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1 Introduction

We are concerned with determining values of λ, µ (eigenvalues) for which there exist posi-
tive solutions for the system of three-point discrete boundary value problems,

∆2u(n − 1) + λa(n)f(v(n)) = 0, n ∈ {1, . . . , N − 1}, N ≥ 2,

∆2v(n − 1) + µb(n)g(u(n)) = 0, n ∈ {1, . . . , N − 1}, N ≥ 2,
(1)

u(0) = 0, u(N) = αu(η),

v(0) = 0, v(N) = αv(η),
(2)

where η ∈ {1, . . . , N − 1}, 0 < α < N/η, λ > 0, µ > 0 and

(A) f, g ∈ C([0,∞), [0,∞)),

(B) a, b : {0, . . . , N} → (0,∞),

(C) All of

f0 := lim
x→0+

f(x)

x
, g0 := lim

x→0+

g(x)

x
,

f∞ := lim
x→∞

f(x)

x
and g∞ := lim

x→∞

g(x)

x

exist as positive real numbers.
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The existence of positive solutions for nonlinear second order multi-point boundary value
problems is the last decades in the focus of interest of many researchers. The study of
multi-point boundary value problems for second order ordinary differential equations was
initiated by Il’in and Moiseev [13]. For a comprehensive bibliography on the subject we
refer to the survey paper of Ntouyas [16]. Existence results for positive solutions for second
or higher order boundary value problems for discrete difference equations with two- or
three-point boundary conditions were studied in [1, 2, 7, 8, 11, 12, 14, 15, 17] and the
references cited therein.

Recently the interest of the present authors was focused in the existence of positive so-
lutions for systems of second order multi-point boundary value problems. We refer the
interested reader to [3, 9, 10] and the references cited therein. We continue this study here
to cover the case of discrete systems.

Note that when α = 0 equation (2) reduces to

u(0) = 0, u(N) = 0,

v(0) = 0, v(N) = 0.
(3)

The main tool in determining values of λ and µ for which positive solutions (positive
with respect to a cone) of (1), (2) exist, is the following well-known Guo-Krasnosel’skii [6]
fixed point theorem.

Theorem 1.1 Let B be a Banach space, and let P ⊂ B be a cone in B. Assume Ω1 and Ω2

are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

2 Some Preliminaries

In this section, we state some preliminary lemmas and the well-known Guo-Krasnosel’skii
fixed point theorem. The following lemmas are obvious.

Lemma 2.1 Let η ∈ {1, . . . , N −1}, 0 < α < N/η; then, for any y : {1, . . . , N −1} → R,

the boundary value problem

∆2u(n − 1) + y(n) = 0, t ∈ {1, . . . , N − 1}, (4)

u(0) = 0, u(N) = αu(η), (5)
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has the unique solution

u(n) =
n

N − αη

N−1∑

s=1

(N − s)y(s) −
αn

N − αη

η−1∑

s=1

(η − s)y(s) −

n−1∑

s=1

(t − s)y(s). (6)

From (6) we have that

u(n) ≤ −
αn

N − αη

η−1∑

s=1

(η − s)y(s) +
n

N − αη

N−1∑

s=1

(N − s)y(s)

≤
N

N − αη

N−1∑

s=1

(N − s)y(s), n ∈ {1, . . . , N − 1},

(7)

and

u(η) = −
αη

N − αη

η−1∑

s=1

(η − s)y(s)

+
η

N − αη

N−1∑

s=1

(N − s)y(s) −

η−1∑

s=1

(η − s)y(s)

=
−N

N − αη

η−1∑

s=1

(η − s)y(s) +
η

N − αη

N−1∑

s=1

(N − s)y(s)

=
−N

N − αη

η−1∑

s=1

(η − s)y(s) +
η

N − αη

η−1∑

s=1

(N − s)y(s) (8)

+
η

N − αη

η−1∑

s=1

(N − s)y(s)

=
N − η

N − αη

N−1∑

s=η

sy(s) +
η

N − αη

N−1∑

s=η

(N − s)y(s)

≥
η

N − αη

N−1∑

s=η

(N − s)y(s), n ∈ {1, . . . , N − 1}.

Lemma 2.2 Let η ∈ {1, . . . , N −1}, 0 < α < N/η; then, for any y : {1, . . . , N −1} → R,

the Green’s function for the boundary value problem

∆2u(n − 1) + y(n) = 0, n ∈ {1, . . . , N − 1}, (9)

u(0) = 0, u(N) = αu(η), (10)
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is given by

G(n, s) =





n(N − s)

N − αη
−

αn(η − s)

N − αη
− (n − s), s ≤ n, s ≤ η,

n(N − s)

N − αη
−

αn(η − s)

N − αη
, n ≤ s ≤ η,

n(N − s)

N − αη
, s > n, s > η,

n(N − s)

N − αη
− (n − s), η ≤ s ≤ n.

(11)

It is obvious that

y(n) =

N−1∑

s=1

G(n, s)y(s).

Lemma 2.3 ([14]) Let 0 < α < N/η and assume (A) and (B) hold. Then, the unique

solution of (4)-(5) satisfies

min
n∈{η,...,N}

u(n) ≥ γ‖u‖,

where γ = min

{
αη

N
,
α(N − η)

N − αη
,

η

N

}
. (As η ∈ {1, . . . , N − 1}, it follows that γ < 1).

We note that a pair (u(n), v(n)) is a solution of eigenvalue problem (1), (2) if, and only
if,

u(n) = λ
N−1∑

s=1

G(n, s)a(s)f

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)
, n ∈ {0, . . . , N},

where

v(n) = λ
N−1∑

s=1

G(n, s)b(s)g(u(s)), n ∈ {0, . . . , N}.

A solution (u(n), v(n)) of (1), (2) is called a positive solution if u(i) > 0, v(i) > 0 for
i ∈ {1, . . .N − 1}.

Values of λ, µ for which there are positive solutions (positive with respect to a cone) of
(1), (2) will be determined via applications of the fixed point theorem, Theorem 1.1.

3 Positive Solutions in a Cone

In this section, we apply Theorem 1.1 to obtain solutions in a cone (that is, positive solu-
tions) of (1), (2). For our construction, let B be a Banach space of real valued functions
defined on {0, . . . , N} with supremum norm, ‖ · ‖, and define a cone P ⊂ B by

P =

{
x ∈ B | x(n) ≥ 0 on {0, . . . , N}, and min

n∈{η,...,N}
x(n) ≥ γ‖x‖

}
.

For our first result, define positive numbers L1 and L2 by

L1 := max





[
γ2η

N − αη

N−1∑

s=η

(N − s)a(s)f∞

]−1

,

[
γ2η

N − αη

N−1∑

s=η

(N − s)b(s)g∞

]−1


 ,
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and

L2 := min





[
N

N − αη

N−1∑

s=1

(N − s)a(s)f0

]−1

,

[
N

N − αη

N−1∑

s=1

(N − s)b(s)g0

]−1


 .

Theorem 3.1 Assume that conditions (A), (B) and (C) hold. Then, for each λ, µ satisfiyng

L1 < λ, µ < L2, (12)

there exists a pair (u, v) satisfying (1), (2) such that u(n) > 0 and v(n) > 0 on {1, . . . , N−

1}.

Proof. Let λ, µ as in (12) and let ε > 0 be chosen such that

max





[
γ2η

N − αη

N−1∑

s=η

(N − s)a(s)(f∞ − ε)

]−1

,

[
γ2η

N − αη

N−1∑

s=η

(N − s)b(s)(g∞ − ε)

]−1


 ≤ λ, µ

and

λ, µ ≤ min





[
N

N − αη

N−1∑

s=1

(N − s)a(s)(f0 + ε)

]−1

,

[
N

N − αη

N−1∑

s=1

(N − s)b(s)(g0 + ε)

]−1


 .

Define an operator T : P → B by

Tu(n) := λ

N−1∑

s=1

G(n, s)a(s)f

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)
, u ∈ P. (13)

We seek suitable fixed points of T in the cone P .

By Lemma 2.3, TP ⊂ P. In addition, standard arguments show that T is completely
continuous.

Now, from the definitions of f0 and g0, there exists an H1 > 0 such that

f(x) ≤ (f0 + ε)x and g(x) ≤ (g0 + ε)x, 0 < x ≤ H1.
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Let u ∈ P with ‖u‖ = H1. From (7) and the choice of ε, we have for s ∈ {0, . . . , N}

µ
N−1∑

r=1

G(s, r)b(r)g(u(r)) ≤ µ
N

N − αη

N−1∑

r=1

(N − r)b(r)g(u(r))

≤ µ
N

N − αη

N−1∑

r=1

(N − r)b(r)(g0 + ε)u(r)

≤ µ
N

N − αη

N−1∑

r=1

(N − r)b(r)(g0 + ε)‖u‖

≤ ‖u‖

= H1.

Consequently, from (8), and the choice of ε, we have for s ∈ {0, . . . , N}

Tu(n) = λ
N−1∑

s=1

G(n, s)a(s)f

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)(f0 + ε)µ
N−1∑

r=1

G(s, r)b(r)g(u(r))

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)(f0 + ε)H1ds

≤ H1

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖. If we set

Ω1 = {x ∈ B | ‖x‖ < H1},

then
‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (14)

By the fact that f∞ and g∞ are positive real numbers, it follows that there exists H2 > 0

such that
f(x) ≥ (f∞ − ε)x and g(x) ≥ (g∞ − ε)x, x ≥ H2.

Let
H2 = max

{
2H1,

H2

γ

}
.

Let u ∈ P and ‖u‖ = H2. Then,

u(n) ≥ min
n∈{η,...,N}

u(n) ≥ γ‖u‖ ≥ H2, n ∈ {1, . . . , N − 1}.
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Observing that Tu satisfies (4)-(5) for y(s) = λa(s)f(u(s)) and in view of (8) and the
choice of ε, we have for s ∈ {1, . . . , N − 1}

µ
N−1∑

r=1

G(s, r)b(r)g(u(r)) ≥ µ
γη

N − αη

N−1∑

r=η

(N − r)b(r)g(u(r))

≥ µ
γη

N − αη

N−1∑

r=η

(N − r)b(r)g(u(r))

≥ µ
γη

N − αη

N−1∑

r=η

(N − r)b(r)(g∞ − ε)u(r)

≥ µ
γη

N − αη

N−1∑

r=η

(N − r)b(r)(g∞ − ε)γ‖u‖

≥ ‖u‖

= H2,

and so, from (12) and the choice of ε, we have

Tu(η) ≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)f

(
µ

N−1∑

r=η

G(s, r)b(r)g(u(r))

)

≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)(f∞ − ε)µ

N−1∑

r=η

G(s, r)b(r)g(u(r))

≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)(f∞ − ε)H2

≥ λ
γη

N − αη

N−1∑

s=η

(N − s)a(s)(f∞ − ε)H2

≥ H2

= ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖ for u ∈ P and ‖u‖ = H2. So, if we set

Ω2 = {x ∈ B | ‖x‖ < H2},

then
‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (15)

Applying Theorem 1.1 to (14) and (15), we obtain that T has a fixed point u ∈ P ∩ (Ω2 \

Ω1). As such, and with v defined by

v(n) = λ
N−1∑

s=1

G(n, s)b(s)g(u(s)),
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the pair (u, v) is a desired solution of (1), (2) for the given λ. The proof is complete. �

For our next result we define the positive numbers

L3 : = max





[
γη

N − αη

η−1∑

s=η

(N − s)a(s)f0

]−1

,

[
γη

N − αη

η−1∑

s=η

(N − s)b(s)g0

]−1


 ,

and

L4 : = min





[
N

N − αη

N−1∑

s=1

(N − s)a(s)f∞

]−1

,

[
N

N − αη

N−1∑

s=1

(N − s)b(s)g∞

]−1


 .

We are now ready to state and prove our second result.

Theorem 3.2 Assume that conditions (A), (B) and (C) hold. Then for each λ, µ satisfying

L3 < λ, µ < L4, (16)

there exists a pair (u, v) satisfying (1), (2) such that u(n) > 0 and v(n) > 0 on {1, . . . , N−

1}.

Proof. Let λ, µ be as in (16) and let ε > 0 be chosen such that

max





[
γη

N − αη

η−1∑

s=η

(N − s)a(s)(f0 − ε)

]−1

,

[
γη

N − αη

η−1∑

s=η

(N − s)b(s)(g0 − ε)

]−1


 ≤ λ, µ

and

λ, µ ≤ min





[
N

N − αη

N−1∑

s=1

(N − s)a(s)(f∞ + ε)

]−1

,

[
N

N − αη

N−1∑

s=1

(N − s)b(s)(g∞ + ε)

]−1


 .

Let T be the cone preserving, completely continuous operator that was defined by (13).
From the definitions of f0 and g0, there exists H3 > 0 such that

f(x) ≥ (f0 − ε)x and g(x) ≥ (g0 − ε)x, 0 < x ≤ H3.
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Also, from the definition of g0 it follows that g(0) = 0 and so there exists H3 ∈ (0, H3)

such that
µg(x) ≤

H3

N
N−αη

∑N−1
r=1 (N − r)b(r)

, 0 ≤ x ≤ H3.

For u ∈ P with ‖u‖ = H3 we note that for r ∈ {0, . . . , N}, it holds that 0 < u(r) ≤

‖u‖ = H3. As v(r) satisfies (4)-(5) for y(r) = µb(r)g(v(r)), in view of (7) we have for
s ∈ {0, . . . , N}

µ

N−1∑

r=1

G(s, r)b(r)g(u(r)) ≤ µ
N

N − αη

N−1∑

r=1

(N − r)b(r)g(u(r))

≤

N
N−αη

∑N−1
r=1 (N − r)b(r)H3

N
N−αη

∑N−1
r=1 (N − r)b(r)

≤ H3.

Then, by (8)

Tu(η) ≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)f

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)
ds

≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)(f0 − ε)µ
η

N − αη

N−1∑

r=η

(N − r)b(r)g(u(r))

≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)(f0 − ε)µ
γη

N − αη

N−1∑

r=η

(N − r)b(r)(g0 − ε)‖u‖

≥ λ
η

N − αη

N−1∑

s=η

(N − s)a(s)(f0 − ε)‖u‖

≥ λ
γη

1 − αη

N−1∑

s=η

(N − s)a(s)(f0 − ε)‖u‖

≥ ‖u‖.

So, ‖Tu‖ ≥ ‖u‖. If we put

Ω3 = {x ∈ B | ‖x‖ < H3},

then
‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3. (17)

Next, by definitions of f∞ and g∞, there exists H4 such that

f(x) ≤ (f∞ + ε)x and g(x) ≤ (g∞ + ε)x, x ≥ H4.

Clearly, since g∞ is assumed to be a positive real number, it follows that g is unbounded at
∞, and so, there exists H̃4 > max{2H3, H4} such that g(x) ≤ g(H̃4), for 0 < x ≤ H̃4.
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Set

f ∗(n) = sup
0≤s≤n

f(s), g∗(n) = sup
0≤s≤n

g(s), for n ≥ 0.

Clearly f ∗ anf g∗ are nondecreasing real valued function for which it holds

lim
x→∞

f ∗(x)

x
= f∞, lim

x→∞

g∗(x)

x
= g∞.

As f ∗ anf g∗ are nondecreasing, for some H4 > H4 we have f ∗(x) ≤ f ∗(H4), g∗(x) ≤

g∗(H4) for 0 < x ≤ H4.

For u ∈ P with ‖u‖ = H4, by (8) we find for n ∈ {0, . . . , N}

Tu(n) ≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f ∗

(
µ

N−1∑

r=1

G(s, r)b(r)g(u(r))

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f ∗

(
µ

N

N − αη

N−1∑

r=1

(N − r)b(r)g∗(u(r))

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f ∗

(
µ

N

N − αη

N−1∑

r=1

(N − r)b(r)g∗(H4)

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f ∗

(
µ

N

N − αη

N−1∑

r=1

(N − r)b(r)(g∞ + ε)H4

)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)f ∗(H4)

≤ λ
N

N − αη

N−1∑

s=1

(N − s)a(s)(f∞ + ε)H4

≤ H4

= ‖u‖,

and so ‖Tu‖ ≤ ‖u‖ for u ∈ P with ‖u‖ = H4. For this case, if we let

Ω4 = {x ∈ B | ‖x‖ < H4},

then

‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4. (18)

Application of part (ii) of Theorem 1.1 yields a fixed point u of T belonging to P ∩ (Ω4 \

Ω3), which in turn yields a pair (u, v) satisfying (1), (2) for the chosen value of λ. The
proof is complete. �
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Remark 3.1 Similar results to those in Theorems 3.1, 3.2 can be obtained for the following
systems of second order difference equations

∇∆u(n) + λa(n)f(v(n)) = 0, n ∈ {1, . . . , N − 1}, N ≥ 2,

∇∆v(n) + µb(n)g(u(n)) = 0, n ∈ {1, . . . , N − 1}, N ≥ 2,
(19)

subject to any one of the following discrete boundary conditions

u(0) = 0, u(N) = αu(η),

v(0) = 0, v(N) = αv(η),
(20)

u(0) − β∆u(0) = 0, u(N) = αu(η),

v(0) − β∆v(0) = 0, v(N) = αv(η),
(21)

or
∆u(0) = 0, u(N) = αu(η),

∆v(0) = 0, v(N) = αv(η),
(22)

where, as usual, ∆ is the forward difference operator with stepsize 1, ∆u(n) = u(t + 1) −

u(n) and ∇ is the backward difference operator with stepsize 1, ∇u(n) = u(n)−u(n−1).

The corresponding discrete boundary value problems for difference equations were studied
in [4, 5]. For example, in [5] it was proved that if (N +1−αη)+β(1−α) 6= 0 and β 6= −1

the boundary value problem

∇∆u(n) + y(n) = 0, n ∈ {1, . . . , N}

u(0) − β∆u(0) = 0, u(N) = αu(η),

has a unique solution

u(n) = −

n−1∑

s=1

(n − s)y(s) +

N∑

s=1

n + β

(N + 1 − αη) + β(1 − α)
(N + 1 − s)y(s)

−

η−1∑

s=1

α(n + β)

(N + 1 − αη) + β(1 − α)
(η − s)y(s), n ∈ {0, . . . , N + 1},

and the Green’s function for this problem is given by

G(n, s) =





(s + β)[N + 1 − n − α(η − n)]]

(N + 1 − αη) + β(1 − α)
, s < n, s ≤ η,

(N + 1 − n)(s + β) + α(η + β)(n − s)

(N + 1 − αη) + β(1 − α)
, η ≤ s ≤ n,

(n + β)[N + 1 − s − α(η − s)]

(N + 1 − αη) + β(1 − α)
, n ≤ s < η,

(n + β)(N + 1 − s)

(N + 1 − αη) + β(1 − α)
, s ≥ n, s ≥ η.

Using these relations and the necessary modifications we can extend our results to the above
boundary value problems. We omit the details.
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4 Discussion

A necessary condition for the existence of positive solutions of the BVP (1)-(2) is that the
positive numbers L1 and L2 defined in Section 3 satisfy L1 < L2. Setting

f(n) = p2| sinn| + p1ne−1/n, n ∈ N,

g(n) = p2| sin n| + q1e
−1/n, n ∈ N,

we immediately observe that

lim
x→∞

f(x)

x
= p1, lim

x→∞

f(x)

x
= q1,

lim
x→0+

f(x)

x
= p2, lim

x→0+

f(x)

x
= q2.

Assume that

a(n) =
a1(n)

N − n
, b(n) =

b1(n)

N − n
, n ∈ {0, . . . , N − 1},

where a1(n) ≥ 0, n ∈ N and b1(n) ≥ 0, n ∈ N.

Recall that

γ = min

{
αη

N
,
α(N − η)

N − αη
,

η

N

}
.

Now let us set r0 = η
N

< 1. Then γ = min
{
αr0,

α(1−r0)
1−αr0

, r0

}
. Assuming that a ∈

(
1, 1

r0

)
,

we have that γ = r0 and so

L1 = max





[
γη

N − αη

N−1∑

s=η

(N − s) a (s) f∞

]−1

,

[
γη

N − αη

N−1∑

s=η

(N − s) b (s) g∞

]−1




= max





[
r2
0

1 − αr0

N−1∑

s=η

a1 (s) p1

]−1

,

[
r2
0

1 − αr0

N−1∑

s=η

b1 (s) q1

]−1




=
1 − αr0

r2
0

·
1

min

{
p1

N−1∑
s=η

a1 (s) ,
N−1∑
s=η

b1 (s) q1

} ,

i.e.,

L1 =
1 − αr0

r2
0 min

{
p1

N−1∑
s=η

a1 (s) ,
N−1∑
s=η

b1 (s) q1

} .
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In a similar manner

L2 = min





[
N

N − αη

N−1∑

s=0

(N − s) a (s) f0

]−1

,

[
N

N − αη

N−1∑

s=0

(N − s) b (s) g0

]−1




= min





[
1

1 − αr0

N−1∑

s=0

a1 (s) p2

]−1

,

[
1

1 − αr0

N−1∑

s=0

b1 (s) q2

]−1




= (1 − αr0) ·
1

max

{
N−1∑
s=0

a1 (s) p2,
N−1∑
s=0

b1 (s) q2

} ,

i.e.,
L2 =

1 − αr0

max

{
N−1∑
s=0

a1 (s) p2,
N−1∑
s=0

b1 (s) q2

} .

Observe that L1 < L2 is equivalent to
1 − αr0

r2
0 min

{
p1

N−1∑
s=r0N

a1 (s) ,
N−1∑

s=r0N

b1 (s) q1

} <
1 − αr0

max

{
N−1∑
s=0

a1 (s) p2,
N−1∑
s=0

b1 (s) q2

} ,

i.e., to

max

{
p2

N−1∑

s=0

a1 (s) , q2

N−1∑

s=0

b1 (s)

}
< r2

0 min

{
p1

N−1∑

s=r0N

a1 (s) , q1

N−1∑

s=r0N

b1 (s)

}
,

which can be written as

max

{
p2

N−1∑
s=0

a1 (s) , q2

N−1∑
s=0

b1 (s)

}

min

{
p1

N−1∑
s=r0N

a1 (s) , q1

N−1∑
s=r0N

b1 (s)

} < r2
0. (23)

A weaker - but easier to be verified - sufficient condition for (23) to hold is

max {p2, q2}max

{
N−1∑
s=0

a1 (s) ,
N−1∑
s=0

b1 (s)

}

min {p1, q1}min

{
N−1∑

s=r0N

a1 (s) ,
N−1∑

s=r0N

b1 (s)

} < r2
0, (24)

while a sufficient condition for (24) to hold is

max {p2, q2}

min {p1, q1}
·

N−1∑
s=0

max {a1 (s) , b1 (s)}

N−1∑
s=r0N

min {a1 (s) , b1 (s)}

< r2
0. (25)

Example 4.1 Consider the system of three point boundary value problems

∆2u (n − 1) + λ
a0

N − n

[
p2 |sin (v (n))| + p1v (n) e−1/v(n)

]
= 0,

∆2v (n − 1) + µ
b0

N − n

[
q2 |sin (u (n))| + q1u (n) e−1/u(n)

]
= 0,
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u (0) = 0, u (N) =
4

3
u

(
2

3
N

)
,

v (0) = 0, v (N) =
4

3
u

(
2

3
N

)
,

where a0, b0, p2, p1, p0, q2 are positive real numbers.

We observe that 1 < α = 4
3

< 3
2

= N
η

, and that for the special case that a1(n) = a0 and
b1(n) = b0, (23) becomes

N

N − η
·
max {p2a0, q2b0}

min {p1a0, q1b0}
<
( η

N

)2

,

i.e.,
max {p2a0, q2b0}

min {p1a0, q1b0}
<
( η

N

)2 N − η

N
.

In view of the above discussion, we have the following result:
If

max {p2a0, q2b0}

min {p1a0, q1b0}
<

2

27
,

then there exist some positive numbers λ and µ for which the above system has positive

solutions.
We note that the results obtained in the above discussion may easily be applied to BVPs

containing equations like

∆2u (n − 1) + λ
a0

N − n

[
k∑

i=1

|sin (p2iv (n))| +
l∑

i=1

p1iv (n) c
−1/div(n)
i

]
= 0,

∆2v (n − 1) + µ
b0

N − n

[
m∑

i=1

|sin (q2iu (n))| +

κ∑

i=1

q1iu (n) e−1/βiu(n)

]
= 0,

where the constants involved are positive.
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