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An analysisof traveling wavesolutionsof certain types of chemotacticmodels (PDE
systems with cross-diffusion)is presented. The conditions for existence of front-front,
impulse-front,and front-impulsetraveling wavesare given for system of a "separable"
type. The simplest mathematical models are presented that have an impulse-impulse
solution and wavetrain solution. The results can be used for construction and analysis
of differentmathematical modelsdescribingsystems with chemotaxis.

where x is one-dimensional space variable; f(U, V) and g(U, V) are functions whose prop-
erties will be specified later; U = U(x, t), V = V(x, t).

The model (1) is known as a particular case of the models to describe chemotaxis, the
movement of a population U to a chemical signal V (see, e.g., [1, 6, 8, 9, 13]). Substituting
traveling wave forms U(x, t) = U(x + ct) == u(z), V(x, t) = V(x + ct) == v(z) into (1) and
integrating we obtain the wave system:

where a is the constant of integration, which is considered as a new parameter in the
following. Due to cross-diffusion form of (1) the dimension of system (2) is the same as the



dimension of system (1). The problem of describing all traveling wave solutions of system
(1) is reduced to the analysis of phase curves and bifurcations of solutions of the wave
system (2) without a priory restrictions on boundary conditions for (1); moreover, by phase
plane analysis it is possible to find the boundary conditions for (1) for which traveling wave
solutions exist.

There exists a known correspondence between the traveling wave solutions of the spatial
model (1) and the orbits u(z), v(z) of the wave system (2) (see also, e.g., [1, 15]) that we
only list for the cases most important for our exposition:

Proposition l.

i. A wave front in U (or V) component corresponds to a heteroclinic orbit that connects
singular points of (2) with different u (or v) coordinates;

ii. A wave impulse in U (or V) component corresponds to a heteroclinic orbit that
connects singular points with identical u (or v) coordinates or to a homoclinic curve of a
singular point (u, v) of (2);

Hi. A wave train in U and V components corresponds to a limit cycle surrounding a
singular point (u, v).

Hereinafter we define the type of a traveling wave solution (U, V) of (1) by character-
istics of its u-, v-profiles; e.g., a front-impulse solution means that u-profile is a front, and
v-profile is an impulse (the order of the terms is important).

For system (1) several results on the existence of one-dimensional traveling waves are
known; see, e.g., [1, 2, 5, 6, 7, 9, 12, 15] for references. The analysis is usually conducted
using a particular model which is given in an explicit form. On the contrary, we consider a
general class of models, and our task is to infer possible kinds of wave solutions under given
restrictions on functions f(U, V) and g(U, V).

where II(u), g1(u) are smooth functions for a ~ u < 00; g2(v) is smooth; h (v) is a rational
function: h(v) = Z(v)/R(v) forb ~ v < 00; here a,b > -00 are real constant.

The class of the separable models is wide, and, in particular, includes the classical
Keller-Segel model, where f(u, v) = fJu/v, g(u, v) = -ku with fJ, k > 0 [9].

The rational function h (v) = Z (v) / R( v) can be presented in the form



where Z(v), R(v) do not have real roots; m ~ 0, k > 0; Vi =1=Vj for any i,j. The wave system
(2) with the help of transformation of the independent variable dy = dz/cR(v) becomes

du 2
dy = c R(v)(u + a/c) + h(U)gl(U)g2(V)Z(V),

dv
dy = gl(U)g2(V)R(v).

The roots of functions h (u), gl (u), g2(v), Z (v), R( v) do not depend on parameters c
and 0'., hence, we will suppose that the followingconditions of non-degeneracy are fulfilled:

(Bl) R(v) and g2(V) have no common roots;

(B2) h(u) and gl(U) have no common roots;

(B3) h(U),gl(U),g2(V),R(v) have no multiple roots.

The topological type of the singular points of (3) can be inferred by the standard
analysis. In particular, it is possible to show that under conditions (01) and (Bl)-(B3) the
system (3) cannot have singular points of center or focus type.

Due to the structure of system (3) the phase plane is divided into horizontal strips,
whose boundaries are given by v = V, where v is a root of R(v) or g2(V); all singular points of
(3) are situated on these boundaries. Simple continuity arguments accounting for possible
types of neighboring singular points of (3) allow us to formulate the following theorem:

Theorem 1. The system (1) satisfying (01) and (Bl)-(B3) can only possess traveling
wave solutions of the following kinds: i. front-front solutions; ii. front-impulse solutions;
iii. impulse-front solutions.

It is worth emphasizing that in most of the cases listed in Theorems 1 traveling wave
solutions compose a family; that is, there are infinitely many traveling wave solutions for
the fixed parameter values. The proof and extensive discussion of Theorem 1 are given in
[4]together with some examples.

3 SOME GENERALIZATIONS OF THE KELLER-SEGEL
MODELS

Here we consider the Keller-Segel models with more complex functions f(u,v) and g(u,v),
which yield traveling wave solutions of the types not presented in the separable models
(Theorem 1). Recall that to prove the existence of impulse-impulse solution one needs to
prove the existence of a homoclinic orbit of the wave system; correspondingly, for the wave
train it is necessary to have a limit cycle.

We suppose that
<5u

f(u,v) = -(3--' <5> 0,(3~ 0,u+v



For r = 13 = 0 system (1), (4) is the Keller-Segel model [8]. The wave system for (1) with
the functions given by (4) reads

, ou( -ku + rv)
u = cu + (13 )'c u+V

where we put parameter a equal zero.

After the change of the independent variable dz / (c(f3u + v)) = dy system (5) takes the
form

du 2 dv
dy = C u(f3u + v) + ou( -ku + rv), dy = (-ku + rv)(f3u + v). (6)

If r = 0 then system (6) has a line on non-isolated singular points u = 0; if r =I- 0 then
(u, v) = (0,0) is an isolated non-hyperbolic singular point of (6) (i.e., it has zero eigenvalues).
For r = 0 the model has a family of impulse-front wave solutions similar to the Keller-Segel
model for values of 13that belong to some interval containing 13= 0 (see Fig. 1 for numerical
solutions).

We did numerical simulations of system (1) for x E [-L, L], where L varied in differ-
ent numerical experiments. We used no-flux boundary conditions for the spatial variable.
Inasmuch as we wanted to study the behavior of the traveling wave solutions in an infinite
space we chose such space interval so that to avoid the influence of boundaries.

We used an explicit difference scheme. The approximation of the taxis term is an
"upwind" explicit scheme [11] which is frequently used for cross-diffusion systems (e.g.,
[14]). More precisely,

HI _ t f1t ( t t t) f1t ( ( t t) (t t))ui - ui + (f1x)2 ui+1 - 2ui + ui-I - (f1x)2 A Vi+1 - Vi - B Vi - Vi-I ,

v!+! = vf + (f1t)g( uL vD, i = 2, ... , N - 1,

where for the positive taxis (pursuit) (i.e., f(u,v) < 0),

A=f(uf,vD ifvi+I~Vi,

A = f(uf+!,vf+!) if Vi+! < Vi,

B = f(uL, vL) if Vi ~ Vi-I,

B = f(uLvD if Vi < Vi-I.

For the negative taxis (invasion):

A = f (uf, vD if Vi+! < Vi,

A = f(U~+I' Vf+l) if Vi+1 ~ Vi,

B=f(uL,vf_l) if Vi <Vi-I,

B = f(uf,vD if Vi ~ Vi-I'

ui+1 = u~,

vi+! = v~,

U~I = U~_I'

v~1 = V~_I'



Figure 1: (a) The phase plane of system (5); the parameters are r = 0, (3 = 0, a = 0, k =
1,<l= 4, c = 0.5. (b) Numerical solutions of the Keller-Segel system with the parameters
given in (a). The solutions are shown for the time moments to = ° (bold curves) < tl <
t2 < tg = 30 in equal time intervals

For the initial conditions we used numerical solutions of the corresponding wave systems.

For r "I ° the singular point (0, 0) of (6) possesses two elliptic sectors in its neighbor-
hood (see [3,4] and Fig. 2a). Asymptotics of homoclinics composing the elliptic sector are
u = ° (trivial) and v = K+u, where K+ is the biggest root of the equation

The family of homoclinics in the phase plane (u, v) corresponds to the family of wave
impulses for the system (1). In Fig. 2bb numerical solution of corresponding chemotaxis
system is presented.
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Figure 2: (a) The phase plane of system (5); the parameters are k = 1, (3 = 1,<l
2,c = 0,43,r = 0.1. (b) Numerical solutions of system (1) with the functions given by
(4) and the parameter values as in (a). The solutions are shown for the time moments
to = ° (bold curves) < tl < t2 < tg < t4 < t5 = 20 in equal time intervals



The simplest example of a mathematical model that possesses wave train solution can be
given by the system (1) with

Invoking the Poincare-Andronov-Hopf bifurcation theorem it is straightforward to prove
that the corresponding wave system has a stable limit cycle.

More realistic model of the Keller-Segel type is given by

-<5u
f(u,v) = --, <5 > 0,

v

System (8) can have up to three singular points. First, there is always A = (-a/c, (c{3+
ak)c), two other singular points are B1,2 = (Ul,2,0), where Ul,2 are the solutions (if they
exist) of cu - <5u(-{3 + ku + v)/c + a = O.

Inasmuch as our models are motivated by biological systems, in the followingwe con-
sider the case a < 0, c{3+ ak > 0 to guarantee that point A belongs to lRt. The standard
linear analysis shows that the Jacobian of (8) evaluated at A has the following trace and
determinant:

tr J = c{3+ c3 + a(1 + <5)k,
c

det J = c{3+ ak .
c

Due to the requirement c{3+ ak > 0 we obtain that A always has complex conjugate
eigenvalues (unless det J =1= 0) which can be written in the form Al,2 = /-L ± iw, w > O. That
is, A is a stable or unstable focus depending on the sign of tr J. Moreover, when tr J = 0
a bifurcation occurs in the system (8). If we chose a as a bifurcation parameter then the
condition tr J = 0 is equivalent to ac = - (c2 + (3)c/ (k( <5+ 1)). It is straightforward to check
that d1a)la=ac =1= 0 and that the first Lyapunov value l(ac) < O. Therefore all the conditions
ofPoincare-Andronov-Hopfbifurcation are satisfied [10],the bifurcation is supercritical, and
the stable limit cycle appears in a small neighborhood of A when parameter a crosses the
critical value ac.

Two other singular points, if they exist, satisfy Ul,2 > O. Their eigenvalues are real and
have opposite signs, i.e., they are saddles for any parameter values.

To illustrate the analysis we fix parameter values at {3= 2, <5= 1, k = 1, c = 0.5. In

this case the bifurcation value of a is ac ::::::-0.56. The phase portraits of (8) with the given
parameter values are shown in Fig. 3. Our calculations reveal three structurally stable
phase portraits of (8). The portrait in Fig. 3a shows a traveling wave corresponding to the
separatrix connecting saddle B2 and focus A. The portrait in Fig. 3b possesses three types
of traveling waves: first, it is an orbit from A to the limit cycle, second, the separatrix from
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Figure 3: The Poincare-Andronov-Hopf bifurcation in system (8). Parameters are (3 =
2, 0 = 1, k = 1, c = 0.5 (a) a = -0.6, singular point A is a stable focus. When a ~ 0.56
the bifurcation occurs; (b) a = -0.55, there is a stable limit cycle in a small neighborhood
of A; (c) a = -0.5, singular point A is an unstable focus and the limit cycle disappeared

B2 to the limit cycle, and, third, the limit cycle itself. The portrait in Fig. 3c has only one
bounded orbit that corresponds to a traveling wave solution of (1), namely, the separatrix
connecting unstable focus A and saddle B1. Numerical solutions of (1), (7) are presented
in Fig. 4 (here we used periodic in time boundary conditions).

Figure 4: Numerical solutions of (1) with the functions (7). The parameter values are the
same as in Fig. 3b

The particular form of g( u, v) can be changed such that g( u, v)
w2)v, k, (3, E ~ 0, for small E the qualitative picture remains the same.

It is worth noting that, as in the case of the separable models, there exists a family of
traveling wave solutions if the wave system has a limit cycle.

Definition 2. We shall call tmveling wave solution (u(z),v(z)) of (1) asymptotic tmin if
u(z), v(z) tend to periodic functions having the same period when z -t 00 or z -t -00.



Proposition 2. If system (1) with a rational function f (u, v) and a polynomial function
g(u, v) has a traveling wave train then it has a family of asymptotic trains.

Proof of this proposition immediately follows from Proposition 1 and the well-known
properties of two-dimensional ODE systems applied to the wave system (2). Every orbit
starting within the limit cycle belongs to the family of asymptotic fronts (see Fig. 3b).

In this work we have shown that simple taxis models of the Keller-Segel type with cross-
diffusion terms can possess all main types of traveling wave solutions: front-front, front-
impulse, impulse-front, impulse-impulse and wave trains. The existence of traveling wave
solutions of different types was proved by the well-knownmethod of reducing of the initial
PDE system to the wave system of ODEs.

Analyzing bifurcation portraits of the wave system we can trace rearrangements of
the wave solutions with changing of the model parameters such as the wave propagation
velocity.

In this report we paid especial attention to the wave train solutions, which correspond
to oscillations in the wave system. To the best of our knowledge such kind of traveling wave
solutions were not analyzed in taxis cross-diffusion models. We presented a simple model
with a wave train within the considered class. Additionally, we have shown that the Keller-
Segel type model also possesses wave train solution (and asymptotic wave trains). Within
the frameworks of the models considered we observed appearance and disappearance of the
wave trains with the change of the wave propagation velocity. It is worth noting that the
wave trains appear with parameter changes as an intermediate stage between the front-
front solutions of "opposite profiles" (see Fig. 4) together with a family of non-monotonous
traveling fronts.

We did not discuss the issue of stability of the traveling wave solutions found, but
we note that in all numerical simulations we conducted it is possible to observe traveling
waves, albeit in some cases (e.g., for the wave train) the found solutions annihilate with
time indicating probable instability. The important question of stability of the solutions
found can be a subject of future research.

Acknowledgments. The work of FSB has been supported in part by NSF Grant #634156
to Howard University.

[1] F.S. Berezovskaya, G.P. Karev, "Bifurcations of traveling waves in population taxis
models", Uspekhi Fizicheskikh Nauk, vol. 169(9), pp. 1011-1024,1999.



[2] F .S. Berezovskaya, G.P. Karev, Traveling waves in cross-diffusion models of the dynamics
of populations, Biofizika 45(4) (2000) 751-756.

[3] F.S. Berezovskaya, A.S. Novozhilov, G.P. Karev, "Population models with singular equi-
librium", Mathematical Biosciences, 208 (2007) 270-299.

[4] F.S. Berezovskaya, A.S. Novozhilov, G.P. Karev, "Families of traveling impulses and
fronts in some models with cross-diffusion", Nonlinear Analysis: Real World Applica-
tions, in press.

[5] S. Gueron, N. Liron, A Model of Herd Grazing as a Traveling Wave, Chemotaxis and
Stability, Journal of Mathematical Biology 27(5) (1989) 595-608.

[6] D. Horstmann, A. Stevens, "A constructive approach to traveling waves in chemotaxis",
Journal of Nonlinear Science, vol. 14(1), pp. 1-25, 2004.

[7] D.L. Feltham, M.A.J. Chaplain, Travelling waves in a model of species migration, Ap-
plied Mathematics Letters 13(7)(2000) 67-73.

[8] E.F. Keller, L.A. Segel, "Model for chemotaxis", Journal of Theoretical Biology, vol.
30(2), pp. 225-234, 1971.

[9] E.F. Keller, L.A. Segel, "Traveling Bands of Chemotactic Bacteria - Theoretical Analy-
sis", Journal of Theoretical Biology vol. 30(2), pp. 235-248, 1971.

[11] K. W. Morton, D. F. Mayers, Numerical solutions of partial differential equations,
Cambrige University Press, 1989.

[12] T. Nagai, T. Ikeda, Traveling Waves in a Chemotactic Model, Journal of Mathematical
Biology 30(2) (1991) 169-184.

[13] M.A. Tsyganov, V.N.Biktashev, J. Brindley, A.V. Holden, G.R. Ivanitsky, Waves in
systems with cross-diffusion as a new class of nonlinear waves, Uspekhi Fizicheskikh
Nauk 177(3) (2007) 275-300.

[14] M. A. Tsyganov, J. Brindley, A. V. Holden, V. N. Biktashev, Soliton-like phenomena in
one-dimensional cross-diffusion systems: a predator-prey pursuit and evasion example,
Physica D: Nonlinear Phenomena, 197(1-2) (2004) 18-33.

[15] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling Wave Solutions of Parabolic Sys-
tems, AMS, 1994.




