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ABSTRACT. Microarrays have become increasingly common in biological and medical research.

They enable the simultaneous study of thousands of genes and provide gene expression information

on a whole genome level. A major goal of microarray experiments is to determine which genes are

differentially expressed between samples. A mixed model approach using the Johnson’s system of

distributions and Baye’s formula is proposed in this paper for the selection of differentially expressed

genes. In this approach, no specific parametric distribution is assumed for the gene expression levels.

The simulation results show that the proposed approach has a higher power over the other commonly

used Bayesian methods such as EBarrays and EBAM.
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1. INTRODUCTION

While simultaneous measurement of thousands of gene expression levels provides

a potential source of profound knowledge, success of the microarray technology de-

pends heavily on statistical analysis. Careful statistical thinking and analysis are

required to find the underlying structure in the data. The unprecedented amounts

of data produced by microarrays raise new challenges for statisticians to be able to

perform inference on a scale never before conducted. Recently, statisticians and re-

searchers in bioinformatics have focused much attention on the development of statis-

tical methods to identify differentially expressed genes, with special emphasis on those

methods that identify genes that are differentially expressed between two conditions.

This work focusses on the development of a statistical method that is suitable for

differential gene selection using Johnson system of distributions and Bayes’s formula.

In contrast to methods that apply classical statistical inferences separately for

different genes, there is a kind of information sharing among genes in mixture model
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analysis using Baye’s formula. This can be beneficial because the data from other

genes provide some information about the typical variability in the system[9],[12]. In

this paper we will discuss two well known mixture model approaches using Baye’s

formula and introduce application of Johnson’s system of distribution in the mixture

model setup for the selection of differentially expressed genes.

2. DATA

Ovarian cancer is the fifth leading cause of cancer death among women in the

United States and Western Europe, and has the highest mortality rate of all gynaeco-

logic cancers. Currently, the standard treatment protocol used in the initial manage-

ment of advanced-stage ovarian cancer is primary cytoreductive surgery followed by

primary platinum-based chemotherapy. However, approximately 30% of patients with

advanced stage disease do not demonstrate a complete response to primary platinum-

based therapy. Identifying genes which are expressed significantly different in the two

groups, could provide some insight for the precise diagnosis of response to the treat-

ment and help the medical specialists to choose an alternate therapy when needed.

The ovarian cancer tissue samples involved in this study are collected from the tumor

banks at the H.Lee Moffitt Cancer Centre & Research Institute and Duke University

Medical center. Affymetrix U133A Gene Chip arrays were used to measure expres-

sion of 22,283 genes in advanced stage serous ovarian cancers from 55 patients who

underwent primary surgery followed by platinum-based chemotherapy. Expression

values are calculated using the robust multi-array (RMA) algorithm[5] implemented

in the Bioconductor (http : \\www.bioconductor.org) extensions to the R statistical

programming environment[4]. Gene expressions were compared between patients who

demonstrated a complete response to platinum-based therapy and those who did not

to identify differentially expressed genes.

2.1. Data Simulation. The ovarian cancer data is used as the target model for

simulation. We use the approach discussed in [6] for data simulation. Given the

parameters, gene expression are generated randomly from a gamma distribution. But

for each gene, the parameters are generated randomly. The means of gene expressions

are generated from a normal distribution N(µ, σ) and standard deviations from a

gamma distribution Gamma(α, β). The hyper parameters µ, σ, α and β are chosen

to fit the ovarian cancer data. These values are µ = 6.7, σ = 1.68, α = 8.76 and

β = 9.386. The parameters (shape = αi, rate = βi) for gene i are calculated from

the generated mean µi and standard deviation σi using the relations αi = µ2
i /σ

2
i

and βi = µi/σ
2
i respectively. Gene expressions for 1,000 genes were simulated. The

number of replications are selected as unequal as in studies like ovarian cancer data,

where treatment response of patients under similar conditions are of interest, it is more
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likely to get samples of different sizes. Data sets are simulated (1)with 15 replication

in the first group, 10 replications in the second group and (2)with 33 replication in

the first group, 22 replications in the second group. We choose 5% of the genes to be

differentially expressed. For differentially expressed genes the parameters are chosen

to be different in the two groups.

3. JOHNSON’S SYSTEM OF DISTRIBUTIONS

In 1949, N.L. Johnson derived a system of curves[2] that had the flexibility of

covering a wide variety of shapes and had practical advantage of being able to trans-

form to the normal distribution. This system contains three families of distributions;

Bounded form SB, Unbounded form SU and Log Normal form SL. The Johnson

system is able to closely approximate many of the standard continuous distributions

through one of three functional forms and is thus highly flexible. The three systems

of Johnson’s family are generated by the following transformations of a continuous

random variable x to the standard normal variable z.

(a)Log Normal form SL. The transformation here is,

(3.1) z = γ + ηln

(
x− ε

λ

)
,

(b)Bounded form SB. It is the set of distributions that have a fixed boundary on

either the upper or lower tail, or both. The transformation is,

(3.2) z = γ + ηln

(
x− ε

ε + λ− x

)
, ε < x < ε + λ

(c)Unbounded form SU . It is the set of distributions that go to infinity in both

the upper and lower tail. The transformation is,

(3.3) z = γ + ηsinh−1

(
X − ε

λ

)

where the parameters γ, η, λ, ε are to be estimated using data values. See [2]

for further description of these distributions. The chosen functions are such that in

a plot of the third and fourth standardized moments, β1(measure of skewness) and

β2(measure of kurtosis), the SL distribution form a curve which divides the (β1, β2)

plane into two regions. The SB distribution lie in one of the regions and the SU

lie in the other. When using the Johnson system, the first step is to determine

which of the three families should be used. The usual procedure is to compute the

sample estimates of the standardized moments and choose the distribution according

to which of the two regions the computed point falls into[2]. The selection of Johnson’s
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system and estimation of parameters by using sample quantiles [13] is introduced by

Wheeler. Slifker and Sapiro introduced another selection rule which is a function of

four percentiles for selecting one of the three families and to give estimates of the

parameters[10] as explained below.

Choose any fixed value ζ between 0 and 1. Then the four points ±ζ and ±3ζ

determine three intervals of equal length. Determine the standard normal percentile

Pζ corresponding to z = 3ζ, ζ,−ζ,−3ζ respectively. For example if ζ = 0.5 then using

standard normal tables,P−1.5 = 0.0668 ∗ 100 = 6.68,P−0.5 = 0.3085 ∗ 100 = 30.85,

P0.5 = 0.6915 ∗ 100 = 69.15, P1.5 = 0.9332 ∗ 100 = 93.32 . Letx3ζ , xζ , x−ζ , x3ζ be the

percentiles of data values corresponding to the four selected percentiles of the Normal

distribution. The type of distribution chosen is based on the value of the discriminant

d calculated a s follows.

(3.4) d =
mn

p2

where p = xζ−x−ζ , m = x3ζ−xζ , n = x−ζ−x−3ζ . If the calculated discriminant

d is greater than 1.001, then an unbounded distribution is chosen. If the value is less

than 0.999, then a bounded distribution is chosen. A discriminant equal to or between

the two values results in a Log Normal fit. The fit parameters for the transformation

are calculated by solving the transformation equation for the chosen distribution type

at the four selected percentiles.

The flexibility provided by the choice of form and fitting parameters allows for

great flexibility in adjusting the curve to fit the data. The fact that the Johnson

system involves a transformation of the raw variable to a Normal variable allows

estimates of the percentiles of the fitted distribution to be calculated from the Normal

distribution percentiles.

4. EBARRAYS AND EBAM

Two well known mixture model approaches for the selection of differentially ex-

pressed genes are EBarrays and EBAM. Parametric Empirical Bayes(EBarrays) ap-

proach developed by Kendziorski etal computes the posterior probability under one

of the two proposed hierarchical model assumption of the expression levels, one based

on the assumption of Gamma distributed measurements(EBarrays-GG) and the other

based on log-normally distributed measurements(EBarrays-LNN)[6].

EBAM assumes that there are two classes of genes namely ”Different” and ”Not

Different” meaning that the gene is either differently or not differently expressed in

two different groups under consideration. This will give two possible probability dis-

tributions for any summarizing value of a gene which is able to measure the difference

in expression levels of the genes in the two groups. EBAM developed by Efron [1]
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use the t-value defined by the the following equation to summarize the information

about any gene.

(4.1) ti =
x̄2i − x̄1i√

r1S2
1i+r2S2

2i

r1+r2−2
( 1

r1
+ 1

r2
)

Let f0(y) be the density of the summary value y for equally expressed genes and

f1(y) be the density of y for differentially expressed genes. Let the prior probabilities

for the two classes be p0 and p1 = 1− p0 with the corresponding densities f0(y) and

f1(y) respectively. Hence we have the marginal density f(y) for y, which is a mixture

density of the two populations as,

(4.2) f(y) = p0f0(y) + p1f1(y)

EBAM uses Bayes theorem to obtain posteriori probabilities of any gene to be

differentially expressed.

p0(y) = prob(Equally expressed|Y = y)

=
prob(Equally expressed and Y = y)

p(Y = y)

=
prob(Y = y|Equally expressed)× prob(Equally expressed)

p(Y = y)

=
p0f0(y)

f(y)
(4.3)

and

(4.4) p1(y) = prob(Differentially expressed|Y = y) = 1− p0f0(y)

f(y)

To estimate the posterior probabilities we need f0(y), f(y) and p0. Efron es-

timated f0(y) as the t-density with appropriate degrees of freedom. The mixture

density f(y) is estimated by fitting a smooth curve f̂(y) to the Y histogram.

5. GENE SELECTION USING JOHNSON DISTRIBUTION AND

BAYE’S FORMULA

Here we modify EBAM using Johnson’s system of distributions. The Baye’s

formula is used to incorporate the overall information about the analytical character-

istics of genes to identify differentially expressed genes. Instead of using t-value, we

use m-value defined by the following equation to summarize the information about

any gene. we define m-value by
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(5.1) mj =
(x̄j2 − x̄j1)

sj + a0

where

(5.2) sj =

√
var(xj1)

n1

+
var(xj2)

n2

and a0 is a shrinkage parameter which depends on the sj values. The value mj

is the m− value for gene j. The constant a0 in the denominator of Equation 5.1 can

lead to the reduction of the overall variance of the mj, giving the tests more power

on average. This has the added effect of dampening large values of t-statistics that

arise from small variance of genes. We have taken a0 as the median of the sj values.

Then f0(m) is the distribution of the m-values when the genes are equally ex-

pressed. The balanced permutation technique and Johnson’s system of distributions

are used to estimate f0(m). More specifically, we will create artificial groups by taking

permutations of the microarray samples and randomly assign one of the two labels

to each of these groups. Then calculate the m-values for this artificial groups. We

did 50 permutations and use the m-values from these 50 permutations to estimate

f0(m). The estimated f0(m) is an unbounded Johnson distribution with parameters

γ̂ = 0.1059483, δ̂ = 2.690686, ξ̂ = 0.05775453 and λ̂ = 1.301382. We can estimate

f(m) empirically using Johnson distribution, as any continuous distribution can be

approximated by a Johnson distribution. The number of calculated statistics is the

same as the number of genes, large enough to estimate the empirical distribution.

The marginal distribution f(m) is estimated as a bounded Johnson distribution with

parameters γ̂= -1.127296, δ̂ = 1.41565 , ξ̂ = -3.071095 and λ̂ = 4.680507. These

parameters of the Johnson’s distribution are estimated using Quantiles method [13].

The value of p0 chosen in such a way that all posterior probabilities are positive [1].

We make use of the estimated value of p0 used in EBAM [1] under the same criterion.

Now we are able to calculate the posterior probability using the Equation 4.4. The

genes with posterior probabilities greater than 0.8 are chosen as the differentially

expressed genes. The Figure 1 shows posterior probabilities against m-values. The

gray spots corresponds to the genes with posterior probability > 0.8.

The Kolmogrov-Smirnov goodness of fit test is done to see how fit the estimated

Johnson distributions are for the corresponding observed values of the statistics. The

p-value for the null distribution is 0.4569 and the p-value for the marginal distribution

is 0.15693.

Both EBArrays and EBAM share information among genes. One drawback of

EBArrays is the assumption of a parametric model for gene expressions and hence a
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Figure 1. Posterior probability of genes; Genes representing green(or

gray) points have posterior probability > 0.8

good chance of violation of assumptions. EBArrays assumes that the gene expressions

are generated from a Gamma distribution or from a Log-Normal distribution. EBAM

assumes a t-distribution as the distribution of t-values for equally expressed genes,

which in turn requires, the assumptions of t-distribution to hold. In the method we

proposed, we improve EBAM using m-values and Johnson’s system of distribution.

The distribution of the m values is estimated using Johnson’s system of distributions.

The advantage of this proposed method is that while sharing information across all

of the genes, there is no parametric assumption on the gene expression data. Here

we make use of the fact that any continuous distribution is a special case of Johnson

system of distribution [2]. The simulation shows that the proposed method is better

than EBArrays and EBAM(Figures 2 to 7).

6. RESULTS

The proposed methods using Johnson’s distribution are compared with EBarrays,

EBAM and SAM. Significance Analysis of Microarrays”(SAM) [11] is the most pop-

ular classical method employed for microarray data analysis. The number of genes

selected as differently expressed, out of 22,283 genes, by these methods are listed in

Table 1.
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Method No.of genes

Bayes -Johnson 543

EBArrays - GG 191

EBArrays - LNN 177

EBAM 223

SAM 2166

Table 1. No. of genes selected by different methods

Because no truth about differentially expressed genes could be obtained on ovar-

ian cancer data, it is not possible to compare results obtained for the real data. In

order to assess the effectiveness of the proposed methodology and to obtain a quanti-

tative evaluation of gene selection methods, the simulated data explained in Section

2.1 is used. A comparison of methods discussed in this paper is presented in Figures

2 to 7. The number of truly differentially expressed genes are plotted against the

number of genes selected in Figures 2 to 4. We can observe that for any value of

number of genes selected(x-coordinate), the proposed method using Johnson system

of distributions gives the more number of true positives than other methods. The

proposed method using the Johnson system of distributions seem to be superior to

other methods as the number of truly differentially expressed genes identified is more

than that identified by other methods, for any fixed number of genes selected. After

some saturation point where all the truly differentially expressed genes are identified

these curves will converge.

The results of the methods discussed here are also displayed by Receiver Operat-

ing Characteristic (ROC) curves in Figures 5 to 7 using the simulated data. The ROC

curve displays the false positive rate (rate of non-Differentially Expressed Genes(non-

DEGs) included) versus the false negative rate (rate of DEGs not included). The

false positive rate is the proportion of number of Equally expressed genes that were

erroneously reported as Differentially Expressed. Hence False positive rate =
Number of false positives

Number of Equally Expressed genes
. This is the same as the probability of Type I er-

ror denoted by α. The false negative rate is the proportion of Differentially Ex-

pressed genes that were erroneously reported as Equally Expressed. More specifically,

False Negative Rate = Number of false negatives
Number of Differentially expressed genes

. This is the same
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as the probability of type II error. It is equal to 1 minus power of the test. A method

whose ROC curve lies below another one is preferred [7], as the curve represents the
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Figure 2. Mixture model approaches - No. of genes selected vs No.

of True Positives; Number of genes -2000; Sample size - 15 vs 10
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Figure 3. Mixture model approaches - No. of genes selected vs No.

of True Positives; Number of genes -2000; Sample size - 20 vs 20
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Type I and Type II errors. A method which has a better ROC curve, in this sense, will

produce top lists with more differentially expressed genes(DEGs), fewer non-DEGs

and consequently, will leave out fewer DEGs. It can be observed from the Figures

5 to 7 that the proposed approach using Johnson’s system of distributions is better

than the other methods discussed here.

7. SUMMARY

Here we used Baye’s formula and Johnson system of distribution together with m

values defined by Equation 5.1 to identify differentially expressed genes. Johnson sys-

tem is used to approximate the probability distribution of the summary measure(m−
value). Then Bayes formula is used to revise the probability of each gene to be differ-

entially expressed. As in previous chapter the method is applied for the gene selection

of ovarian cancer data. A comparison study of the method is done with the existing

methods. For comparison purposes we have used data simulated using the informa-

tion from the real data. We have identified the distribution that characterizes the

real data and obtained the maximum likelihood estimates using this data. Then these

estimates are utilized to numerically simulate the information. The simulation study

shows that the proposed method using Johnson’s system of distribution is better than

the popular mixture model methods EBAM and EBArrays .

0 50 100 150 200 250 300

0
10

20
30

40
50

60
70

80
90

11
0

No.of genes selected

N
o.

of
 tr

ue
 p

os
iti

ve
s

Johnson−Bayes
EBarrays−GG
EBarrays−LNN
EBAM
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of True Positives; Number of genes -2000; Sample size - 33 vs 22
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