
BAYESIAN RELIABILITY ANALYSIS FOR THE GUMBEL

FAILURE MODEL

CHRIS P. TSOKOS AND BRANKO MILADINOVIC

Department of Mathematics and Statistics, University of South Florida, Tampa,

FL 33620

ABSTRACT. The Gumbel or double exponential probability distribution is used to characterize

the failure times of a given system. The ordinary and Bayesian settings of the reliability functions are

being studied. In the Bayesian reliability analysis, we utilize Jeffrey’s non-informative prior to obtain

estimates of the target time of a system to achieve a desired reliability. Lindley’s approximation

procedure is used to obtain numerical estimates of the target time.

1. Introduction

Extreme value probability distributions have been used effectively to model var-

ious problems in engineering, environment, business, etc. Some key references are

(Burton and Markopoulos, 1985; Naess, 1998; Osella et al., 1992; Ramachandran,

1982; Rao et al., 1997; Sastry and Pi, 1991; Silbergleit, 1996; Suzuki and Ozaha,

1994; and Tsokos, 1999). The object of the present study is to use the classical Gum-

bel or double exponential probability distribution to characterize the failure times of

a given system, both in the ordinary and Bayesian settings. In the Bayesian setting,

we assume that the prior probability density function is the Jeffrey’s non-informative

prior under the mean square error loss function. We are interested in obtaining or-

dinary and Bayesian estimates of a target time tα, subject to a desired and specified

reliability. That is, for a given system what is the time to failure, tα, with at least (1

- α)% assurance. For example, we want to be at least 95% certain that the system

will be operable to time t0.05. We develop both ordinary and Bayesian estimates of

tα and introduce Lindley’s approximation procedure that is used to obtain numerical

results that illustrate the usefulness of the study.

2. The Gumbel Model

For the Gumbel model, the probability distribution function (p.d.f) and the cu-

mulative distribution function (c.d.f) of the failure time T are given, respectively,

by

(2.1) f(t) =
1

σ
e−

t−µ
σ

−e−
t−µ

σ
,
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−∞ < t < ∞, −∞ < µ < ∞, σ > 0

and

(2.2) F (t) = exp{−exp{(−
(t− µ)

σ
}}

where µ and σ are the location and scale parameters, respectively. This model has

been used in fire protection, insurance problems, prediction of earthquake magnitudes,

carbon dioxide levels in the atmosphere, high return levels of wind speeds in the design

of structures among others. In the present study, we shall apply the subject model

in reliability analysis and, more specifically, Bayesian reliability modeling.

3. Reliability modeling

Let t1, t2, t3,..., tn be the failure times that follow the Gumbel p.d.f. given by

(2.1). The likelihood function L(µ, σ), is given by

L(µ, σ) = σ−nexp{−
n

∑

i=1

ti − µ

σ
−

n
∑

i=1

exp(−
ti − µ

σ
)}

and its logarithmic form is

(3.1) LogL = −nlnσ −

n
∑

i=1

(
ti − µ

σ
) −

n
∑

i=1

e−(
ti−µ

σ
)

The maximum likelihood estimates (MLE) for µ and σ can be obtained from the

likelihood functions by solving the following equations

(3.2) σ̂ +
Σtie

−ti/σ̂

Σe−ti/σ̂
= t̄

and

(3.3) µ̂ = −σ̂ln{
1

n
Σe−ti/σ̂}

Equations (3.2) and (3.3) are not analytically tractable and must be solved numeri-

cally to obtain approximate MLE’s of µ and σ, that is µ̂ and σ̂. By taking the natural

logarithm of both sides of equation (2.2) and solving for t we obtain the expression

for the target time tα under the desired reliability 1 - α given by

(3.4) tα = µ − σ(ln(−ln(α))

Thus, by the invariance property of the MLE’s we can obtain the MLE of the target

time tα

(3.5) t̂α = µ̂ − σ̂(ln(−ln(α))

Classical estimates and confidence intervals for tα can be obtained using the method

of maximum likelihood and the normal approximation for different extreme value

models. In the present study, we shall examine the estimation of tα for an extreme
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value model in a Bayesian setting under a specified prior and mean square error loss

function.

4. Bayesian approach to the Gumbel Model

In the Bayesian approach we regard µ and σ behaving as random variables with

a joint p.d.f. π(µ, σ). We shall investigate the point estimator of tα for Jeffrey’s

non-informative prior.

4.1. Jeffrey’s non-informative prior. Jeffrey’s non-informative prior chooses the

prior π(µ, σ) to be proportional to
√

detI(θ), where I(θ) is the expected Fisher

information matrix. That is,

I(µ̂, σ̂) = −E

∣

∣

∣

∣

∣

∂2

∂µ2 lnL ∂2 lnL
∂µ∂σ2

∂2 lnL
∂µ∂σ2

∂2

∂σ2 lnL

∣

∣

∣

∣

∣

.

Using logL as given in (3.1), we obtain I(θ) as

(4.1) I(θ) =

∣

∣

∣

∣

∣

n
σ2 − n

σ2 (1 − γ)
−n
σ2 (1 − γ) n

σ2{γ
2 − 2γ + 2 + η(2, 2)}

∣

∣

∣

∣

∣

.

where γ is the Euler’s constant and

η(p, q) =
1

Γ(p)

∞
∫

0

tp−1e−qt

1 − e−t
dt.

Hence,

det(I(θ)) =
K

σ4

implying that the Jeffrey’s non-informative prior is given by

(4.2) π(µ, σ) =
1

σ2

We remark that π is an improper prior p.d.f. Consistent with the aim of the present

study in identifying the target time tα, we proceed to obtain its analytical form.

4.2. Posterior distribution. The posterior probability density function of (µ, σ)

given the failure times t1, ..., tn is given by

π(µ, σ | t1, t2, ..., tn) =
L(µ, σ | t1, ..., tn)π(µ, σ)

∫

∞

0

∫

∞

−∞
L(µ, σ | t1, t2, ..., tn)π(µ, σ)dµdσ

where L(µ, σ | t1, ..., tn) is given by (3.1). We shall first compute the marginal prob-

ability density function, that is,
∫

∞

0

∫

∞

−∞

L(µ, σ | t1, ..., tn)π(µ, σ) dµ dσ.

Using the prior π(µ, σ) = 1
σ2 , σ > 0 and letting x =

n
∑

i=1

ti, we obtain
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∫

∞

0

∫

∞

−∞

L(µ, σ | t1, ..., tn)π(µ, σ)dµdσ

(4.3) =

∫

∞

0

σ−n−2

∫ +∞

−∞

e−x/σe(nµ/σ)e−e(µ/θ)
∑n

i=1 e−ti/σ

dµdσ.

Let u = e, and a =
∑n

l=1 e−(t1/σ), the expression (4.3) can be written as

(4.4)

∫

∞

0

∫

∞

−∞

L(µ, σ | t1, ..., tn)π(µ, σ)dµdσ

=

∞
∫

0

σ−n−1e−x/σ

∫

∞

0

un−1e−aududσ

= Γ(n)

∫

∞

0

σ−n−1e−x/σa−ndσ

= Γ(n)

∫

∞

0

vn−1e−xv(
n

∑

l=1

e−tiv)ndv

= Γ(n)

∫

∞

0

vn−1(
n

∑

l=1

e−v(ti+t̄))ndv

where x =
n
∑

l=1

ti = nt̄.

4.3. Bayesian estimation of tα for Jeffrey’s prior. The Bayes estimate of

tα = µ − σ ln(− ln(α))

for squared error loss is given by

t̂B = E(tα | t1, t2, ..., tn)
∫

∞

0

∫

∞

−∞

[µ − σ ln(− ln(α)]L(µ, σ | t1, t2, ..., tn)π(µ, σ)dµdσ

or

(4.5) t̂B =

∫

∞

0

∫

∞

−∞
[µ − σ ln(− lnα)]L(µ, σ | t1, t2, ..., tn)π(µ, σ) dµdσ

Γ(n)
∫

∞

0
vn−1(

∑

e−(ti+t̄)v)ndv

Proceeding as we did before for obtaining the marginal probability distribution we

can write

(4.6) E(µ | ~t) =

∫

∞

0

vn−2e−xv

∫

∞

0

(lnu)un−1eaududv

where

a =

n
∑

l=1

e−tiv,
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and

(4.7) E(σ | ~t) = Γ(n)

∫

∞

0

vn−2(
n

∑

l=1

e−v(ti+t̄))ndv.

Hence,

E(t̂α | t1, ..., tn) =

∫

∞

0
vn−2e−xv

∫

∞

0
(lnu)un−1e−aududv

Γ(n)
∫

∞

0
vn−1[

∑n
l=1 e−v(ti+t̄)]ndv

+(−σ ln(− lnα))

∫

∞

0
vn−2[

∑

e−v(ti+t̄)]ndv
∫

∞

0
vn−1[

∑n
l=1 e−v(ti+t̄)]ndv

where

a =

n
∑

l=1

e−tiv

and

t̄ =

n
∑

l=1

ti

n
.

To evaluate the above expression to obtain approximate Bayesian estimates of tα, we

shall use Lindley’s approximation method.

4.4. The Lindley Approximation. Similar to our work in the previous chapter,

let

I =

∫

u(θ)v(θ)eL(θ)dθ
∫

v(θ)eL(θ)dθ

where θ = (θ1, θ2, ..., θk), a vector of parameters. Also, let L=log(likelihood function)

Note that I is the posterior expectation of u(~θ) given the failure data, for a prior

v(θ). Denote by

u1 =
∂u

∂θ1
u2 =

∂u

∂θ2

u11 =
∂2u

∂θ2
1

u22 =
∂2u

∂θ2
2

p = π(θ1, θ2)

p1 =
∂p

∂θ1
; p2 =

∂p

∂θ2

L20 =
∂2L

∂θ2
1

; L02 =
∂2L

∂θ2
2

L30 =
∂3L

∂θ3
1

; L03 =
∂3L

∂θ3
2

and

σ11 = (−L20)
−1 and σ22 = (−L02)

−1

Furthermore,

E(u(θ) | ~t) = u(θ̂1, θ̂2) +
1

2
(u11σ11 + u22σ22) + P1u1σ11 + P2u2σ22

+
1

2
(L30u1σ

2
11 + L03u2σ

2
22 + L21u2σ11σ22 + L12u1σ22σ11)
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evaluated at (θ̂1, θ̂2), where θ̂1 and θ̂2 are the MLEs of θ1 and θ2. The target time for

the Gumbel model given by

tB = µ − bσ = u(µ, σ),

where θ1 = µ and θ2 = σ. Also, u1 = 1 and u2 = −b where b = ln(− lnα) where

u11 = 0 and u22 = 0. Thus, we can write

P (θ1, θ2) = π(µ, σ) =
1

σ2

and

P1 = 0 and P2 = −
2

σ3
.

Let µ̂ and σ̂ be the classical MLEs for µ and σ, respectively. Furthermore, we have

L = σ−n exp

{

−
n

∑

i=1

(
ti − µ

σ
) −

n
∑

i=1

exp(−
ti − µ

σ
)

}

or

lnL = −n lnσ −

n
∑

i=1

(
ti − µ

σ
) −

n
∑

i=1

e−
ti−µ

σ .

Thus,

∂ lnL

∂µ
=

n

σ
−

1

σ

n
∑

i=1

e−
ti−µ

σ

and

L2,0 =
∂2 lnL

∂µ2
= −

1

σ2

n
∑

i=1

e−
ti−µ

σ .

Also,

∂ lnL

∂σ
= −

n

σ
+

n
∑

i=1

(ti − µ)

σ2
−

1

σ2

n
∑

i=1

e
−(

ti−µ

σ) (ti − µ)

and

L0,2 =
∂2 lnL

∂σ2
=

n

σ2
− 2[

n
∑

i=1

(ti−µ)]
1

σ3
+

2

σ3

n
∑

i=1

e
ti−µ

σ (ti−µ)−
1

σ4

n
∑

i=1

e−(
ti−µ

σ
)(ti−µ)2

which can be expressed as

n

σ2
− (

n
∑

i=1

(ti − µ))
1

σ3
+ (

n
∑

l=1

e
ti−µ

σ )
(ti − µ)

σ3
−

1

σ4

n
∑

i=1

e−
ti−µ

σ (ti − µ)2

or
n

σ2
− [

n
∑

l=1

2(ti − µ)[1 − e−
(ti−µ)

σ ]]
1

σ3
+ (

n
∑

i=1

e−(
ti−µ

σ
)(ti − µ)2)

1

σ4
.

We proceed to find L3,0 and L0,3, that is

L3,0 =
∂3 lnL

∂µ3
= −

1

σ3

n
∑

i=1

e−
ti−µ

σ



GUMBEL FAILURE MODEL 7

and

L0,3 =
∂3 lnL

∂σ3
=

−2n

σ3
+ 6[

n
∑

i=1

(ti − µ)[1 − e−
(ti−µ)

σ ]]
1

σ4

+6[
n

∑

i=1

e−
(ti−µ)

σ (ti − µ)2]
1

σ5
− 1[

n
∑

i=1

e−
(ti−µ)

σ (ti − µ)3]
1

σ6
.

Also,

L21 =
∂

∂σ
(
∂2 lnL

∂µ2
) = [

n
∑

i=1

e−(
ti−µ

σ
)]

2

σ3
− [

n
∑

i=1

e−(
ti−µ

σ
)(ti−µ)]

1

σ4

and

L12 =
∂

∂µ
(
∂2 lnL

∂σ2
)

or

L12 =
2

σ3
(n −

n
∑

i=1

e
ti−µ

σ ) +
4

σ4

∑

(ti − µ)e−
ti−µ

σ −
1

σ5

n
∑

i=1

(ti − µ)2e−
ti−µ

σ

Thus, a Bayesian approximate estimate for tα is given by

(4.8) t̂B = t̂α(MLE) + P2u2σ22 +
1

2
(L30σ

2
11 + L03u2σ

2
22 + L21u2σ11σ22 + L12σ22σ11)

evaluated at the MLE of µ and σ, µ̂ and σ̂.

5. Numerical Analysis

In this section we present a numerical study in order to compare the maximum

likelihood and Bayes estimates for determining the target time of the Gumbel failure

model subject to specified reliability. Our numerical simulation was conducted in the

following manner:

1. Under the assumption that the location parameter µ and the scale parameter

σ behave randomly and independently, we simulated m (m = 50, 100, 200)

location parameters from the normal distribution. In order to study the effects

of the prior variance on our estimates, we simulated location parameters from the

normal distribution with mean 25 and variances equal to 1, 4, and 9 respectively.

2. We assumed the scale parameter follows the uniform distribution. However, in

order to see what effects the increase of variance has on our estimates, we let σ

equal to 1, 2 and 4 respectively.

3. Using the obtained m pairs of µ and σ, we generated n (n = 50, 100, 200) ob-

servations from the Gumbel p.d.f. and calculated both the maximum likelihood

and Bayes estimates of the target time.

4. For comparison purposes, we calculated the absolute value of the difference be-

tween the true target time and the corresponding ML and Bayes estimates for

99% reliability.

A schematic diagram of the complete step-by-step process of the numerical analysis

is presented in Figure 1.
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Figure 1. Numerical Study of the Gumbel Failure Time

m n µB , µ̂ σB, σ̂ | tα − t̂α | | tα − t̂B |

50 50 25.0526, 25.2053 1, 0.9683 0.2011 0.0938

50 100 25.0526, 25.1542 1, 0.8594 0.3165 0.2548

50 200 25.0526, 24.999 1, 0.9608 0.008 0.01

50 50 25.0526, 25.2433 2, 1.9397 0.2827 0.1485

50 100 25.0526,25.1688 2, 1.9276 0.2267 0.1607

50 200 25.0526, 25.1454 2, 1.9591 0.1552 0.1214

50 50 25.0526, 25.455 4, 4.047 0.3312 0.0362

50 100 25.0526, 25.0701 4, 4.043 0.2167 0.0805

50 200 25.0526, 25.0342 4, 3,951 0.1543 0.0726

Table 1. Comparison between ML and Bayesian Estimates of Relia-

bility Time: µ ∼ N(25, 1), σ = 1,2,4, α = 0.01

Due to the size of our simulation some of the numerical results are given in Tables 1-3

under 99% reliability. In each table we present the size of the prior sample m used to

calculate the Bayes estimate µB , while µ̂ and σ̂ are the ML estimates of the location

and scale parameters. | tα − t̂α | and | tα − t̂B |represent the absolute value of the
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difference between the true target time, and maximum likelihood and Bayes target

time estimates respectively. As we can see from Table 1, by keeping the prior sample

m n µB , µ̂ σB, σ̂ | tα − t̂α | | tα − t̂B |

100 50 25.0701, 25.1942 1, 0.9796 0.1552 0.0611

100 100 25.0701, 25.1968 1, 0.9696 0.1416 0.1226

100 200 25.0701, 25.1252 1, 0.9584 0.1185 0.0921

100 50 25.0701, 25.145 2, 1.771 0.4792 0.3587

100 100 25.0701, 25.145 2, 1.8397 0.3195 0.2566

100 200 25.0701, 25.06 2, 1.774 0.2195 0.1956

100 50 25.0701, 25.42 4, 4.05 0.2167 0.1805

100 100 25.0701, 24.92 4, 3.904 0.07 0.069

100 200 25.0701, 24.77 4, 3.85 0.01 0.01

Table 2. Comparison between ML and Bayesian Estimates of Relia-

bility Time: µ ∼ N(25, 2), σ = 1,2,4, α = 0.01

size m = 50 and prior variance fixed and varying the sample size of the failure model

from n = 50 to n = 200, the absolute value of the difference | tα − t̂α | and | tα − t̂B |

decreases. This behavior is consistent as we increase σ and n, except that we notice

m n µB , µ̂ σB, σ̂ | tα − t̂α | | tα − t̂B |

200 50 21.982, 21.964 1, 0.8696 0.1805 0.0921

200 100 21.982, 22.01 1, 0.9562 0.0904 0.0372

200 200 21.982, 21.03 1, 0.999 0.0472 0.0214

200 50 21.982,21.991 2, 1.8243 0.278 0.148

200 100 21.982, 22.011 2, 2.151 0.203 0.21

200 200 21.982, 21.845 2, 2.1965 0.1303 0.130

200 50 21.982, 22.1561 4,3.7306 0.2834 0.291

200 100 21.982, 22.201 4, 3.8402 0.1625 0.159

200 200 21.982, 21.756 4, 3.6615 0.091 0.101

Table 3. Comparison between ML and Bayesian Estimates of Relia-

bility Time: µ ∼ N(25, 3), σ = 1,2,4, α = 0.01

a significant improvement in the ML estimate. In Table 2 and Table 3 we increase

the prior sample size m to 100 and 200 and prior variance to 4 and 9 respectively

and also observe that the absolute value of the difference | tα − t̂α | and | tα − t̂B |

decreases. The increase in the prior variance has no effect on the behavior of our

estimates. This is consistent as we increase σ and n, and we again notice a significant



10 CHRIS P. TSOKOS AND BRANKO MILADINOVIC

improvement in the ML estimate. In almost every case the Bayes estimate is closer

to the true target time than its maximum likelihood counterpart.

6. Conclusion

As expected, the Monte Carlo simulation indicates that the Bayes estimate under

the non-informative prior is closer to the true reliability time than its maximum

likelihood counterpart. However, the following findings are in order:

1. An increase in the prior sample size for the location parameter has no effect on

the behavior of the estimates.

2. An increase in the sample size of the simulated Gumbel data results in the

improvement of both the maximum likelihood and Bayesian estimates.

3. When we increase the variance of the prior distribution from 1 to 4 to 9 and the

variance of the simulated Gumbel data from 1 to 2 to 4, we notice a significant

improvement in the maximum likelihood estimate. We therefore conclude that

for large sample size and high variance there is very little difference between

the maximum likelihood and the Bayes estimates of the target time subject to

specified reliability.
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