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Abstract
The methods of lower-upper solutions and coupled lower-upper solutions together with the

monotone iterative technique are employed to obtain natural monotone, or alternating mono-
tone, or intertwining monotone sequences for hyperbolic initial-boundary value problems when
the forcing function is the sum of two monotone functions. The sequences converge uniformly
to the extremal solutions or the coupled extremal solutions of the nonlinear initial-boundary
value problems.

It is well known [3] that the method of lower-upper solutions, coupled with the monotone iterative
technique (MIT for short) offers theoretical as well as constructive existence results for a variety of
nonlinear problems in a closed set generated by lower and upper solutions. A unification of several
known results and some new ones can be accomplished if we split the forcing function into the
sum of two monotone functions. In this situation, one can employ a variety of coupled lower-upper
solutions, and discuss the MIT depending on the iterative scheme used. See [1,4,11, 13, 14]. In this
paper, we undertake such a unified study for the initial-boundary value problem associated with the
nonlinear hyperbolic partial differential equation

Utilizing various iterative schemes, we obtain natural monotone, alternating monotone, or intertwin-
ing monotone sequences which converge uniformly to the extremal or the coupled extremal solutions
of (1.1) when f is montonically nondecreasing and g is monotonically nonincreasing in the last three
variables. Furthermore, if f and g satisfy appropriate uniqueness (one-sided Lipschitz) conditions,
then the sequences in question converge to the unique solution of equation (1.1). Our results include
and improve the earlier results obtained in [1, 2, 3, 5, 6, 7, 8, 10, 11, 12]. To avoid monotony, we
give a proof and provide an illustrative example for only one of our results.

For a, b E JR, a > 0, b > 0, let I, J, and R denote the intervals [0,a], [O,b] and the rectangle
[0, a] x [0, b] respectively. By Z E C2 [R, JR], we mean that z is a continuous function on R, and
its partial derivatives zx, Zy, and Zxy exist and are continuous on R. For z E C2[R, JR],the triple
(z,zx,Zy) is denoted by (z).

The triple (/1, h, h) of constants or functions is denoted by {f}. The expression /1z + hzx +
hzy denotes the usual inner product {f} . (z). For v, W E C2[R,JR], the inequality (v) ~ (w)
means that v(x,y) ~ w(x,y), vx(x,y) ~ wx(x,y), and vy(x,y) ~ wy(x,y) for (x,y) E R. For va,
WO E C2[R, JR]such that (VO) ~ (wO) on R, the closed set n is defined by

n= {(x, y, z,p, q) : (x, y) E R, (vO) ~ (z,p, q) ~ (WO) on R}.



uxy =f(x,y,(u)) +g(x,y,(u)), (x,y) E R;
u(x,O) = u(x) for x E I, u(O,y) = r(y) for y E J, (7(0) = Uo = r(O),

where f, 9 E C2[R x R3,R], (7 E C1[I,R], and r E C1[J,R].

There are four possible ways to employ the lower and the upper solutions in the development
of monotone methods.

Definition 2.1. Functions va, wo E C2[R,R], (Vo) :":::(WO), are said to be natural lower-upper
solutions relative to (2.1) if

V~y ~f(x,y, (VO)) + g(x,y, (VO)), (x,y) E R;

W~y 2: f(x, y, (wo)) + g(x, y, (WO)), (x, y) E R;
v~(x,O) :":::(7'(x), x E I; v~(O,y) :":::r'(y), y E J; vO(O,O):,,::: uo;

w~(x,O) 2: (7'(x), x E I; w~(O,y) 2: r'(y), y E J; wO(O,O) 2: uo.

Definition 2.2. Functions va, WO E C2[R,R], (VO) :":::(WO), are said to be coupled lower-upper
solutions of Type I relative to (2.1) if

V~y :":::f(x, y, (vo)) + g(x, y, (wO)), (x, y) E R;

W~y 2: f(x,y, (WO)) + g(x,y, (vO)), (x, y) E R;
v~(x,O) :":::(7'(x), x E I; v~(O,y):,,::: r'(y), y E Jj vO(O,O) :":::Uo;

w~(x,O) 2: (7'(x), x E I; w~(O,y) 2: r'(y), y E J; wO(O,O) 2: Uo.

Definition 2.3. Functions va, WO E C2[R,R], (VO) :":::(WO), are said to be coupled lower-upper
solutions of Type II relative to (2.1) if

V~y :":::f(x, y, (WO)) + g(x, y, (VO)), (x, y) E R;

W~y 2: f(x, y, (VO)) + g(x, y, (wO)), (x, y) E R;

v~(x,O) :":::(7'(x), x E I; v~(O,y) :":::r'(y), y E J; VO(O,O):":::Uoj

w~(x,O) 2: (7'(x), x E I; w~(O,y) 2: r'(y), y E J; WO(O,O) 2: Uo.

Definition 2.4. Functions va, WO E C2[R,R], (vO) :":::(WO), are said to be coupled lower-upper
solutions of Type III relative to (2.1) if

V~y :":::f(x, y, (WO)) + g(x, y, (wo)), (x, y) E R;

W~y 2: f(x, y, (vo)) + g(x, y, (vo)), (x, y) E R;
v~(x,O) :":::(7'(x), x E I; v~(O,y) :":::r'(y), y E J; vO(O,O) :":::Uo;

w~(x,O) 2: (7'(x), x E I; w~(O,y) 2: r'(y), y E J; wO(O,O) 2: Uo·

Remark 2.1. Whenever (VO) :":::(WO), f is nondecreasing in (u), and 9 is nonincreasing in (u), it is
easy to see that the inequalities in (2.2) and (2.5) imply the inequalities in (2.4). Furthermore, in
this case, coupled lower-upper solutions of Type II can easily be computed. Indeed we have (see [1]):

Lemma 2.1. Suppose that f, 9 E C[R x R3,R], f is nondecreasing and 9 is nonincreasing in the
last three variables. Then there exist coupled lower-upper solutions va, wO of Type II for (2.1) such
that (VO) :":::(WO) on R.



The following known results [1,9] are required in our subsequent discussion.

Theorem 2.1. Let v, W E C2[R,IR] and H(x,y,z,p,q,z,p,q) E C[R x 1R6,1R] be nondecreasing in
z, P, q and nonincreasing in Z, P, q. Suppose that anyone of the following conditions holds.

(Hi) vxy :":::H(x, y, (v), (v)), wxy 2: H(x, y, (w), (w)), and there exists L > 0 such that

H(x, y, Zl,Pi, qi, Zl,Pi, qi) - H(x, y, Z2,P2, q2, Z2,P2, (2) :":::
L[(Zl - Z2) + (Pi - P2) + (qi - q2) + (Zi - Z2) + (Pi - P2) + (qi - (2)]

whenever Zi 2: Z2, Pi 2: P2, qi 2: q2, Zi 2: Z2, Pi 2: P2' qi 2: q2;

(H2) vxy :":::H(x, y, (v), (w)), wxy 2: H(x, y, (w), (v)), and there exists L > 0 such that

H(x, y, Zl,Pi, ql, z,P, q) - H(x, y, Z2,P2, q2, z,P, q) :":::
L[(Zl - Z2) + (pi - P2) + (qi - q2)]

whenever Zi 2: Z2, Pi 2: P2, qi 2: q2, and

H(x, y,z,p, q, Zl,Pi, qi) - H(x, y, Z,P, q, Z2,P2, (2) 2:
- L[(Zl - Z2) + (Pi - P2) + (qi - (2)]

H(x, y,z,p, q, Zl,Pi' qi) - H(x, y, Z,P, q, Z2,P2, (2) :":::
L[(Zl - Z2) + (Pi - P2) + (qi - (2)]

whenever Zi 2: Z2, Pi 2: P2' qi 2: q2, and

H(x, y,Zl,Pl, qi, z,P, q) - H(x, y, Z2,P2, q2, z,P, q) 2:
- L[(Zl - Z2) + (Pi - P2) + (qi - q2)],

H(X,y,Zl,Pi,qi,Zl,Pi,qi) - H(X,y,Z2,P2,q2,z2,P2,q2) 2:
-L[(Zl - Z2) + (pi - P2) + (qi - q2) + (Zi - Z2) + (Pi - P2) + (qi - (2)],

Ifv(O,O) :":::w(O,O), vx(x,O):,,::: wx(x,O), and vy(O,y) :":::wy(O,y) for x E I and y E J, then

(v) :":::(w) everywhere in R.

Remark 2.2. The one-sided Lipschitz conditions in Theorem 2.1 are required in establishing the
nonstrict inequalities only. The following example shows that the conclusion of Theorem 2.1 may
be false in the absence of these conditions.

Example 2.1. For (x, y) E [0,1] x [0,1], consider the equation

{

XYifU' if 0:"::: u :":::1

uxy =f(x,y,u) = 0, if u < 0
xy, if u > 1

u(x,O) =0, x E [0,1], u(O,y) = 0, Y E [0,1].

3 3
The functions v(x,y) == 0 and w(x,y) = x2~ are both solutions of (2.7) which do not satisfy

the inequalities in (2.6).



(a) (i) u(x,O) ::;0 for x E I, u(O,y)::; 0 for y E J;
(ii) ux(x,O) - M3u(x, 0) ::; 0 for x E I,

Uy(O,y) - M2u(0, y) ::;0 for y E J;

(iii) M1 + M2M3 ~ 0;

(b) (i)' ux(x,O) ::;0 for x E I, uy(O, y) ::;0 for y E J, and u(O, 0) = 0;

(ii)' M1 + M2M3 = 0;

then (u,ux,uy)::; (0,0,0) everywhere on R.

For a proof of Theorem 2.2 and several other related results of interest, see [4, 9]. We recall
the following result on MIT which is an extension of Theorem 4.1 in [5]. Its proof makes repeated
use of Theorem 2.2. See also Remarks 4.3.1 following Theorem 4.3.1 in [4].

Consider the IBVP

uxy =F(x, y, (u)), (x, y) E R;
u(x,O) = a(x) for x E I, u(O, y) = r(y) for y E J, a(O) = Uo = r(O),

where F E C[R x R3,R], a E C1[I,R], and r E C1[J,R].

(i) vo, Wo E C2[R, R], (vo) ::; (Wo) on Rand vo, Wo are respectively the natural lower and upper
solutions of (2.8) such that VO(O,0) = Uo = WO(O,0);

(ii) F satisfies the condition

whenever (VO) ::; (z,p, q) ::; (z,p, q) ::; (WO) on R, where M1, M2, M3 are constants with M2 ::; 0
and M3::; o.

Then there exist monotone sequences {vn} and {wn} such that limn(vn) = (p), limn(wn) = (r)
uniformly and monotonically on R, where p and r are the minimal and maximal solutions respectively
of (2.8) and satisfy (vO) ::; (p) ::; (r) ::; (WO) on R.

The special case where F(x, y, (u)) is nondecreasing in (u) (in which case we do not require the
restriction vO(O,0) = Uo= WO(O,0)) is covered by Theorem 2.3. However, the case when F(x, y, (u))
is nonincreasing in (u) is not included in Theorem 2.3 and is of special interest. In [1] (Theorem
3.4) the authors have employed coupled lower-upper solutions of Type II to develop MIT for the
IBVP (2.1) under the additional assumptions "(VO) ::; (v2) and (w2) ::; (WO) on R."

A natural question that arises is whether it is possible to obtain monotone sequences {vn},

{wn} when F is nonincreasing in (u) without the restrictions (VO) ::; (v2) and (w2) ::; (WO). The
answer is in the affirmative provided we employ coupled lower-upper solutions. In the next section
we prove very general results relative to MIT, which include the results of this section as well as
several other results of interest.



In the development of MITs relative to the IBVP (2.1), we shall employ the following two iterative
schemes:

V~y(x,y) = f(x,y, (vn-I(x,y))) + g(x,y, (wn-I(x,y))), (x,y) E R;

vn(x,O) = IT(x), X E I; vn(O, y) = T(Y), Y E J; vn(O,O) = uo;
W~y(x, y) = f(x, y, (wn-I(x, y))) + g(x, y, (vn-I(x, y))), (x, y) E R;

wn(x,O) = IT(x), X E I; Wn(O,11) = T(Y), Y E J; wn(O,O) = uo ,

V~y(x,y) = f(x,y, (wn-I(x,y))) + g(x,y, (vn-I(x,y))), (x,y) E R;

vn(x,O) = IT(x), X E I; vn(O, y) = T(Y), Y E J; vn(O,O) = uo;
W~y(x,y) = f(x,y, (vn-I(x,y))) + g(x,y, (wn-I(x,y))), (x,y) E R;

wn(x,O) = IT(x), X E I; wn(O,y) = T(Y), Y E J; wn(O,O) = uo,

for n = 1,2,3, ....

Our first result, which yields natural sequences by utilizing natural upper-lower solutions in
conjunction with the scheme (81), includes and improves several earlier known results in [3, 5, 6, 7,
8,10,12].

(AI) va, wo E C2[R,R] are natural upper-lower solutions of (2.1) such that (Vo) :-s: (Wo) on R;

(A2) f, 9 E C[R X R3, R], f is non decreasing in (u) and 9 is nonincreasing in (u).

Then there exist sequences {vn}, {wn} in n such that {(vn)} is nonincreasing, {(wn)} is nonin-
creasing and satisfy (vn) --t (v), (wn) --t (w), where v and w are coupled minimal and maximal
solutions respectively of (2.1) on R, that is, v and w satisfy

vxy = f(x, y, (v)) + g(x, y, (w)), (x, y) E R,
wxy = f(x, y, (w)) + g(x, y, (v)), (x, y) E R,

provided that (vo) :-s: (vI) and (WI) :-s: (Wo) on R. Also (Vo) :-s: (v) :-s: (w) :-s: (Wo) on R.

Proof. For n = 1,2,3,···, define the iterates as given by scheme (81). It is easy to see that the
solutions of these IBVPs exist and are unique for each n = 1,2,3, .... We prove that the sequences
{vn} and {wn} satisfy the (natural) monotone behavior

(Vo) :-s: (VI) :-s: ... :-s: (vn) :-s: (wn) :-s: ... :-s: (WI) :-s: (Wo) on R.

By assumption, we already have (vo) :-s: (VI) and (WI) :-s: (wo) on R. We assert that

(vI) :-s: (WI) on R.

To this end, setting p = VI - WI we note that Px(x,O) = 0 if x E I, py(O, y) = 0 if y E J, p(O, 0) = 0
and Pxy = f( (vo) )+g( (Wo))- f( (wo) )-g( (Vo)) :-s: 0 in view of the monotone character of f( (u)), g( (u))
and the assumption (Vo) :-s: (wo). Hence Theorem 2.2 yields (P) :-s: (0), which in turn establishes
(3.2). Thus we have (Vo) :-s: (vI) :-s: (WI) :-s: (Wo) on R. Assume that, for some n > 1,

(vn) :-s: (vn+I) :-s: (wn+l) :-s: (wn) on R. (3.4)

To do this, let p = vn - wn+l, so that Px(x, 0) = ()if x E I, Py(O, y) = 0 if y E J, and p(O, 0) = o.
Then Pxy = f(vn-I)) + g(vn-I)) - f(vn)) - g(vn)) :-s: 0 because of (3.3) and the monotonicity
of f(u)), g(u)). Therefore we have (vn) :-s: (vn+I) on R by Theorem 2.2. A similar argument



yields (wn+1) :::::(wn) on R. Now letting p = vn+1 - wn+1 we find that Px(x,O) = 0 if x E I,
Py(O, y) = 0 if Y E J, p(O,O) = 0, and Pxy = f( (vn)) + g( (wn)) - f( (wn)) - g( (vn)) :::::0, in view of
(3.3) and the monotone nature of f((u)), g((u)). Hence by Theorem 2.2 we obtain (vn+1) :::::(wn+1)
on R, proving (3.4). Hence by induction (3.1) is established. Using the monotone character of the
sequences {vn}, {wn} in fl, together with the Ascoli-Arzela theorem, it follows by using standard
arguments that (vn) -+ (v), (wn) -+ (w), where v, w E C2[R,lR] are coupled solutions of the
IBVP (2.1). To show that v, ware in fact the coupled extremal solutions of (2.1), let u E fl be any
solution of (2.1). Assume for some n > 0, that we have

Then letting p = vn+1 - u, we note that Px(x, 0) = 0 if x E I, Py(O, y) = 0 if Y E J, p(O, 0) = 0 and
Pxy = f((vn)) + g((wn)) - f((u)) - g((u)) :::::0 because of the monotonicity of f((u)), g((u)), and
(3.5). Theorem 2.2 now implies that (vn) :::::(u) on R. Similarly, (u) :::::(wn) on R. It therefore
follows by induction that (vn) :::::(u) :::::(wn) on R for all n = 1,2,3,···, and this implies, in turn,
that (v) :::::(u) :::::(w) on R, proving thereby that v and ware coupled minimal and maximal solutions
respectively of the IBVP (2.1) on R. This completes the proof. D

Corollary 3.1. In addition to the assumptions of Theorem 3.1 suppose that f, 9 satisfy

f((Ul))-f((U2))::::: [Lj'(UI-U2),
g( (Ul))- g( (U2)) 2: -[L] . (Ul - U2) , L > 0 a constant,

whenever (vO) :::::(Ul) :::::(U2) :::::(WO) on R, where [L] . (u) = L(u + Ux + uy). Then v == u == w is the
unique solution of (2.1) in fl.

Proof. Since (v) :::::(w) it suffices to show that (w) :::::(v) on R. To this end, setting p = w - v, we
find that Px(x, 0) == 0 on I, Py(O, y) == 0 on J, p(O, 0) = 0, and

Pxy = f((w)) + g((v)) - f((v)) - g((w))
::::: [2Lj . (P).

Several special cases of interest can be deduced from Theorem 3.1. First let us make the
following observation.

Consider the IBVP

uxy = f(x, y, (u)), (x, y) E Rj
u(x,O) = <7(x) for x E I, u(O, y) = r(y) for y E J, 0-(0) = Uo = r(O),

and let F(x,y, (u)) = f(x,y, (u)) + {M} . (u), where {M} = (Ml,M2,M3), Mi, 1
constants with M1 - M2M3 = O. Then we have

eM3X+M2Y (UXy + {M}· (u)) = eM3X+M2Y F(x,y, (u)),

Using the transformations

u = e(M3X+M2Y) u and F(x, y.(u)) = e(M3X+M2Y) F(x, y, (u)),

Uxy = F(x, y, (e-(M3X+M2Y) u)).

Now suppose that vO, WO are natural lower-upper solutions of (3.6). Then we have

v~y::::: f(x,y,(VO)),

v~y + {M} . (vo) :::::f(x, y, (vo)) + {M} . (vo) ,

[e(M3X+M2Y) vo] xy :::::eM3:I1+M2YF(x, y, (vo)),

VO < F(x y (e-(M3X+M2Y) vOl)
xy - " .



Similarly, w~Y 2: F(x, y, (e-(M3X+M2Y) WO)), which shows that UO is a lower solution and WO is an
upper solution. Utilizing this fact, it is now possible to deduce several special cases of Theorem 3.1.
See, for example, [4, 13, 14J.

Example 3.1. For (x, y) E R = [0,1] x [0,1]' consider

{

XYy'U=l
uxy = f(x,y,u) = 0

xy

u(x,O) = 1 for x E [0,1], u(O,y) = 1 for y E [0,1].

if 1::; u::; 2
if u < 1
if u > 2

The forcing function f in (3.7) is nondecreasing in (u) for fixed (x, y) E R. Equation (3.7) has two
solutions satisfying the initial boundary conditions (3.8):

X4y4
v(x,y)==l;w(x,y)= 256 +1.

The functions VO(x,y) == 1 and wO(x,y) = xy + 1 form a pair of natural lower-upper solutions for
(3.7). Clearly (vO) ::; (v1) on R. Also w1(x,y) = 1 + (~)2(xy)5/2 ::; wO(x,y) on R, so that all the
conditions of Theorem 3.1 are satisfied. It is easy to see that vn(x, y) == 1 for all n = 1,2,3,···,
so that (vn(x,y)) ---> (v(x,y)) uniformly on J and satisfies the monotone behaviors (VO) ::; (v1) ::;
(v2) •.• ::; (vn) ::; .... The graphs of {(wn) }O<n<6 and (w) and their numerical values at four
preselected points (x,y) E R are given below. --

(x,y) (x,y) (x,y) (x,y)
(0.1,0.2) (0.3,0.4) (0.6,0.5) (0.8, 0.7)

WO(x, y) 1.0200000000 1.1200000000 1.3000000000 1.5600000000
w1(x,y) 1.0000090510 1.0007981290 1.0078872048 1.0375482802

w2(x,y) 1.0000001139 1.0000385152 1.0007567237 1.0057531322

w3(x,y) 1.0000000103 1.0000068008 1.0001884062 1.0018101402

w4(x,y) 1.0000000028 1.0000025836 1.0000849905 1.0009179361

w5(x,y) 1.0000000014 1.0000015169 1.0000543760 1.0006226761

w(x,y) 1.0000000006 1.0000008100 1.0000316406 1.0003841600

(x,y) (x, y) (x, y) (x,y)
(0.1,0.2) (0.3,0.4) (0.6,0.5) (0.8,0.7)

w~(x,y) 0.2000000000 0.4000000000 0.5000000000 0.7000000000

w~(x,y) 0.0002262742 0.0066510751 0.0328633535 0.1173383756
w;,(x,y) 0.0000037027 0.0004179482 0.0040989201 0.0233720997

w~(x,y) 0.0000003725 0.0000821768 0.0011382974 0.0082021977

w:(x, y) 0.0000001063 0.0000328332 0.0005400438 0.0043745393

w~(x,y) 0.0000000541 0.0000197512 0.0003540107 0.0030404108

wx(x,y) 0.0000000250 0.0000108000 0.0002109375 0.0019208000



o
o 0.102. 0.3

04. 0.506
. 0.70'BO.
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(x,y) (x,y) (x,y) (x,y)
(0.1,0.2) (0.3,0.4) (0.6,0.5) (0.8,0.7)

w~(x,y) 0.1000000000 0.3000000000 0.6000000000 0.8000000000

w~(x,y) 0.0001131371 0.0049883063 0.0394360241 0.1341010007

w;(x,y) 0.0000018514 0.0003129361 0.0049187042 0.0267109711

w~(x,y) 0.0000001862 0.0000616326 0.0013659449 0.0093739403

w:(x,y) 0.0000000532 0.0000246249 0.0006480526 0.0049994735

w~(x,y) 0.0000000270 0.0000148134 0.0004248129 0.0034747551
wy(x,y) 0.0000000125 0.0000081000 0.0002531250 0.0021952000



The foregoing computations were done using the standard differentiation and plotting utilities
of the software package Maxima (http://maxima.sourceforge.net).

In the next result, we employ scheme (S2) and obtain sequences which are alternately monotone,
under the same hypotheses (AI) and (A2) as in Theorem 3.1, but by dropping the assumptions
(vO) ~ (VI), (WI) ~ (WO) and adding the new ones (vO) ~ (v2), (w2) ~ (WO).

Theorem 3.2. Let the assumptions (All and (A2) of Theorem 3.1 hold. Then for any solution u
of (2.1), the sequences {vn}, {wn}, in the iterative scheme (S2) satisfy the inequalities

(VO) ~ (v2) ~ ... ~ (V2n-2) ~ (u) ~ (V2n-l) ~ ~ (v3) ~ (VI) ,
(WI) ~ (w3) ~ ..• ~ (W2n-l) ~ (u) ~ (w2n-2) ~ ~ (w2) ~ (WO),

on R, provided that (VO) ~ (v2) and (w2) ~ (wO) on R. Moreover, the monotone sequences {v2n},
{V2n-1 }, {w2n}, {W2n-I}, converge uniformly to v, w, v* and w* respectively on R and satisfy the
equations

wxy = f(x, y, (v*)) + g(x, y, (v)), (x, y) E Rj
w(x,O) = u(x), x E Ij w(O,y) = r(y), y E Jj w(O,O) = Uo,

vxy = f(x, y, (w*)) + g(x, y, (w)), (x, y) E Rj
v(x,O) = u(x), x E Ij v(O, y) = r(y), y E Jj v(O,O) = UO,

w:y = f(x, y, (v)) + g(x, y, (v*)), (x, y) E Rj

w*(x,O) = u(x), x E Ij w*(O,y) = r(y), y E Jj w*(O,O) = UO,
v:y = f(x, y, (w)) + g(x, y, (w*)), (x, y) E Rj

v*(x,O) = u(x), x E Ij v*(O,y) = r(y), y E Jj v*(O,O) = UO.

Corollary 3.2. In addition to the assumptions of Theorem 3.2, suppose that f and 9 satisfy one-
sided Lipschitz conditions as in Corollary 3.1. Then v == w == v* == w* == u is the unique solution of
(2.1) in n.

Our third result employs coupled lower-upper solutions of Type I together with the scheme (S2)
and yields intertwined monotone sequences without any additional requirements. Compare with
Theorem 4.3.1 in [4], wherein coupled lower-upper solutions of Type I are utilized in conjunction
with the scheme (Sil.

(Bil va, WO E C2[R,R] are coupled lower-upper solutions of Type Iof (2.1) such that (VO) ~ (wO)
onR;

(B2) f, 9 E C2[R x R3,R], f is nondecreasing in (u) and 9 is nonincreasing in (u).

Then the sequences {vn}, {wn} generated by the scheme (S2) satisfy the intertwined property

(VO)~ (wI) ~ ... ~ (v2n-2) ~ (W2n-l) ~ (u) ~
(V2n-l) ~ (W2n-2) ~ ... ~ (vI) ~ (WO),

on R, where u is any solution of (2.1) in n. The sequences {(v2n), (W2n-l)} -> (v), {(w2n), (V2n-l)} ->

(w), uniformly where v and ware coupled lower and upper solutions respectively of (2.1) on R, that
is v and w satisfy

vxy = f(x,y, (v)) + g(x,y, (w)), (x,y) E R,
Wxy = f(x,y, (w)) + g(x,y, (v)), (x,y) E R.

Also, (v) ~ (u) ~ (w) on R. Furthermore, if f and 9 satisfy the appropriate one-sided Lipschitz
conditions, then v == w == u is the unique solution of (2.1) in n.



Our final two results employ coupled lower-upper solutions of Type II whose existence follows
from Lemma 2.1. Theorem 3.4 below shows that we get the same conclusions as in Theorem 3.1,
under the same additional conditions, whereas Theorem 3.5 asserts the same conclusions as in
Theorem 3.3 under different additional conditions. (Compare with Theorem 3.2.) We skip their
proofs.

Theorem 3.4. Under the conditions of Lemma 2.1, let vo, Wo be coupled lower-upper solutions of
Type II relative to (2.1), with (Vo) ::; (wo) on R. Then the sequences {vn}, {wn} generated by the
scheme (S1) satisfy the natural monotone property

on R, provided (Vo) ::; (v1) and (w1) ::; (Wo) on R. Furthermore, (vn) ---> (v), (wn) ---> (w), where v
and w are coupled minimal and maximal solutions respectively of (2.1) on R. If in addition f and
g satisfy the one-sided Lipschitz conditions in Corollary 3.1, then v == w == u is the unique solution
of (2.1) in O.

Theorem 3.5. Under the conditions of Lemma 2.1, let vo, wo be coupled lower-upper solutions of
Type II relative to (2.1) with (Vo) ::; (Wo) on R. Then the sequences {vn}, {wn} generated by the
scheme (S2) satisfy the conclusions of Theorem 3.3, provided (Vo) ::; (w1) and (v1) ::; (wo) on R.
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