once the shape is given, a

domain is uniquely determined by its size (namely, area for m = 2, and volume for m ? 3).
Thus, determining the critical domain among domains of the same shape is equivalent to

determining the critical size. With Uo == 0, Chan and Ke [5] showed that for domains of the
same shape, a unique critical size for the problem (1) exists without requiring I (u) to be
convex in u and existence of I".

Two spatial m-dimensional domains D and Dj are said to have the same shape if there

exists xo ED nDj and a positive constant}., such that

Let the shape of a domain D be given. For a problem defined in a different domain D j

having the same shape, we may transform it to a problem defined in D. Without loss of
generality, we may take xo to be the origin. Then, the problem (1) on a domain Dj given

by (4) with the initial data Uo (x) = 0 may be transformed into that on D in the following

form:



A = (Size of DI) 11m (6)
size of D

(cf. Chan and Ke [5]). LetF (U) = limt--+. f(u(x,t)). The steady state of the problem (I)
is given by

Hence, D* is determined by the supremum of all domains D having the same shape such

that the steady-state solution U exists. Let il denote the solution of the problem (I) with

U() == O.Then, il is a lower solution of u. Since il and u tend to the same steady-state problem
(7) if U exists, it follows that U can be obtained by taking Uo == O.

The concept of quenching was introduced by Kawarada [10] in 1975. He considered a
special case of the one-dimensional (I-D) version of the problem (1) with f (u) = (1 - u) -I,
and D = (O,a) for some positive constant a. He showed that for the critical domain (O,a*),
a* > 2V2. Walter [14] showed that a* E (1.5303,n/2). Acker and Walter [2] improved

the above results by showing that a* = 1.530 (to 4 significant figures). Chan and Chen

[4] obtained a* = 1.5303 (to 5 significant figures). For the multi-dimensional case, Chan

[3] studied the critical domains for domains of the same shape. He developed numerical

algorithms by using Green's function to convert the given problem to a nonlinear inte-

gral equation, and used the monotone method to find the minimal steady-state solution.

The computational method is stable. Since the numerical procedures involve domain in-

tegrations, the computations are intensive for multi-dimensional cases. To avoid domain

integrations, Chan and Chen [4] used the method of particular solutions, the multiquadric

basis and the method of fundamental solutions. For illustration, they obtained exactly the

same result as Chan's for the critical domain for elliptic plates of a given shape in much

less computational time. By using a finite difference scheme, Chan and Ke [5] computed

the critical domain for rectangles of the same shape.

Here, we adopt a unified approach to compute the critical domain D* for domains of a

given shape by using the delta-shaped basis functions. The delta-shaped basis functions are

easy to construct, and are effective in approximating a source function given as a scattered

data. In Section 2, we discuss delta-shaped basis functions and their use in a straight

collocation method for solving partial differential equations (PDEs) of the elliptic type. A

comparison is made between the solution by this method and that by the finite element

method. The results show that our method is more accurate. Since higher dimensional

delta-shaped basis functions can be easily obtained as the product of one dimensional ones,

the approximation and the solution solving technique for PDEs can be extended to higher

dimensions. In Section 3, we give a computational method, based on Section 2, to find the

critical domains. For illustrations, we verify the critical domains for Kawarada's problem,

for rectangular domains of a given shape, and for elliptic plates having the same shape. The



In this section, we give a description of delta-shaped basis functions. They are used to
approximate the solution of a partial differential equation. For simplicity, let us first dwell

on the I-D case and assume that all the functions are defined in the interval [-1, +1].
Let (tpn(x), /-In) be a solution of the following Sturm-Liouville problem on the interval

[-1,+1]'
_tp" = /-ltp, tp(-I) = 0, tp(l) = O.

Then, tpn(x) = sin (nn(x+ 1)/2) and /-In= (nn/2)2. The eigenfunctions tpn(x) form an

orthogonal system on [-1, +1].
Let the regularizing coefficients r n be defined by

where X and M are positive integers with X playing the role of regularizing and M playing

the role of scaling. We note that the basis function IM,X(X,;) satisfies the same boundary

conditions as those of the eigenfunction {tpn(x)}. For example,

The multi-dimensional delta-shaped basis functions can be obtained as products of the

one-dimensional ones. For example, the 2-D delta-shaped basis functions can be defined

IM,X(X,;) = IM,X(X1, ;1)IM,X(X2, ;2),

where x = (X1,X2) and; = (;1, ;2). Using the I-D basis functions given in (8), we get the 2-

D basis functions IM,x(x,;). In Figure 1, we show the graphs of /z0,6(X, TJ) and 140,12(X, ~)
with centers at TJ = (-0.25, -0.25) and ~ = (0.25,0.25) respectively. From the graphics,

the basis functions IM,X(X,;) essentially differ from zero only inside some neighborhood of

the center point;. They are infinitely differentiable and are not identically equal to zero on

any interval. From this point of view they can be characterized as approximate compactly

supported functions (cf. Chen, Golberg and Shaback [6]).



Figure 1: The functions hO,6(X,S) and 140,12(X,S) centered at (-0.25,-0.25) and

(0.25,0.25) respectively

We remark that the regularizing technique described above can be applied to eigen-

functions of other Sturm-Liouville problems to construct basis functions.

Since the critical size of the problem (5) is determined by the value y = }"2, and the

critical domain is determined by the supremum of all domains having the same shape such

that the steady-state solution exists, we give a method for solving the steady-state problem

(7). By the Rayleigh quotient (cf. Haberman [9. p. 290]), the fundamental eigenvalue a of

the Sturm-Liouville problem,

It follows from Stakgold [12, pp. 581-582, and 612-617 ] that if

limsupF (z) /z < a,
z--.o

and Green's function corresponding to the steady-state problem (7) exists, then 0 < UI <
U2 < ... < Ui < Uj+ I for i = 1,2, ... , and limn--.o Un is the minimal solution of the steady-

state problem (7).

Assuming the above conditions are satisfied, we solve the sequence of linear PDEs

defined by (9) until the successive solutions Un and Un+1 are sufficiently close. At each

iteration step of (9), the basis functions IM,x(X, s) can be used for solving PDEs (cf. Tian,
Reutskiy and Chen [13]).



At the center points {;j }~=l ' we use the basis functions {IM,X(X, ;j)} ~=l . Let {Xi}~l
be a set of collocation points for D of which {Xi}~l are interior points and {Xi}~Nl+1 are
boundary points. For each iteration step n of (9), we find an approximate solution fJ (x) in
the form:

N
fJ(X) = ~Pj!M,X(X,;j).

J=l

Using the governed equation and the boundary condition of (9) at the collocation points,

we obtain the collocation system:

N
- ~ Pp1(xjIM,X(Xi, ;j) = F (Un (Xi)), 1~ i ~ NI,
J=l

N
~ pj!M,X(Xi,;j) = 0, NI + 1 ~ i ~N,
J=l

where L1(x) denotes the Laplace operator acting on IM,X viewed as a function of the first ar-

gument. We also use the variant of the collocation when the number of centers K is less than

that of collocation points N. In this case, we get an overdetermined system and the least

squares method is used to solve it. Thus, the basis functions are just { -L1(xjIM,X(X, ;j)} ~=l

for interior points and {IM,x(X,;j) }~=l for boundary points according to (11) and (12).
To demonstrate the effectiveness of the proposed algorithm, we compare in Example

1 our method and the Poisson solver using the finite element method (FEM) in Matlab

version 7.2.0.232. The results show that our method has a higher accuracy.

L1u = 1, (x,y) ED = [0,1] x [0,2], }
u = 0, (x,y) E aD.

Its (exact) solution is given by

uex(x,y)= i Un,msin(mtx)sin(~1rY).
n,m=l

Using the orthogonality conditions,

l ,m(""x),",(knx)dx~ {
1 .2' ifn = k,
0, ifn=f.k,

12 (m ) (k) { 1 ifm = ksin 21rY sin 21rY dy = '. 'o 0, ifm=f.k,

1= i en,msin(n1rx)Sin(~1rY),
n,m=l



4
en,m= nmnz (cosnn-l)(cosmn-l).

Au = i en,msin (nnx) sin (~ny) , (x,y) ED.
n,m=l

We lookfor the solution in the form (14). We get

Ii.::X(X';) = n~l [1- (M: 1)Z] x CPn(;)CPn(x), }

CPn(x) = sin Gn(x+ 1)) ,

I~:x(Y' 1/) = n~l [1- (M: 1rr 1JIn(1/) 1JIn(y), }

1JIn(y) = sin (in (y+ 2)) .
We remark that the basis functions Ii.::x(x,;) and I~:x(y' 1/) satisfy the zero boundary con-
ditions Ii.::x(±I,;) = 0 and I~:x(±2, 1/) = 0, respectively. Therefore, the 2-D basisfunc-
tions defined by (15)-(17) vanish on the boundary of the rectangle Dz = [-1,1] x [-2,2].
When using the basis to approximate any function. we should avoid placing the data points
Xi and the centers ;jclose to the boundary aDz. In order to use the basis defined by (15)-
(17) to approximate the solution of the problem (13), we tmnsform the problem so that it
is defined on Ds = [-0.5,0.5] x [-1,1]. We choose 900 center points (;,1/) randomly dis-
tributed inside the domain Ds and ISO center points (;,1/) evenly distributed on aDs. We
would like to compare the accuracy of our method with that of the Poisson solver by FEM
in Matlab. We use each method to obtain the numerical solution at the same set of nodes in
Ds• that is. at the FEM nodes. To do this. we calculate the truncated series of(14),

for some positive integers Ml and Mz. Let U(Xi,Yi) denote the approximate solution at the
node (Xi,Yi) in Ds by either FEM or our method. The absolute error is defined as



The nodes where we calculate the numerical solution are the FEM nodes {(Xi'Yi)}i2~7
produced by the Matlab Poisson solver. These nodes are used as the collocation points

in Ds for our method. We also choose 300 collocation points evenly distributed on the
boundary aDs' We give Ea and Esq by our method and by the FEM method in Table 1.

Ml =M2 Ea Esq Ea byFEM Esq byFEM

150 .83626E-05 .74135E-06 .24179E-03 .42986E-04

200 .81395E-05 .70987E-06 .24176E-03 .42984E-04

300 .75895E-05 .70I07E-06 .24173E-03 .42984E-04

Table 1: The absolute error Ea and the square root error Esq by our method and by the FEM

Poisson solver in Matlab for the problem (13)

The results show that our approach is more accurate than FEM Poisson solver in Mat-

lab.
In the next example, we demonstrate that the collocation method work well for an

irregular domain.

Example 2 We consider the modified Helmholtz equation with the Dirichlet boundary con-

dition,
~u (x) - IOu (x) = p (x), XED, }

u(x) = q(x), x E aD,
where D is a star-shaped region. The parametric equation of the boundary curve aD is

given by

Let us choose the functions p (x) and q (x) such that the (exact) solution of (18) is Franke's

function,

Fl (x) = ~exp (

+~exp (

(9Xl +2.5)2+ (9X2+2.5)2) 3 ((9Xl +5.5)2+(9X2+5.5)2)
4 + 4exp 49

(9Xl - 2.5)2 : (9X2 + 1.5)2) _ ~ exp ( _ (9Xl + 0.5)2 _ (9X2 _ 2.5)2) .



Franke's function is often used as a benchmark problem (cf. Fasshauer [7], and Franke

[8]) in approximation. It was initially defined on the unit square [0,1] x [0,1]. However for
our purposes, the function is re-scaled to the domain [-0.5,0.5] x [-0.5,0.5]. Since we are
looking for the solution of the problem (18) in the star-shaped domain D shown in Figure

3, we only use the data values inside and on the boundary of the domain D.

We use K and Nl to denote respectively the number of center and collocation points

in D. These points are randomly distributed inside the domain. We use Nb collocation

points equally (in terms of angle) distributed on aD. The square root error of the computed
solution is shown in Table 2. The result is highly accurate for such an oscillating solution

over the star-shaped irregular domain.



]M,X K N1 Nb Esq

hO,9 700 800 200 3.6E-05

]40,12 700 800 200 1.2E-06

]40,12 1200 1500 300 2.5E-07

In this section, we design an algorithm to compute the critical domain for the problem (5).

As an illustration, we consider a 2-D problem with f (u) = 1/ (I - u) and A2 = y:

au -Au = _Y_ in Q, }at 1- u
u=OonDUS.

Its steady-state problem is given by

-Au = _Y- in D, u = 0 on aD.
I-u

Since the size of the domain is determined by Y,we develop an algorithm to compute the

critical value y* for domains having a given shape. The critical domain is then found by

(6).

For the function g (z) = y/ (1- z), where y is a positive number, (10) is satisfied. For
each of the problems including Kawarada's problem, the problem in a rectangular domain,

and the problem in an elliptic plate, Green's function exists.

We use the following procedure to determine the critical size for domains of the same

shape:

Then, an initial upper bound for y* is Yupper = 1/ maxD ~. Using Ylower = 0 as a lower
bound, we estimate y* with y(l) = Yupper/2.

Step 2. For each approximation y(k), let us compute the sequence {U(i)} defined by U(O) =
o on D, and for i 2: I,

-AU(i) = y(k) / (1- U(i-1)) in D,U(i) = 0 on aD. (20)

We calculate U(i) from U(i-1) by the direct collocation method using the delta-shaped

basis functions discussed in Section 2. In the iterative process, the linear systems

resulted from our collocation method always have the same coefficient matrix. If

{ U(i) } converges, then we take this value y(k) as a lower bound; otherwise, it is an

upper bound.



Step 3. If Iy(k) - y(k-l) I < E (a given tolerance), then y(k) is taken to correspond to the

critical size.

Step 4. We update y(k) by the following criterion: if the sequence {U(i)} in Step 2 con-

verges, then

y(k) = y(k-l) _ ~ Iy(k-l) _ y(k-2) I.

Then, we repeat Steps 2 - 4.

We use the above proposed procedure to calculate the critical size for domains of a

given shape for the problem (19). The shapes considered in our numerical examples include

a 1-D domain (Kawarada's problem), a 2-D rectangular domain, a 2-D elliptic plate, and an

irregular domain. For all of the numerical examples in this section, we use KI, Kb, to denote
the number of center points of the basis functions inside D and on aD respectively, and we

use NI, Nb to denote the number of collocation points inside D and on aD respectively.
So, the total number of center points of the basis functions is K = KI +Kb, and that of the

collocation points is N = NI +Nb.

Example 3 For the l-D problem, D = {x E R : -a < x < a} , where a is a positive number.

We choose a = 0.5. We let K1 = 50 and NI = 100. The type of l-D basis function used is
hO,9 defined in (8). The center and collocation points used inside D are quasi-random
points. For the l-D case, we have 2 center points on aD with one being -0.5 and the

other 0.5. So Kb = 2. Similarly, Nb= 2. The total number of center points and collocation
points are respectively K = 52 and N = 102. An initial upper bound for y* is 8.0000. Our
computed critical value y* = 2.3421. By (6) the critical size of the interval is yIy*·length

of D = 1.530 (to three decimal points).

where a and b are two positive numbers. The ratio a/ b determines the shape of the rect-

angular domain. We let a = 0.5 and b = 1. So a/ b = 1/2. The type of basis function used
is hO,9 defined in (15)-(17). We use KI = 900 quasi-random center points inside D and
Kb = 150 center points evenly distributed on aD. The total number of center points is

K = 1050. We use the same interior collocation points as in Example 1 plus an additional
point (0,0) since at each iterative step (20) (when the iteration converges) the maximum of



uti) is attained there. So Nl = 1318. We choose Nb = 300 collocation points evenly dis-
tributed on aD. So the total collocation points N = 1618. An upper boundfor y* is 8.7818.
The computed critical value y* = 2.7993. By (6), the critical size of the rectangular domain
is y*·Area of D = 5.599 (to three decimal points) as that given by Chan and Ke [5].

{
x2 l }

D = (x,y): a2 + b2 < 1 ,

where a/ b = (1 +e-lr
/2) / ( 1 - e-lr/2) . Let a = 0.4575. We have b = 0.3000. The type

of basis function used is hO,9 (x, ; )hO,9 (y, 11). where [30,9 (x, ;) and hO,9 (y, 11) are defined
by (8). We use Kl = 500 quasi-random center points inside D and Kb = 150 center points
evenly (in terms of angle) distributed on aD. The total number of center points is K = 650.

We use Nl = 1000 collocation points that are also quasi-random inside D and Nb = 300

collocation points evenly (in terms of angle) distributed on aD. So N = 1300. An initial
upper bound for y* is 31.7792. Our computed critical value y* = 10.3447. By (6), the
critical size of the elliptic plate is y* ·Area of D = 4.460, which is the same as that by Chan
[3].

Example 6 The region D is bounded by the curve p = (1+ cos2 ((J) ) /4, 0 ::; (J ::; 2n. The
type of basis function used is the same as in Example 5. We use Kl = 500 center points
and Nl = 1000 collocation points that are quasi-random inside D. We distribute Kb = 150

center points andNb = 300 collocation points evenly (in terms of angle) on aD. So K = 650

and N = 1300. An initial upper bound for the y* is 33.7879. Our computed critical value
y* = 10.8332. The critical domain is y*·Area of D = 10.8332 * .4663 = 5.052 (to three
decimal points).
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