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RECORD VALUES FROM
HALF LOGISTICS AND INVERSE WEIBULL
PROBABILITY DISTRIBUTION FUNCTIONS

ALFRED K. MBAH AND CHRIS P. TSOKOS

Department of Mathematics and Statistics, University of South Florida,Tampa,
Florida 33620, USA.

ABSTRACT. Let X1, X2, ..., Xn be a sequence of independent and identically distributed random
variables with cumulative distribution function F (x). Denote XL(n) = min{X1, X2, . . . , Xn}, n =
2, 3, . . .. Xj is a lower record of {Xn} if and only if XL(j) < XL(j−1), j = 2, 3, . . . and XL(1) = X1.
An analogous definition of records deals with upper record values. By definition, X1 is an upper
as well as lower record value. The subject of the present paper is to introduce the Half logistic
and the Inverse weibull probability distributions when applied in studying the performance and
behavior with respect to records. In addition to developing the analytical structures, we illustrate
the usefulness of the results using environmental and sports data.
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1. Introduction

Let X1, X2, . . . , Xn be a complete random sample with cumulative probability

distribution function (cdf) F (x). To obtain the records as needed for the present

study we proceed as follows; first, given a complete random sample X1, X2, . . . , Xn,

we begin by taking the first observation to be the first record, that is, XL(1) = X1.

Secondly, the second record, XL(2), is obtained by observing the Xi’s sequentially

from X2, . . . , Xn. The next observation that is less than XL(1) is the second record,

XL(2), and the number of trials to get XL(2) is K1, the inter record time. For example,

let the next observation that is less than X1 be X5, then XL(2) = X5 and K1 = 4.

Now, X5 is a standard for getting subsequent records. Finally, we will then proceed

to use i) the sequence {XL(i), 1 ≤ i ≤ r} of record values and ii) the sequence of

record values and inter record time XL(1), K1, XL(2), K2, . . . , XL(r), Kr, with Kr = 1.

Ahsanullah, [1], has given a very good account of the basic and advanced aspects of

records.
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For the record-breaking samples and interrecord times, XL(1), K1, XL(2), K2, . . . ,

XL(r), Kr, we can write the likelihood function as

L =
r∏

i=1

f(xi)(1− F (xi))
ki−1,(1.1)

where f(xi) is the probability density function (pdf) of the records.

The likelihood function for r, lower record values XL(1), XL(2), . . . , XL(r) from

continuous cumulative probability distribution function F (x), is

f1,2,...,r(x1, x2, . . . , xr) = f(xr)
r−1∏
i=1

f(xi)

F (xi)
,(1.2)

and the probability density function of XL(r) is given by

fr(x) =
1

Γ(r)
(− ln(F (x)))r−1f(x), −∞ < x < ∞.(1.3)

The cumulative probability distribution function of XL(r) is

Fr(x) =
1

Γ(r)

∫ x

−∞
(− ln(F (x)))r−1f(x)dx

= 1− Γ− ln(F (x))(r).(1.4)

The joint probability density function of two lower record values XL(r) and XL(s) is

given by

f(xr, xs) =
1

Γ(r)Γ(s− r)
(− ln(F (xr)))

r−1

[ln(F (xr))− ln(F (xs))]
s−r−1 f(xr)

F (xr)
f(xs),(1.5)

where −∞ < xs < xr < ∞.

Record values have been used in a variety of practical applications, such as in-

dustrial stress testing, sports and athletic events, oil and mining surveys, among

others. Chandler, [2], was the first to introduce the concept of records for analyzing

the breaking strength data of certain materials. The problem of parametric inference

for record-breaking data was introduced by Samaniego and Whitaker, [3]. They de-

veloped and studied the properties of maximum likelihood estimates of the mean of

an underlying exponential probability distribution. Gulati and Padgett, [4] extended

the work of Samaniego and Whitaker, [3], to the Weibul probability distribution.

In section 2, we investigate the theory of record values and record times from the

Half logistic probability distribution. We shall utilize records to develop key estimates

of the parameters that are the key entities in the Half logistic probability distribution.

In addition to developing the record estimates of the parameters, we shall illustrate

the usefulness of our analytical developments by analyzing the failure times of air

conditioning equipment in the Boeing 720 airplane and the failure times in minutes
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for a specific type of electrical insulation material that was subjected to a continuously

increasing voltage stress. In section 3, we consider the Inverse Weibull probability

distribution and develop the records theory along with the appropriate statistical

estimates. Finally, we obtain some coefficients of the best linear unbiased estimates of

the location and scale parameters of the power function probability density function.

We illustrate the usefulness of these results with a numerical simulation study.

2. Record values from the Half Logistic Probability Distribution

The logistic probability distribution is very useful in many areas of human en-

deavor. Berkson, [5], [6], used the subject distribution extensively in analyzing bioas-

say and quantal response data. The works of Ojo, [7], McDonald and Xu, [8], are of

interest among many publications on logistic probability distribution. The simplicity

of the logistic probability distribution and its importance as a growth curve have

made it even more important in statistical analysis and modeling. The shape of the

logistic probability distribution which is similar to that of the Gaussian probability

distribution makes it simpler and also profitable on suitable occasions to replace the

Gaussian probability distribution by the logistic distribution with negligible errors in

the respective theories and applications.

Balakrishnan and Chan, [9], have studied the best linear unbiased estimator

of the scaled parameter half logistic probability distribution using double type II

censored samples. In this Chapter, we shall study the theory of records for the half

logistic probability distribution. In addition to developing the record estimates of

the parameters, we shall illustrate their usefulness by applying the results to the

failure time data of Boeing 720 airplane. This data has been initially analyzed by

Balakrishnan and Chan, [9].

2.1. Analytical Formulation of the Record Model. Let Y be a complete random

variable having a half logistic probability density function given by

f(x) =
1

b

2e−
x−α

b

(
1 + e−

x−α
b

)2 ,(2.1)

where x ≥ α ≥ 0, b > 0.

The cumulative probability distribution function of equation 2.1 is given by

F (x) =
1− e−

x−α
b

1 + e−
x−α

b

.(2.2)

For the record-breaking samples, x1, k1, . . . , xr, kr, using equations (1.1), (2.1) and

(2.2), the likelihood function for the half logistic probability distribution function is
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given by

L =
r∏

i=1

1

b

2e−ωi

(1 + e−ωi)2

(
2e−ωi

1 + e−ωi

)ki−1

=
r∏

i=1

1

b

1

1 + e−ωi

(
2e−ωi

1 + e−ωi

)ki

(2.3)

where ωi = (xi − α)/b.

For convenience, the negative loglikelihood function of expression (2.3) is given

by

− log L =
r∑

i=1

log(b) + kiωi + (1 + ki) log(1 + e−ωi).(2.4)

Taking the partial derivatives of equation (2.4) with respect to α and b we have

∂(− log L)

∂α
= −1

b

r∑
i=1

[
ki − (1 + ki)

(
e−ωi

1 + e−ωi

)]
(2.5)

and

∂(− log L)

∂b
=

1

b

r∑
i=1

[
1− kiωi + (1 + ki)

(
ωie

−ωi

1 + e−ωi

)]
.(2.6)

The second partial derivative of equations (2.5) and (2.6) with respect to α, b

and αb are given by

∂2(− log L)

∂α2
=

1

b2

r∑
i=1

(1 + ki)e
−ωi

(1 + e−ωi)2
(2.7)

∂2(− log L)

∂b2
=

1

b2

r∑
i=1

[
1− kiωi + (1 + ki)

(
ωie

−ωi

1 + e−ωi

)]

+
1

b2

r∑
i=1

kiωi + (1 + ki)
−ωie

−ωi − ωie
−2ωi + ω2

i e
−ωi

(1 + ωie−ωi)2
(2.8)

and

∂2(− log L)

∂α∂b
=

1

b2

r∑
i=1

ki − (1 + ki)
e−ωi

1 + e−ωi
+ (1 + ki)

ωie
−ωi

(1 + e−ωi)2
.(2.9)

Equating (2.5) and (2.6) to zero, we obtain the maximum likelihood estimates α̂ and

b̂ for α and b, respectively, and equations (2.8) and (2.9) become

∂2(− log L)

∂b2
=

1

b2

r∑
i=1

1 +
(1 + ki)ω

2
i e
−ωi

(1 + ωie−ωi)2
,(2.10)

and

∂2(− log L)

∂α∂b
=

1

b2

r∑
i=1

(1 + ki)ωie
−ωi

(1 + e−ωi)2
.(2.11)
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Using equations, (2.7), (2.10), and (2.11) we obtain the observed information matrix

I(α, b), at (α̂, b̂), for the half logistic pdf model to be

I(α̂, b̂) =
1

b̂2

( ∑r
i=1

(1+ki)e
−ωi

(1+e−ωi )2

∑r
i=1

(1+ki)ωie
−ωi

(1+e−ωi)2∑r
i=1

(1+ki)ωie
−ωi

(1+e−ωi )2

∑r
i=1 1 +

(1+ki)ω
2
i e−ωi

(1+ωie−ωi )2

)
.(2.12)

Note that the inverse of I(α̂, b̂) from equation 2.12 gives the variance covariance

matrix of α̂, b̂.

Next, we proceed to obtain the estimates of the parameters that are inherent in

(2.1) as follows: For the complete sample X1 = y1, . . . , Xn = yn, from the half logistic

probability density function given by (2.1), we can write the negative log-likelihood

function as

− log L = −
n∑

i=1

log(b) + ζ + 2 log(1 + exp(−ζ),(2.13)

where ζi = (yi − µ/b.

Taking the partial derivative of (2.13) with respect to µ and b, we have

∂(− log L)

∂µ
=

1

b

n∑
i=1

[
1− 2e−ζi

1 + e−ζi

]
(2.14)

and

∂(− log L)

∂b
= −1

b

n∑
i=1

[
1− ζi +

2e−ζi

1 + e−ζi

]
.(2.15)

Let expressions (2.14) and (2.15) equal to zero and taking the second partial derivative

with respect to µ, b and µb, we have

∂2(− log L)

∂µ2
=

1

b2

n∑
i=1

2e−ζi

(1 + e−ζi)2
,(2.16)

∂2(− log L)

∂b2
=

1

b2

n∑
i=1

[
1 +

2ζ̂2
i e−ζi

(1 + e−̂ζi)2

]
,(2.17)

and

∂2(− log L)

∂µ∂b
=

1

b2

n∑
i=1

2ζie
−ζi

(1 + e−ζi)2
.(2.18)

Using equations (2.16), (2.17), and (2.18) we obtain the observed information

matrix at (µ̂, b̂), that is, I(µ, b), for the half logistic pdf model to be

I(µ̂, b̂) =
1

b̂2




∑n
i=1

2e−ζ̂i

(1+e−ζ̂i )2

∑n
i=1

[
1 +

2ζ̂2
i e−ζ̂i

(1+e−ζ̂i )2

]

∑n
i=1

[
1 +

2ζ̂2
i e−ζ̂i

(1+e−ζ̂i )2

] ∑n
i=1

2ζ̂ie
−̂ζi

(1+e−ζ̂i )2


 .
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Thus, we can use the estimates in equations (2.5) and (2.6) to predict future

observations of the phenomenon of interest. We can accomplish this by using the

return levels, that is,

F (xs) = 1/s, s > r

which gives

xs = α̂− b̂ log

{
s− 1

s + 1

}
(2.19)

2.2. Application. We shall take α to be zero for comparison purpose consistent

with published results,Balakrishnan and Chan, [9]. We consider two applications in

this section and compare the results of our analysis with results of other statistical

analysis.

2.2.1. Application 1: Boeing 720 Airplane Data. The following data which has been

initially analyzed by Balakrishnan and Chan, [9], are the failure times of air condi-

tioning equipment in a Boeing 720 airplane.

74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326.

Balakrishnan and Chan, [9], have shown that the above data fits the half logistic

probability distribution function quite well. Using the scale half logistic probability

distribution, that is, letting α = 0 in equation (2.1), they obtained the best linear

unbiased estimates for b to be 90.92 with a standard error of 19.66.

The following record values and record times can be obtained from the above

data, that is,

xi = 74, 57, 47, 29, 12

with

ki = 1, 1, 1, 2, 1.

Using equations (2.5) and (2.6) and letting µ = 0 in (2.1) we have the maximum

likelihood estimate and their standard error of b is b̂mle = 88.23 with a standard error

of 20.22.

Table 1 presents a comparison of the parameter estimate of our model with that of

Balakrishnan and Chan, [9]. As can be observed from the table below, even though we

have a reduced sample, our model performs equally well with the maximum likelihood

estimate (MLE).

The results of the analysis are displayed in Table 1. As can be observed, the

results are not much different from each other despite the fact that we have reduced

data.
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Method Estimate(Standard Error)

MLE using Records 88.23(20.22)

BLUE using Complete data 90.92(19.66)

MLE 93.58
Table 1. Estimate of b for the Half Logistic pdf for the Boeing 720

Airplane Data

2.2.2. Application 2: Electrical Insulation Data. The next application represent the

failure times, in minutes, for a specific type of electrical insulation material that was

subjected to a continuously increasing voltage stress (Lawless, [10], p.138):

12.3, 21.8, 24.4, 28.6, 43.2, 46.9, 70.7, 75.3, 95.5, 98.1, 138.6, 151.9.

A random sample of this data was obtained to be

138.6, 75.3, 95.5, 151.9, 46.9, 70.7, 24.4, 21.8, 28.6, 43.2, 12.3, 98.1.

We shall proceed to fit the scare-parameter half logistic distribution with pdf (2.1),

that is, when α = 0 to the data.

The best linear unbiased estimate for b has been obtained using the complete

data, Balakrishnan and Chan, [9]. Balakrishnan and Chan, [9] obtained the blue

(standard error) for b to be 50.50(12.68). Using records, we will obtain the blue for b

and compare our result with that of Balakrishnan and Chan, [9].

Using equation (2.15), we obtain the maximum likelihood estimate for the scale

parameter of the half logistic pdf to be b̂ = 47.42.

The appropriateness of the assumption of the half logistic distribution for the

above data is checked using the Q-Q plot given by Figure 1. In Figure 1, we plotted the

quantile from the half logistic probability distribution versus the empirical quantiles.

As can be observed from Figure 1, the half logistic distribution fits the data extremely

well. The value of the correlation coefficient in the Q-Q plot is 0.98.

Form the random data above, the following record values and record times have

been obtained to be

xi = 138.6, 75.3, 46.9, 24.4, 21.8, 12.3

and

ki = 1, 3, 2, 1, 3, 1

Using equation (2.6) we calculated the maximum likelihood estimates and their stan-

dard errors of b to be b̂mle = 52.22 with a standard error of 14.22. The results are

summarized in Table 2 below.
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Figure 1. QQ plot of the data to verify goodness of fit for the Elec-

trical Insulation Data

Method Estimate(Standard Error)

MLE using Records 52.23(14.22)

BLUE using Complete data 50.50(12.68)

MLE 47.42
Table 2. Estimate of b for the Half Logistic pdf for the Electrical

Insulation Data using records

Table 2 presents estimates of the data using our model, with those of Balakrishnan

and Chan, [9]. As can be observed, we have successfully presented another method to

estimate the parameter of the scale half logistic probability distribution. The subject

method, records and inter records, give good result with easier computational process

and smaller samples.
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3. Record Values from the Inverse Weibull Probability Distribution

The Weibull Probability distribution plays a very significant role in statistical

analysis and modeling of real world problems. See, Weibull, [11], Lawless, [10], among

others. This probability distribution is often used in the field of life data analysis due

to its flexibility. It can mimic the behavior of other statistical distributions such as

the normal and the exponential. The failure rate is either increasing, decreasing, or

remains constant depending on the value of the shape parameter.

Keller and Kamath, [12], introduced the use of the Inverse Weibull probability

distribution as a suitable model to describe the degradation phenomena of mechanical

components such as the dynamic components (pistons, crankshaft, etc.) of diesel en-

gines. The Inverse Weibull probability distribution distribution also provides a good

fit to several data such as the times to breakdown of an insulating fluid, subject to

the action of a constant tension, see Nelson, [13]. The Inverse Weibull probability

distribution has initiated a large volume of research. For example, Carriere, [14],

has used this distribution to model the mortality curve of a population, Mohamed

et al., [15], have considered the single and product moments of order statistics from

inverse Weibull probability distribution and doubly truncated inverse Weibull proba-

bility distributions, Calabria and Pulcini, [16], have discussed the maximum likelihood

and least squares estimations of its parameters, and Calabria and Pulcini, [17], have

considered Bayes 2-sample prediction of the distribution.

In this chapter we shall use the theory of records to obtain some distributional

properties of the Inverse Weibull probability distribution. We shall obtain parameter

of this distribution and we shall present coefficients of the BLUEs of the location and

scale parameters of the Inverse Weibull Probability Distribution.

3.1. Distributional Properties of Inverse Weibull Probability Distribution

using Record Values. Let X be a complete random variable (rv) from the Inverse

Weibull Probability Distribution with pdf given by

f(y) =
k

x− α

(
b

x− α

)k

exp

{
−

(
x− α

b

)−k
}

, x > 0, b > 0, α ≥ 0, k > 0(3.1)

= 0, otherwise.

For the record sample XL(1), XL(2), . . . , XL(r) from the inverse Weibull probability

distribution, using equation (1.3) and letting α = 0 and b = 1 in equation (3.1), the
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nth moment of XL(r) from the power function probability distribution is given by

E(XL(r))
n =

1

Γ(r)

∫ ∞

0

xnf(xr)dx

=
k

Γ(r)

∫ ∞

0

xn−kr−1e−x−k

dx

=
Γ

(
r − n

k

)

Γ(r)
, k > n(3.2)

The first moment of XL(r) is obtained from equation 3.4 to be

E(XL(r)) =
Γ

(
r − 1

k

)

Γ(r)
, k > 1.(3.3)

Observe also that

E(XL(1)) =
Γ(1− 1/k)

Γ(1)

E(XL(2)) = (1− 1/k)E(XL(1)), k > 1.

Recursively we have that

E(XL(r)) = E(XL(1))
r−2∏
i=1

[
i− 1/k

i

]
, k > 1

The moments for the inverse Weibull probability distribution have been computed

and are presented in Table 3 for k = 1.5, 2, 2.5, . . . , 5 and r = 1, 2, . . . , 10.

The second moment of XL(r) is obtained from equation 1.3 to be

E(XL(r))
2 =

Γ
(
r − 2

k

)

Γ(r)
, k > 2.(3.4)

From equations 3.3 and 3.4, we have the variance of XL(r) to be

V ar(XL(r)) =
Γ

(
r − 1

k

)

Γ(r)

[
Γ

(
r − 2

k

)

Γ
(
r − 1

k

) − Γ
(
r − 1

k

)

Γ(r)

]
.(3.5)

Using equation 1.5, we have the mth and nth joint moments of XL(r) and XL(s), s > r

to be

E(Xm
L(r), X

n
L(s)) =

∫ ∞

0

∫ xs

0

xm
r xn

s f(xr, xs)dxrdxs

=
k2

Γ(r)Γ(s− r)

∫ ∞

0

xn−k−1
s e−x−k

s I(xr)dxs,(3.6)
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where

I(xr) =

∫ xs

0

1

xrk−m+1
r

(
1

xk
s

− 1

xk
r

)s−r−1

dxr

=
1

kxks−m−k
s

∫ xs

0

1

xrk−m+1
r

(
1−

(
xs

xr

)k
)s−r−1

dxr

=
1

kxks−m−k
s

Γ
(
r − m

k

)
Γ(s− r)

Γ
(
s− m

k

) .(3.7)

Substituting equation (3.7) in equation (3.6) gives

E(Xm
L(r), X

n
L(s)) =

∫ ∞

0

1

kxks−m−n+1
e−x−k

s dxs

=
kΓ

(
r − m

k

)

Γ
(
s− m

k

)
Γ(r)

∫ ∞

0

1

xks−m−n+1
s

e−x−k
s dxs

=
Γ

(
r − m

k

)
Γ

(
s− m+n

k

)

Γ
(
s− m

k

)
Γ(r)

, k > m + n.(3.8)

The joint moment of XL(r) and XL(s) can be obtain from equation (3.8), by taking

m = n = 1 to be

E(XL(r), XL(s)) =
Γ

(
r − 1

k

)
Γ

(
s− 2

k

)

Γ
(
s− 1

k

)
Γ(r)

, s > r, k > 2.(3.9)

The covariance of XL(r) and XL(s) is obtain from equations (3.3) and (3.8), to be

Cov(XL(r), XL(s)) =
Γ

(
r − 1

k

)

Γ(r)

[
Γ

(
s− 2

k

)

Γ
(
s− 1

k

) − Γ
(
s− 1

k

)

Γ(s)

]
, s > r, k > 2.(3.10)

Table 4 presents computed values for the variance-covariance matrices of the

inverse Weibull probability distribution function for k = 2.5, 3, 3.5, 4, 4.5, 5, r =

1, . . . , 10, s = 1, 2, 3, 4, 5, 6, 7, 8, 10, for s > r.

r k = 1.5 k = 2 k = 2.5 k = 3 k = 3.5 k = 4 k = 4.5 k = 5

1 2.67894 1.77245 1.48919 1.35412 1.27599 1.22542 1.19015 1.16423

2 0.89298 0.88623 0.89352 0.90275 0.91142 0.91906 0.92567 0.93138

3 0.59532 0.66467 0.71481 0.75229 0.78122 0.80418 0.82282 0.83825

4 0.46303 0.55389 0.6195 0.6687 0.70682 0.73716 0.76187 0.78236

5 0.38586 0.48466 0.55755 0.61298 0.65633 0.69109 0.71954 0.74324

6 0.33441 0.43619 0.51295 0.57211 0.61883 0.65654 0.68756 0.71351

7 0.29725 0.39984 0.47875 0.54033 0.58936 0.62918 0.6621 0.68973

8 0.26894 0.37128 0.4514 0.5146 0.5653 0.60671 0.64108 0.67002

9 0.24653 0.34808 0.42883 0.49315 0.54511 0.58775 0.62327 0.65327

10 0.22827 0.32874 0.40977 0.47489 0.52781 0.57142 0.60788 0.63876
Table 3. Expected values of Standard Inverse Weibull pdf
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s r k=2.5 k=3 k=3.5 k=4 k=4.5 k=5

1 1 2.37315 0.8453 0.43935 0.27081 0.18426 0.13376

2 1 0.19967 0.11705 0.07754 0.0554 0.04168 0.03255

2 2 0.1198 0.07803 0.05538 0.04155 0.03242 0.02604

3 1 0.08322 0.05289 0.03692 0.02738 0.02117 0.01688

3 2 0.04993 0.03526 0.02637 0.02053 0.01646 0.01351

3 3 0.03994 0.02938 0.02261 0.01797 0.01463 0.01216

4 1 0.04858 0.03213 0.02304 0.01742 0.01367 0.01103

4 2 0.02915 0.02142 0.01646 0.01307 0.01063 0.00883

4 3 0.02332 0.01785 0.01411 0.01143 0.00945 0.00794

4 4 0.02021 0.01587 0.01277 0.01048 0.00875 0.00741

5 1 0.03293 0.02235 0.01632 0.0125 0.0099 0.00805

5 2 0.01976 0.0149 0.01165 0.00937 0.0077 0.00644

5 3 0.01581 0.01242 0.00999 0.0082 0.00685 0.0058

5 4 0.0137 0.01104 0.00904 0.00752 0.00634 0.00541

5 5 0.01233 0.01012 0.00839 0.00705 0.00599 0.00514

6 1 0.02429 0.0168 0.01243 0.00961 0.00767 0.00628

6 2 0.01457 0.0112 0.00888 0.00721 0.00597 0.00502

6 3 0.01166 0.00933 0.00761 0.00631 0.0053 0.00452

6 4 0.01011 0.0083 0.00688 0.00578 0.00491 0.00422

6 5 0.00909 0.0076 0.00639 0.00542 0.00464 0.00401

6 6 0.00837 0.0071 0.00603 0.00515 0.00443 0.00385

10 1 0.01082 0.00784 0.00599 0.00474 0.00386 0.0032

10 2 0.00649 0.00522 0.00428 0.00356 0.00300 0.00256

10 3 0.00519 0.00435 0.00367 0.00311 0.00267 0.00231

10 4 0.0045 0.00387 0.00332 0.00285 0.00247 0.00215

10 5 0.00405 0.00355 0.00308 0.00268 0.00233 0.00204

10 6 0.00373 0.00331 0.0029 0.00254 0.00223 0.00196

10 7 0.00348 0.00313 0.00277 0.00244 0.00215 0.0019

10 8 0.00328 0.00298 0.00265 0.00235 0.00208 0.00184

10 9 0.00311 0.00285 0.00256 0.00228 0.00202 0.0018

10 10 0.00298 0.00275 0.00248 0.00221 0.00197 0.00176
Table 4. Variance Covariance of Standard Inverse Weibull pdf

3.2. Estimation of Parameter. In this section, we estimate the parameters of the

inverse Weibull probability distribution using lower record values.

3.2.1. Estimating α and b for known k. Let x1, x2, . . . , xr be r lower record values

from the standard inverse Weibull probability distribution (3.1) with α = 0 and
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b = 1. Further, let

h′ = x1 + . . . + xr,

then

E(h′) = µ1 + σ2δ,

and

V ar(h′) = σ2V,

where,

1′ = (1, 1, 1, . . . , 1),

δ′ = (b1, b2, b3, . . . br),

and

V = (vij), vij = aibj, 1 ≤ i, j ≤ r.

Let

V−1 = (V ij), 1 ≤ i < j ≤ r,

then the entries of V−1 are

V ii =
ai+1bi−1 − ai−1bi+1

(aibi−1 − ai−1bi)(ai+1bi − aibi+1)

=
k2Γ(i)

Γ
(
i− 2

k

)
[(

1 +
1

k

)2

− 2i

(
1 +

2

k

)]
, i = 1, . . . , r − 1

V ij = V ji

=
−1

ai+1bi − aibi+1

= −ik2(i− 1
k
)Γ(i)

Γ(i− 2
k
)

, j = i + 1, i = 1, . . . , r − 1,

and

V ij = 0 for |i− j| > 1,

V rr =
br−1

br(arbr−1 − ar−1br)

=
k2br−1

br

(r − 1− 1
k
)Γ(r)

Γ(r − 1− 2
k
)

.

Using the method of Lloyd, [18], we have that the BLUE, α̂ and b̂ for α and b based

on r lower record values from the inverse Weibull probability distribution are given

by

α̂ =
δ′V −1(δ1′ − 1δ′)V−1h

(δ′V−1δ)(1′V−11)− (δ′V−11)2
,

and

b̂ =
1′V−1(1δ′ − δ1′)V−1h

(δ′V−1δ)(1′V−11)− (δ′V−11)2
.
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The variance and covariance of the estimators are

V ar(α̂) =
(δV−1δ)σ2

(δ′V−1δ)(1′V−11)− (δ′V−11)2
,

V ar(b̂) =
(1′V−11)σ2

(δ′V−1δ)(1′V−11)− (δ′V−11)2

Cov(α̂, b̂) = − (δ′V−11)σ2

(δ′V−1δ)(1′V−11)− (δ′V−11)2
.

Coefficients of the BLUES for α, b and the variance covariance for α and b are given

in Tables 5, 6, and 7.

3.3. Estimation of k when α and b are assumed known.

3.3.1. Method of Moments. For simplicity, we let α = 0 and b = 1 in (3.1). In the

absence of this assumption, the the random variable Y can be replaced by (Y −α)/b

if α and b are known. Observe from equation (3.3) that

E(XL(r)) =
Γ(r − 1/k)

Γ(r)
,

from which we have that

E(XL(1)) =
Γ(1− 1/k)

Γ(1)
.

Next,

E(XL(2)) =
Γ(2− 1/k)

Γ(2)

= (1− 1/k)E(XL(1)),

and
E(XL(1))

k
= E(XL(1))− E(XL(2)),

similarly,
E(XL(2))

2k
= E(XL(2))− E(XL(3)),

which gives

E(XL(1))

k
+

E(XL(2))

2k
= E(XL(1))− E(XL(3))(3.11)

The next term results in

E(XL(3))

3k
= E(XL(3))− E(XL(4)).(3.12)

Adding equations 3.11 and 3.12 together results in

E(XL(1))

k
+

E(XL(2))

2k
+

E(XL(3))

3k
= E(XL(1))− E(XL(4))
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Hence, continuing this procedure to the rth lower record value we have

E(XL(1))

k
+

E(XL(2))

2k
+ . . . +

E(XL(r−1))

k(r − 1)
= E(XL(1))− E(XL(r))

Dropping the Expectation and solving for k, we have a moment’s estimate k̂ME of k

to be

k̂ME =
1

X1 −Xr

r−1∑
i=1

Xi

i
(3.13)

3.3.2. Method of Maximum Likelihood. Using equations (1.2) and (3.1), we have that

f1,2,...,r(x1, x2, . . . , xr) = e−x−k
r

r∏
i=1

k

xk+1
i

(3.14)

The loglikelihood of equation (3.14) is

log f1,2,...,r(x1, x2, . . . , xr) = −x−k
r +

r∑
i=1

log(k)− (k + 1) log(xi).(3.15)

Differentiating equation (3.15) with respect to k gives

δ log f1,2,...,r(x1, x2, . . . , xr)

δk
= x−k

r log(xr) +
r∑

i=1

1

k
− log(xi).(3.16)

Solving equation (3.16) iteratively gives the maximum likelihood estimate k̂MLE of k.

3.4. Simulation Study. To illustrate the performance of the estimators obtained

in the previous section, we proceed with a simulation study. We simulated a small

random sample of size, n = 20 from the power function probability distribution with

k = 3.5, α = 3 and b = 5. The simulated values are

10.87, 10.37, 10.03, 8.15, 9.14, 10.83, 10.02, 7.60, 10.47, 9.14,

8.72, 11.09, 8.27, 9.01, 10.40, 7.21, 8.09, 12.92, 10.55, 6.55.

From the above sample, we obtained six records, that is,

10.87, 10.37, 10.03, 8.15, 7.6, 6.55.

Using Table 5 for k = 3.5, r = 6, we have that the BLUE for α is:

α̂ = 10.87× 3.44− 10.37× 2.02− 10.03× 1.7− 8.15× 2.10− 7.6× 1.55 + 6.55× 5.03

= 3.45,

Using Table 7, we obtained the estimated standard error for α̂ to be

S.E.(µ̂) = 3.45
√

0.23929 = 1.69



16 ALFRED K. MBAH AND CHRIS P. TSOKOS

Using Table 6 for k = 3.5, r = 6, we have that the BLUE for b is

b̂ = −10.87× 4.80 + 10.37× 2.04 + 10.03× 2.85 + 8.15× 3.52 + 7.6× 4.11− 6.55× 7.37

= 6.86.

Using Table 7, we obtained the estimated standard error for b̂ to be

S.E.(b̂) = 6.86
√

0.69 = 5.70

r k = 2.5 k = 3 k = 3.5 k = 4 k = 4.5 k = 5

3 -0.39628 -0.67253 -0.93153 -1.18546 -1.43740 -1.68844

-2.28280 -2.30989 -2.46020 -2.65333 -2.86643 -3.09047

3.67907 3.98241 4.39172 4.83879 5.30383 5.77890

4 0.08390 0.36628 0.98284 2.23483 4.93390 12.28310

-1.59977 -2.55895 -4.10090 -6.74035 -11.87186 -25.00456

-2.66628 -3.83842 -5.74126 -8.98713 -15.26382 -31.25570

5.18215 7.03109 9.85932 14.49265 23.20178 44.97716

5 0.06433 0.25227 0.61255 1.22095 2.20221 3.77892

-0.83573 -1.31959 -2.00272 -2.96920 -4.35933 -6.42456

-1.39289 -1.97938 -2.80381 -3.95894 -5.60485 -8.03070

-1.89939 -2.54491 -3.46353 -4.75072 -6.57961 -9.26619

5.06368 6.59161 8.65751 11.45791 15.34159 20.94252

6 0.05099 0.19033 0.44115 0.83247 1.40238 2.20284

-0.51822 -0.81763 -1.21523 -1.73445 -2.40705 -3.27690

-0.86370 -1.22645 -1.70132 -2.31259 -3.09478 -4.09612

-1.17777 -1.57686 -2.10163 -2.77511 -3.63300 -4.72629

-1.47221 -1.89224 -2.45190 -3.17156 -4.08712 -5.25144

4.98091 6.32285 8.02892 10.16124 12.81957 16.14790

10 -0.00155 -0.00440 -0.00223 -0.01223 -0.01648 -0.02069

-0.01246 -0.01372 0.00410 -0.01421 -0.01399 -0.01364

-0.02076 -0.02059 0.00574 -0.01895 -0.01798 -0.01704

-0.02831 -0.02647 0.00709 -0.02274 -0.02111 -0.01967

-0.03539 -0.03176 0.00827 -0.02598 -0.02375 -0.02185

-0.43398 -0.44726 0.83452 -0.46255 -0.46735 -0.47111

0.95739 0.99739 -2.05534 1.04585 1.06164 1.07420

-0.67657 -0.67961 1.26150 -0.68186 -0.68231 -0.68260

-0.06098 -0.04971 0.01211 -0.03618 -0.03183 -0.02841

1.31261 1.27613 -0.07575 1.22885 1.21316 1.20080
Table 5. Coefficients of the BLUE for α in terms of b.
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r k = 2.5 k = 3 k = 3.5 k = 4 k = 4.5 k = 5

3 0.57493 0.91662 1.21424 1.49452 1.76581 2.03173

3.10453 2.97993 3.06617 3.22463 3.41620 3.62566

-3.67946 -3.89654 -4.28042 -4.71915 -5.18201 -5.65739

4 -0.16832 -0.63722 -1.56650 -3.34699 -7.04898 -16.90941

2.64841 3.99737 6.12633 9.71121 16.59580 34.07033

4.41401 5.99605 8.57686 12.94827 21.33745 42.58792

-6.89410 -9.35621 -13.13669 -19.31249 -30.88427 -59.74884

5 -0.13966 -0.47463 -1.04811 -1.94912 -3.33327 -5.48303

1.52954 2.22987 3.18893 4.51182 6.37709 9.10590

2.54923 3.34481 4.46450 6.01576 8.19911 11.38238

3.47623 4.30047 5.51497 7.21891 9.62505 13.13351

-7.41534 -9.40052 -12.12030 -15.79736 -20.86797 -28.13876

6 -0.11857 -0.38113 -0.79766 -1.39593 -2.21862 -3.32708

1.02750 1.47211 2.03826 2.75352 3.65634 4.80015

1.71249 2.20817 2.85357 3.67136 4.70101 6.00018

2.33522 2.83908 3.52499 4.40564 5.51857 6.92329

2.91902 3.40689 4.11249 5.03501 6.20839 7.69254

-7.87566 -9.54513 -11.73165 -14.46961 -17.86569 -22.08908

10 -0.00086 -0.00168 -0.00223 -0.00256 -0.00274 -0.00283

0.00491 0.00452 0.00410 0.00372 0.00339 0.00310

0.00818 0.00678 0.00574 0.00496 0.00436 0.00388

0.01116 0.00871 0.00709 0.00595 0.00511 0.00448

0.01395 0.01045 0.00827 0.00680 0.00575 0.00497

1.00968 0.90396 0.83452 0.78554 0.74920 0.72119

-2.53035 -2.24240 -2.05534 -1.92442 -1.82782 -1.75371

1.59718 1.39219 1.26150 1.17124 1.10532 1.05514

0.02404 0.01636 0.01211 0.00947 0.00771 0.00647

-0.13788 -0.09889 -0.07575 -0.06071 -0.05028 -0.04269
Table 6. Coefficients of the BLUE for b in tems of b.

4. Conclusion

In the present study, we have introduced the concepts of ”Records” for a given

phenomenon that is probabilistically characterized by the half logistic and inverse

Weibull. We have developed the analytical structure of the estimates of the records.

The usefulness of the analytical results of the half logistics pdf were illustrated by

analyzing two real applications, namely, the air conditioning system of Boeing 720

and the Electrical Insulation Data that were initially analyzed by Balakrishnan and
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r k = 2.5 k = 3 k = 3.5 k = 4 k = 4.5 k = 5

3 0.5988546 0.5156701 0.4844271 0.4702911 0.46347 0.46023

1.181577 0.9067008 0.7869827 0.7205605 0.67856 0.64971

-0.814424 -0.6652533 -0.6037476 -0.5715508 -0.55236 -0.53993

4 0.41967 0.57127 0.80749 1.1947 1.91954 3.72366

1.20515 1.43263 1.83086 2.50222 3.76888 6.92783

-0.69477 -0.89239 -1.20631 -1.72127 -2.68335 -5.07373

5 0.21924 0.29459 0.39435 0.52628 0.70485 0.95674

0.77532 0.8699 1.02113 1.23163 1.52146 1.93268

-0.40125 -0.49781 -0.62792 -0.7997 -1.0311 -1.35604

6 0.13595 0.18253 0.23929 0.30742 0.38919 0.48799

0.56707 0.61452 0.69006 0.78784 0.90838 1.05556

-0.2695 -0.32864 -0.40135 -0.488 -0.59119 -0.71483

10 0.00327 0.00306 0.00279 0.00252 0.00226 0.00203

0.00326 0.00219 0.00157 0.00118 0.00092 0.00074

-0.00129 -0.00101 -0.00081 -0.00066 -0.00055 -0.00046
Table 7. Variance Covariance of α and b in terms of b.

Chan, [9]. In addition to showing that both data sets fit the half logistic probability

distribution, our estimate of the half logistic parameter are as good as the published

estimates using classical approach. Thus, the present method offers an advantage in

the computational aspect as well as reduced sample sizes. We have also developed

the estimates of the location and scale parameters of the inverse Weibull probability

distribution given the shape parameter and also the estimates of the shape param-

eter has been obtained given that the location and scale parameters are known. In

addition, we have tabulated the means and variance of lower record values from the

inverse Weibull probability distribution function. Coefficients of the best linear unbi-

ased estimates of the location and scale parameters of the inverse Weibull probability

distribution function have been obtained. In addition we have shown the importance

of our results using simulation study.
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