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ABSTRACT. Microarray expression experiments allow the recording of expression levels of thou-
sands of genes simultaneously. These experiments primarily consists of either monitoring a gene
multiple times under many conditions or evaluating each gene in a single environment but in dif-
ferent tissue types. In the two-sample microarray expression, the variance of the expression levels
in control and treatment conditions are generally different due to the nature and response of the
mRNA at the different conditions. Some of the genes might have the same variance but most of the
genes have both mean and variance altered. In this paper we have proposed the Bayesian version
of t-test that assumes the different variances in control and treatment groups. The efficiency of
new method is demonstrated by simulation results. This method is easy to implement and give the
better power compared to its equal variance counterpart and the SAM.

Key Words Behrens-Fisher Distribution, Differentially expressed genes, Microarrays, SAM, Boot-

strap.

1. Introduction

There is a large volume of literature behind the two sample t-test [3], [5],[10].

There are different versions and variants of these test- non-parametric and Bayesian

version. In such tests, one is primarily interested on the identification of differen-

tially expressed genes under two different conditions, so that those particular genes

of interest are further studied. Most prevalent methods used in the literature for

identification of differentially expressed genes are fold change [3], and the simple two-

sample t- tests [1], [2], [3], [10].

The fold-change approach considers genes as differentially expressed if its average

expression level changes by more than a constant factor, generally 2-fold change. But

this rule does not take account of the change in the variances. The another approach

for finding genes as differentially expressed is the use of t-test. The idea is simple
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but intuitive for the gene expression data. The reason behind this - it takes the vari-

ances of each of the genes in account together with the means. In this test, a gene

is said to be expressed if |t| exceeds a certain threshold depending on the confidence

level selected. Since the distance between the sample means are standardized by the

variances, this approach is better than the fold-change method. The gene expression

data shows that there is an inherent limitation behind using the simple two-sample

t-test. The variances of the genes depends on the expression level [1], [3], [10]. To

identify the genes that are actually expressed, one should consider this fact. This fact

was considered by previous researchers [2], [10].

There are two inherent problems in microarray experiments: First, the number of

replications is very small, and second the number of genes to be tested is usually

large and the test is to be repeated thousands of times. Since the small population

size is very common in microarray studies, the sample estimates of variances are not

appropriate for the testing. Therefore, we have to consider the Bayesian approach

to approximate the variances in two conditions. To remove the second defect arising

from multiple comparison, we use the False Discovery Rate (FDR) correction [6].

Applying the hypothesis test repeatedly gene by gene for several thousands of genes,

there is a great chance of selecting false genes as differentially expressed, even though

the significance level is set very small. For the test to be reliable, the probability

of selecting true positive should be high. To control the false positive rate, we have

applied the FDR correction, in which the p -values for each of the gene is compared

with its corresponding threshold. A gene is, then, said to be differentially expressed

if the p-value is less than the threshold.

The Behrens - Fisher problem arises when one seeks to make inferences about the

means of two normal populations without assuming the variances are equal. But,

in many practical situations the populations do not have same variances. Here, we

briefly review the two sample t-test.

Let x = (x1, x2, ..., xm) and y = (y1, y2, ...., yn) be two independent samples from

two normal populations with means µx and µy and equal variances σ2
x = σ2

y = σ2

respectively. The sample mean and sample variance for these samples x and y are

x̄ =
1

m

m∑
i=1

xi , s2
x =

1

m− 1

m∑
i=1

(xi − x̄)2

and

ȳ =
1

n

n∑
j=1

yj , s2
y =

1

n− 1

n∑
j=1

(yj − ȳ)2

respectively. The population variance is estimated by the pooled sample variance

s2 =
(m− 1)s2

x + (n− 1)s2
y

m + n− 2
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Then the sufficient statistics for µx, µy and σ2 are x̄, ȳ and s2 respectively. Fur-

thermore, ȳ − x̄ has a normal distribution with mean δ = µy − µx and variance

(1/m + 1/n)σ2. Then,

t =
δ − (ȳ − x̄)√
(1/m + 1/n)s2

is distributed as student’s t-statistic with (m + n− 2) degrees of freedom.

Now, let the samples x and y are from normal distributions with unequal variances

σ2
x and σ2

y respectively. In this case neither a pivotal statistic nor an exact confidence

interval procedure exist [11]. We can take a statistic

t∗ =
δ − (ȳ − x̄)√
s2

x/m + s2
y/n

∼ t[min(ν1,ν2)]

where, ν1 = m− 1, ν2 = n− 1

If the sample sizes m and n are large, then the both t and t∗ statistics give almost

the same result. In the microarray experiments the sample sizes are relatively small,

thus motivating us to look for an alternative.

2. Sampling Distribution for Non-homogeneous Variance

2.1. Bayesian Approach. For the samples x = (xi)
iid∼ N(µ, σ2) and y = (yj)

iid∼
N(µ + ∆µ, τ 2). where, i = 1, 2, ....,m; and j = 1, 2, ...., n.

The density for x = (x1, x2, ., ..., xm) can be written as ,

(2.1) f(x) =
1

σm(2π)
m
2

exp
[−1

2σ2
{(m− 1)s2

x + m(x̄− µ)2}
]

Similarly, the density of y is,

(2.2) f(y) =
1

τn(2π)
n
2

exp
[−1

2τ 2
{(n− 1)s2

y + n(ȳ − µ−∆µ)2}
]

Assuming the independency of the location parameter µ and scale parameter σ2,

the joint prior for µ and σ2 is the product

(2.3) p(µ, σ2) = p(µ)p(σ2)

Similarly, the joint prior for µ + ∆µ and τ 2 is

(2.4) p(µ + ∆µ, τ 2) = p(µ + ∆µ)p(τ 2)

Finally, the joint prior for µ, σ2, µ + ∆µ, τ 2 is

prior = p(µ, σ2, µ + ∆µ, τ 2)

= p(µ)p(σ2)p(µ + ∆µ)p(τ 2)(2.5)
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Since (x̄, s2
x) and (ȳ, s2

y) are sufficient statistics for (µ, σ2) and (µ + ∆µ, τ 2) re-

spectively, we have the joint posterior distribution is given by the Bayes’ Rule [8],

(2.6) p(µ, ∆µ, σ2, τ 2|x,y) ∝ (prior)
1

σmτn
exp

(−Cµ

2σ2

)
exp

(−Dµ+∆µ

2τ 2

)

where,

Cµ = (m− 1)s2
x + m(x̄− µ)2;

Dµ+∆µ = (n− 1)s2
y + n(ȳ − (µ + ∆µ))2

We obtain the marginal posterior density of (∆µ, σ2, τ 2) by integrating (2.6) with

respect to µ. The marginal posterior is

(2.7) p(∆µ, σ2, τ 2|x,y) ∝
∫ ∞

−∞
(prior)

[ 1

σmτn
exp

(−Cµ

2σ2
− Dµ+∆µ

2τ 2

)]
dµ

Let us assume that the priors for µ and µ + ∆µ are flat priors, i.e. p(µ) = 1, p(µ +

∆µ) = 1 and the priors for σ2 and τ 2 are scaled inverse-χ2 distributions. With these

priors the posterior is of the same form [3]. So, they are the conjugate priors for the

normal likelihoods. i.e. p(σ2) = I(σ2; ν0, σ
2
0) and p(τ 2) = I(τ 2; η0, τ

2
0 ) where,

(2.8) p(σ2) ∝ σ(−ν0+2)exp(− 1

2σ2
ν0σ

2
0)

(2.9) p(τ 2) ∝ τ (−η0+2)exp(− 1

2τ 2
η0τ

2
0 )

where, α = (ν0, η0, σ
2
0, τ

2
0 ) is the hyper-parameters that should be estimated from the

data.

Hence from equations (2.7), (2.8) and (2.9), the marginal posterior density of

(∆µ, σ
2, τ 2) is

p(∆µ, σ2, τ 2|x,y) ∝ 1

σm+ν0+2
· 1

τn+η0+2

∫ ∞

−∞
exp

(
−Cµ + ν0σ

2
0

2σ2

)
exp

(
−Dµ+∆µ + η0τ

2
0

2τ 2

)
dµ

=

∫ ∞

−∞

[ 1

σm+ν0+2
exp

(
− Cµ + ν0σ

2
0

2σ2

)][ 1

τn+η0+2
exp

(
− Dµ+∆µ + η0τ

2
0

2τ 2

)]
dµ

The marginal posterior of ∆µ is obtained by

p(∆µ|x,y) ∝
∫ ∞

µ=−∞

[ ∫ ∞

0

1

σm+ν0+2
exp

(
− Cµ + ν0σ

2
0

2σ2

)
dσ2

]
.
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[ ∫ ∞

0

1

τn+η0+2
exp

(
− Dµ+∆µ + η0τ

2
0

2τ 2

)
dτ 2

]
dµ

(2.10) =

∫ ∞

µ=−∞
I1. I2 dµ

Now,

I1 =

∫ ∞

0

1

σm+ν0+2
exp

(
− A

2σ2

)
dσ2,

where,

A = Cµ + ν0σ
2
0

Changing the variable u = A
2σ2 and after some computation, we get

I1 =
∫ 0

∞( A
2u

)−(
m+ν0+2

2
)e−u(−A

2u2 )du

= A− (m+ν0)
2

∫∞
0

e−uu(
m+ν0+2

2
)−2du

= A− (m+ν0)
2

∫∞
0

e−uu
(m+ν0)

2
−1du

This being non-normalized gamma integral, the above integral is,

I1 ∝ A− (m+ν0)
2

= (Cµ + ν0σ
2
0)
− (m+ν0)

2

= [(m− 1)s2
x + m(x̄− µ)2 + ν0σ

2
0]
− (m+ν0)

2

= [1 + m(x̄−µ)2

(m−1)s2
x+ν0σ2

0
]−

(m+ν0)
2

i.e.

(2.11) I1 ∝ [1 +
m(x̄− µ)2

vmσ2
m

]−
(m+ν0)

2

where, vm = m + ν0 − 1, vmσ2
m = (m− 1)s2

x + ν0σ
2
0.

Similarly, we get the another factor in (2.10) as

(2.12) I2 ∝ [1 +
n(ȳ − µ−∆µ)2

wnτ 2
n

]−
(n+η0)

2

where, wn = n + η0 − 1, wnτ 2
n = (n− 1)s2

y + η0τ
2
0 .

Substituting (2.11) and (2.12) in (2.10), we get
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p(∆µ|x,y) = k

∫ ∞

µ=−∞

[
1 +

m(x̄− µ)2

vmσ2
m

]− 1
2
(m+ν0)[

1 +
n(ȳ − (∆µ + µ))2

wnτ 2
n

]− 1
2
(n+η0)

dµ

= k

∫ ∞

µ=−∞

[
1 +

m(x̄− µ)2

vmσ2
m

]− 1
2
(vm+1)[

1 +
n(ȳ − (∆µ + µ))2

wnτ 2
n

]− 1
2
(wn+1)

dµ(2.13)

This is the pdf of the Behrens-Fisher distribution, where k is given by,

k =
[
Beta

(vm

2
,
1

2

)
Beta

(wn

2
,
1

2

)√
vmwn

]−1

Now, we can apply the Behrens-Fisher distribution for testing the hypothesis regard-

ing the two population means, using two samples drawn from the population with

different means and different variances.

2.2. Test Statistic. Let us define the statistic, called the BF -statistic

B = ∆µ−(ȳ−x̄)

(
σ2

m
m

+
τ2
n
n

)
1
2

= (µ+∆µ)−ȳ
τn/

√
n

cosθ − (µ−x̄)
σm/

√
m

sinθ

= Bycosθ −Bxsinθ

where,

tanθ =
σm/

√
m

τn/
√

n
, 0 ≤ θ ≤ π

2

Bx =
(µ− x̄)

σm/
√

m
, By =

(µ + ∆µ)− ȳ

τn/
√

n

and, Bx and By are independently distributed as t- statistics, t(vm) and t(wn) respec-

tively. Hence, under the sampling distribution, p(x,y|µ, σ2, τ 2), the statistic B is

distributed as the Behrens- Fisher distribution with vm and wn degrees of freedom.

That is,

B ∼ BF (vm, wn, θ)

with pdf

(2.14)

f(β|µ, σ2, τ 2) = k

∫ ∞

−∞

[
1 +

(αcosθ − βsinθ)2

vm

]− vm+1
2

[
1 +

(αsinθ + βcosθ)2

wn

]−wn+1
2

dα,
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where,

α = Bysinθ + Bxcosθ, β = Bycosθ −Bxsinθ

which is same as (2.13).

Hence, we have proved the following :

Theorem 2.1. Let x and y be two independent samples with sample sizes m and

n respectively from normal distributions with different means µ and (µ + ∆µ) and

variances σ2 and τ 2. If the priors ν0 and η0 for means are flat priors and priors for

variances σ2
0 and τ 2

0 are scaled inverse χ2- distributions, the posterior distribution of

∆µ is the Behrens-Fisher distribution with vm = m + ν0 − 1, wn = n + η0 − 1 degrees

of freedom.

Due to the complexity of the pdf of the BF-distribution as given in (2.14), it is

very hard to compute the corresponding probabilities, especially due to the possibil-

ity of the fractional degrees of freedom. In addition, there are no uniformly most

powerful unbiased tests for all sample sizes for the BF- problem [13]. Because of this,

there are various types of approximations available in the literature [9],[13]. Due to

the simplicity of application as well as availability of R-code (www.r-project.org) for

computing t- values even for fractional degrees of freedom, we use Patil’s approxima-

tion [9] in this work as follows.

Let

f1 =
(

wn

wn−2

)
cos2θ +

(
vm

vm−2

)
sin2θ

f2 = w2
n

(wn−2)2(wn−4)
cos4θ + v2

m

(vm−2)2(vm−4)
sin4θ

a2 = (b−2)
b

f1

b = 4 +
f2
1

f2

cos2θ =
τ2
n
n(

τ2
n
n

+
σ2

m
m

) , sin2θ = 1− cos2θ.

Then, the statistic

(2.15)
B

a
∼ t(b).

That is, B has approximately t-distribution with b degrees of freedom (b ≥ 1,

b may not be an integer [7] ) and scale parameter a. This statistic B can also be

denoted as B ∼ t(0, a2, b). It was noted [9] that the formula (2.15) is valid only for

vm, wn ≥ 5 and works quite well for vm, wn ≥ 7 .
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The corresponding Bayesian test statistic [5] for the equal variance case is

(2.16) E =

(
∆µ − (ȳ − x̄)

)

υ
√

1
m

+ 1
n

which is distributed as t distribution with δ degrees of freedom, where,

(2.17)

{
δ = m + n + ν0 − 2

δυ2 = ν0σ
2
0 + (m− 1)s2

x + (n− 1)s2
y

3. Calculation of Prior d.f. and Prior Variance

There are many possible ways one can choose p and q (and so prior variances and

prior means) in the above expressions. In each of the methods, we use the sample

variances of only particular genes in both control and treatment conditions, and apply

equations (3.1),(3.2),(3.3) and (3.4). In this work we choose p and q in the following

manners and compare the effect of each of these in terms of FDR.

Method 1: Window Method

In this method, we calculate the prior degrees of freedom and prior variances by

taking those genes that are similar in variances to that of the gene of interest both

in control and treatment condition within pre-chosen window size. To calculate the

prior variance of a gene g in control condition, we calculate its variance in control

condition. Then we calculate the variance of all other genes and take only those p

genes whose variances are close to that of gene g. Now the prior variance for gene

g is the mean of variances of these p genes in control condition. Similarly the prior

variance for gene g in treatment condition is calculated by taking q genes with similar

variances to that of gene g.

For each gene g, the prior variances and prior means will be different. We have

dropped the subscript g from them. For p genes with similar variances and each

having m replicates in control condition, the prior degree of freedom for the variance

can be calculated as,

(3.1) ν̂0 = p(m− 1)

Similarly, for q genes with similar variances and each having n replicates in treatment

condition, the prior degrees of freedom for the variance is given by

(3.2) η̂0 = q(n− 1)
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The prior variances for control and treatment conditions are calculated as sample

variance of similar genes, which are the means of variances of similar genes in these

two conditions respectively.

σ̂0
2 =

1

ν0

p∑

k=1

m∑
i=1

(xk,i − x̄k)
2(3.3)

τ̂0
2 =

1

η0

q∑

k=1

n∑
j=1

(yk,j − ȳk)
2(3.4)

where,

x̄k is the mean response of gene k in the control condition

ȳk is the mean response of gene k in the treatment condition

xk,i is the response i of gene k in the control condition

yk,i is the response i of gene k in the treatment condition

Method 2: Similar Variance Method

Another way could be to choose the absolute difference of variances in both

control and treatment group using some cut-off values. For a gene g, let s2
cg and

s2
tg be the sample variances in control and treatment conditions respectively. Then

choose pg= number of genes j such that |s2
cg − s2

cj| ≤ k, where k = |min{s2
cg −

95% Lower χ2 CL of s2
cg, s

2
cg − 95% Upper χ2 CL of s2

cg}| in the control condi-

tion. Similarly, choose qg = number of genes j such that |s2
tg − s2

tj| ≤ k, where k

= |min{s2
ct−95% Lower χ2 CL of s2

ct, s
2
ct−95% Upper χ2 CL of s2

ct}| in the treatment

condition. So, in this method the values of p and q varies according to each gene. For

simplicity, we omit the subscript g in the notation.

Method 3: Bootstrapping Method

Instead of taking those genes which have similar variances within a window or as

in similar variance method, it is more practical to take bootstrap samples to calculate

prior variances for the actual data. Because, in the window method the researcher

should consider all possible window size and the determination of it may be time con-

suming. On the other hand, the similar variance method selects huge number of genes

and so the computation time is exponentially increased. In bootstrapping method we

take the p = q = 1% bootstrap samples from the pool of all genes together with the

gene of interest from the control and treatment conditions respectively to determine

the prior d.f. and variance for a gene. Then for p genes each having m replicates in

the control condition, the prior degrees of freedom is given by ν0 = p(m− 1) and the
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Figure 1. Power comparison for different sample size and priors using

Method 1

prior variance σ2
0 is estimated by the variance of the p bootstrap samples in the con-

trol condition. The prior degrees of freedom in the treatment condition η0 = q(n− 1)

and variance τ 2
0 are calculated similarly from the treatment condition.

4. Simulation and Result

To implement the theory, we have simulated 10,000 genes from normal distribu-

tions having mean µ1 = 0 variance σ2
1 = 1.5 in the normal conditions and mean µ2=

0.2 and variance σ2
2 = 1.2 in the treatment conditions. Each gene was replicated 10

times in each of the control and treatment conditions. Without loss of generality, we

have set 2 percent of the genes as differentially expressed, beginning from the first
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quarter onwards. The differentially expressed genes in the treatment condition was

generated by the normal distribution with mean of 5 and variance 2.

In the simplest case, when we choose ν0= η0 = 0, then the BF statistic reduces to

the two sample t-test. The parameters ν0 and η0 represents the degree of confidence

in the background variances σ2
0 and τ 2

0 versus the empirical variances of control and

treatment respectively. We have chosen the values of these two variances in the

wide range beginning from 0. The values of ν0 and η0 are increased. In each of the

calculation of variances of similar genes in the two conditions, we have taken the

window size equal to the the replicates in each condition, i.e., taking p/2 genes in

control group immediately above and below the gene under considerations. The mean

is taken of those ordered variances corresponding to the gene of interest. Since the

Behrens-Fisher distribution does not give the good result unless vm and wn is greater

than 5 and gives very good result when it exceeds 7 [9], we have chosen the values of

the prior degrees of freedom such that vm and wn exceeds 7. We have chosen those

genes as differentially expressed whose p-values are smaller than ranked values of the

statistic given by FDR criterion. Furthermore we have chosen the level of significance

α = 0.05. The number of genes that are found differentially expressed in our method

and in the equal variance cases are compared in the table. We have run the data 5

times and averaged the number of genes selected as differentially expressed in each

time.

In analyzing the fold change method with the BF method, we have found that

all the genes associated with the large - fold change are not necessarily statistically

significant in the Bayesian BF method.

5. Power Comparisons

In the microarray data, the number of microarrays are few generally 4 or 5 because

of the high cost of production. So, we have to find the method which describes the

high power even for the small number of samples. Here, we have compared the power

obtained by our method with that of equal variance test of Fox-Dimmic [5]. The

application of treatment not only affects the averages but it affects the expression

measurements, so it affects variances as well. It is a common experience in statistical

analysis that as the number of samples increases, the power of the test also increases.

But in our case, the power depends on the priors as well. Even for the small values

of priors, the power of the proposed method seems optimum than the equal variance

method.

We see from the graph of power (Figure 1) and power comparison table (Table 1)

that, at small values of ν0 the power obtained by the Equal variance test is preferred



12 NABIN K. MANANDHAR SHRESTHA AND KANDETHODY M. RAMACHANDRAN

Table 1. Table of Power Comparison

m = n ν0 = η0 power BF Power EV

2 16 0.5617153 0.4532222

3 16 0.7179875 0.6035196

4 16 0.820609 0.7177347

5 16 0.8865956 0.8020212

2 8 0.4969753 0.4067113

3 8 0.6431226 0.5496432

4 8 0.7496756 0.6657278

5 8 0.8262618 0.7566512

2 4 0.3985896 0.3444951

3 4 0.5350779 0.4867308

4 4 0.6495701 0.6098946

5 4 0.8395813 0.7105832

2 2 0.3057716 0.2803869

3 2 0.4221825 0.429857

4 2 0.545814 0.5631983

5 2 0.6547838 0.6739527

than our method. But eventually, our proposed method seems to have better result.

In small values of m and ν0, the corresponding values for vm = m+ ν0− 1 are smaller

and it does not give appropriate values unless it exceeds 7. Similarly, for the small

values of wn. So, we have to choose the values of ν0 or η0 and m or n such that the

values of vm and wn is at least 5. Holding ν0 = η0 = 4 we see the difference of power

in EV method and the new method increases significantly as the sample size increase

from 2 to 5. The difference in the power between this proposed method and the EV

method is less pronounced for the small sample sizes and small values of the prior

degrees of freedom. But it is more distinct as the prior degree of freedom increases.

We have chosen the prior variances σ2
0=0.7 and τ 2

0 =0.3.

In this simulated study, we have used the proportion of genes that are actually dif-

ferentially expressed and detected by our method as the criterion for comparing the

proposed method. As this method is not suitable if there is small values of m or n

and p or q that makes vm and wn small, which is seen clearly from the table (Table 2)

that for m = n = 2 and choosing any values of the priors ν0 and τ0 only selects 10%

of the genes that are actually expressed, although it reports large amount of genes

as differentially expressed. We have found that the genes marked as differentially

expressed by the fold-change (fold change = 2) method is almost 32% of the total

number of genes included in the simulated study. This result is highly unacceptable

as we have assumed only 2% of the genes as differentially expressed. On the another
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Replications DE genes Common in actual Proportion

m = n p = q FC t-test EV BF BF EV BF EV

2 2 3421 1 157.5 239 21.5 23 0.09 0.15

2 4 3430.5 0.5 544.5 263 35.5 61 0.13 0.11

2 8 3439.67 0 1145.67 733.33 85.33 119 0.12 0.1

2 20 3459 0 1693 1051 110 138 0.1 0.08

2 100 3374.5 0 2126.5 1187 121 154 0.1 0.07

3 2 3347 0.33 134.33 45 20 57.67 0.44 0.43

3 4 3392 0.33 344 226 79 111 0.35 0.32

3 8 3314.33 0 569.33 357.33 107.67 133.67 0.3 0.23

3 20 3371 0 832 479.67 133 158 0.28 0.19

3 100 3320.5 0.5 1032 568 135 165 0.24 0.16

4 2 3293.33 0.5 165 109.67 74.67 104 0.68 0.63

4 4 3317.4 0.33 279.4 204.4 114.8 141.4 0.56 0.51

4 8 3353.33 1.2 409 282 131 156.67 0.46 0.38

4 20 3378.5 0.67 568 364 151.5 175.5 0.42 0.31

4 100 3311 1 648.5 389 165 184 0.42 0.28

5 2 3332.33 1 208 167.33 131.33 158 0.78 0.76

5 4 3273 36.33 260 227.33 153.67 166.67 0.68 0.64

5 8 3267 23 320.5 240.5 155 176 0.64 0.55

5 20 3295 36.5 424.33 307 168.67 186.67 0.55 0.44

5 100 3251.67 51.67 453.33 326.67 174 184.33 0.53 0.41

10 2 3169 28.67 226.5 225.5 200 200 0.89 0.88

10 4 3133.67 215 245.33 242 198 199.33 0.82 0.81

10 8 3145.33 212.33 264.33 263.67 199.67 199.67 0.76 0.76

10 20 3168.33 217 269.67 264.67 200 200 0.76 0.74

10 100 3094 211.5 266.5 268 199 199.5 0.74 0.75
Table 2. Comparison of BF test with other tests based on the propor-

tion of actually DE genes selected in Window Method .

extreme, we ran two-sample t-test and found that it selected few genes as differen-

tially expressed as the sample sizes was increased to 4 and the window size was 20.

After that it selected many genes and the result was getting better when we took

sample size of 10. In this case, it selected almost the same genes as our method. So,

this method failed for the small sample size, because it could not select the genes that

are actually differentially expressed.
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Replications DE genes Common in actual Proportion

m n BF EV SAM t-test BF EV SAM t-test BF EV SAM t-test

3 3 22 24 11 15 15 15 11 7 0.68 0.63 1 0.47

4 4 24 23 20 26 19 19 19 3 0.79 0.83 0.95 0.12

5 5 22 22 22 29 20 20 20 19 0.91 0.91 0.91 0.66

6 6 23 21 20 33 20 19 19 19 0.87 0.9 0.95 0.58

10 10 25 23 24 36 20 19 20 20 0.8 0.83 0.83 0.56

12 12 23 26 23 29 20 20 20 20 0.87 0.77 0.87 0.69

15 15 20 20 51 34 20 20 20 20 1 1 0.39 0.59

3 4 29 28 16 30 18 18 16 12 0.62 0.64 1 0.4

4 6 24 25 24 27 20 20 20 17 0.83 0.8 0.83 0.63

10 15 26 26 34 37 20 20 20 20 0.77 0.77 0.59 0.54
Table 3. Comparision of BF test with other tests based on the pro-

portion of actually DE genes selected in Similar Variance Method .

6. Comparison of Window Method with Other Methods

All three tests, except fold-change method, gave almost the same conclusion as

our proposed similar variance method. Initially, when the sample size and window

size both are small, m = 2 and p = 2, then the method of equal variance test seemed

better in terms of proportion of actual genes selected. This is natural because our

method does not give the better result for small values of vm or wn. However, as

we have greater values of sample size and window size, our method excels the equal

variance Bayesian test counterpart. We have seen from the result that almost all of

the actually DE genes were selected by this proposed method when m = n = 10 and

p = q = 8. But, the proportion of genes selected compared to the actual set of DE

genes is just 75.7%.

The maximum proportion of genes selected is 88.7% when m = n = 10 and

p = q = 2. In this case all of the genes actually DE are selected. Our method and

equal variance test selected almost the same number of genes on average. Unless

p = q = 8 and for m = n = 2, both the equal variance and unequal variance method

selected enormous number of genes, most of them bogus. The proportion of true

genes is very low, about 11%. When m = n = 3 and p = q = 2, our method selected

45 genes of them 20 are actually DE, but equal variance method selected about 134

genes, of them about 58 are actually DE. Hence the proportion of true genes are 0.44

and 0.42 respectively.

Taking the sample sizes constant, we found that,the number of genes selected by all

three tests by Method 1 is proportional to the window size. But, most of them are
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Replicates Common in Actual DE Genes Selected as DE Proportion of Genes Selected

m,n BF EV SAM t-test BF EV SAM t-test BF EV SAM t-test

2, 2 73 63 29 15 75 63 29 115 0.973 1 1 0.13

3, 3 144 139 136 79 147 142 141 183 0.98 0.979 0.965 0.432

4, 4 179 184 175 128 182 190 179 254 0.984 0.968 0.978 0.504

5, 5 195 193 191 159 200 197 206 278 0.975 0.98 0.927 0.572

6, 6 197 198 198 188 203 203 231 325 0.97 0.975 0.857 0.578

8, 8 199 199 199 198 212 209 270 345 0.939 0.952 0.737 0.574

10, 10 200 200 200 200 209 206 332 342 0.957 0.971 0.602 0.585

12, 12 200 200 200 200 207 207 246 337 0.966 0.966 0.813 0.593

4, 3 168 170 151 94 173 173 153 230 0.971 0.983 0.987 0.409

4, 5 186 186 183 144 189 192 190 285 0.984 0.969 0.963 0.505

5, 6 198 198 198 162 201 201 215 323 0.985 0.985 0.921 0.502

6, 8 198 199 198 196 207 207 222 325 0.957 0.961 0.892 0.603
Table 4. Comparision of BF test with other tests based on the pro-

portion of actually DE genes selected in Bootstrap Method .

bogus, i.e, genes seem to be differentially expressed but are not really. Even though

the window size is small, the proportion of genes selected by these methods increased

as window size decreased. This means that for a fixed sample size, small values of

the priors ν0 and τ0 are preferred.

To see the performance of method 2, we have simulated 1000 genes as in the other

two methods. Because it selects huge number of genes with similar variance according

to our cut-of criterion, the computation is time consuming (which may not be good

for large number of genes and low memory computer). This method compares with

the equal variance and SAM as seen from the proportion and the number of truly

differentially expressed genes selected. In this case we have introduced only 20 genes as

differentially expressed. All three tests- BF, EV and the SAM were quite competitive

in this method. But, EV and BF are relatively more competitive. We see that SAM

selects very few genes when the sample sizes are small. But as the sample size was

increased to 15, it selected more genes. On the other hand, both BF and the EV

method selected almost the similar number of genes even though the sample size was

increased. The result is shown in Table 4.

Table 4. shows the number of gene selected by the Method 3. We have compared

the actual number of genes selected by different methods including SAM. We see that

the genes selected by our method is comparable to EV test and SAM. We notice that

SAM selects small number of genes relatively in the small sample sizes. Although

our BF method chooses more genes, it selects genes that are actually expressed. The

proportion of actually DE genes selected by BF method is comparable with the EV
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Proportion of DE genes FDR FNR

m=n 3 4 5 6 10 3 4 5 6 10 3 4 5 6 10

I. 0.35 0.56 0.67 0.74 0.82 0.65 0.44 0.33 0.26 0.18 0.61 0.43 0.24 0.13 0.01

II. 0.68 0.79 0.91 0.87 0.8 0.32 0.21 0.09 0.13 0.2 0.25 0.05 0 0 0

III. 0.98 0.98 0.98 0.97 0.96 0.02 0.02 0.03 0.03 0.04 0.28 0.11 0.03 0.02 0

Table 5. Comparison of three methods ( I = Window Method, II =

Similar Variance Method, III = Bootstrap Method ) according to Pro-

portion of truly De genes selected, FDR and FNR .

test, and performs better than the SAM method. The number of genes selected by

different methods increases as the sample size increases. But the EV test and BF

test select more actually expressed genes than the SAM and t-test. This means the

the false positive rate of these two tests are smaller than that of SAM and t-test.

The false positive rate is defined as probability of false positives among the positive

findings. False Positive Rates for the samples having m = n = 5 are: (BF, 0.025),

(EV, 0.020), (SAM, 0.072) and (t-test, 0.42). This means that 2.5% genes selected by

BF method are bogus whereas 7.2% genes selected by the SAM method are bogus.

The false discovery rate is defined as the expected proportion of false positives among

the positive findings. So, our method (Method 2.) seems better than SAM and t-test

while selecting the truly differentially expressed genes.

7. Comparison of Proposed THREE Methods

The above table (Table 5.) shows the comparison of aforementioned three meth-

ods. Here we have calculated the false discovery rate (FDR), which is the expected

proportion of false positives among the positive findings; Proportion of DE genes;

and False Negative rate (FNR), which is the expected proportion of true negatives

among the truly DE genes for each sample and compared them. It has been found

that the proportion of truly DE genes in the Method III is higher than in the other

two methods, taking the same sample sizes in all three methods. This means that

bootstrap method selects more truly DE genes than other two method. Similarly, the

FDR is also small in bootstrap method than other two methods. And the FNR is

smaller in method III than in method I and comparable to that of Method II. Hence

it seems that the bootstrap method is the best method in selecting the truly DE genes

than window and similar variance method in our simulated data.

8. Conclusions

We have proposed three new methods to get the differentially expressed genes if

the variances are different in samples. In all of our methods, our test performed better
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than the equal variance (EV) test (see Table 2) and SAM (see Table 3 and Table 4).

Furthermore, we have compared the three methods based on the proportion of truly

differentially expressed genes selected, FDR , and FNR criterion (see Table 5) and

found that the bootstrap method gave the best result among three proposed methods.

We have implemented our theory in R statistical software, http://www.r-project.org.
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