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Abstract: We discuss iterative operator-splitting methods for convection-diffusion and

wave equations motivated from the eigenvalue problem to decide the splitting process. The

operator-splitting methods are well-know to solve such complicated multi-dimensional and

multi-physical problems. Often the problem, how to decouple the underlying operators, is

not understood well enough. We propose a method based on computing the eigenvalues for

the simpler problem to decide the splitting operators and the time steps. We present the

analysis and the numerical results.
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1 Introduction

We are mitigated by simulating a three-dimensional wave equation for an anisotropic mate-
rial with stress-free boundary conditions. The applications are suited in the earthquake sim-
ulation that is fundamental to seismic model problems, see [1], [3], and [10]. In this paper
we discuss the efficiency of a higher-order time-discretization method that is based on an it-
erative operator-splitting method. The main contributions are the scale decoupling based on
the eigenvalue problem. We propose an algorithm to compute such pre-eigenvalues for the
scale separations. To apply the scale separations we have to discuss a Runge-Kutta method
as a higher-order time-discretization to approximate the coarser scales into the finer scales.
The efficiency of different time scales due to each operator allows improved simulation
times. We verify our numerical methods with computational results based on our software
tool OPERA − SPLITT . We present 2D wave equations with different higher-order
splitting ideas. Finally we discuss the next works.

The paper is organized as follows. A mathematical model based on the wave equations
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is introduced in Section 2. The discretization methods are explained in Section 3. The
decomposition method as an iterative operator-splitting method is presented in Section 4.
In Section 5, the error estimates are discussed. The decoupling method based on the eigen-
value problems is discussed in Section 6. We introduce the numerical results in Section 7.
Finally we discuss our future works in the area of splitting and decomposition methods.

2 Mathematical model

The motivation to our model problem comes from the earthquake simulations done with an
elastic wave propagation. We concentrate on the simpler wave equations, which represent
the propagation of linear waves. Due to this motivation we analyze the following model
problem:

∂ttc(t) = D1(c, x, y, t)∂xxc(x, y, t) + D2(c, x, y, t)∂yyc(x, y, t), in Ω × (0, T ), (2.1)

c(x, y, 0) = c0(x, y), c′(x, y, 0) = c1(x, y), on Ω, (2.2)

c(x, y, t) = c2(x, y, t), on ∂Ω × (0, T ), (2.3)

where the initial functions c0(x, y) and c1(x, y) and the Dirichlet boundary condition
c2(x, y, t) are given. We deal with nonlinear diffusion operators D1 and D2 with sufficient
smoothness.

The simulation of such models is studied in [2], [3]. We propose the decomposition with
respect to its spatial directions to obtain efficient methods, which take into account the
different time scales of the operators. In such a case the discretization methods might be
adapted to the decomposition methods. Our contributions can be found in the following
sections.

3 Discretization methods for the wave equation

For the time- and space-discretization we first underly finite difference schemes for the
discretization.

For a classical wave equation we treat the well-known discretization in time and space.
Based on this discretization, the time is discretized as:

Utt,i =
Un+1

i − 2Un
i + Un−1

i

∆t2
, (3.1)

U(0) = u0, Ut(0) = u1, (3.2)

where i is the space point xi and ∆t = tn+1 − tn is the time step.
The space is discretized as:

Uxx,n =
Un

i+1 − 2Un
i + Un

i−1

∆x2
, (3.3)

U(0) = u0, Ut(0) = u1, (3.4)
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where n is the time point tn and ∆x = xi+1 − xi is the grid width.
The underlying equation,

utt = D1uxx + D2uyy in Ω, (3.5)

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), (3.6)

u(x, y, t) = u2 on ∂Ω, (3.7)

is discretized with the unconditional stable implicit η-method, see [4].
For the scale-dependent cases we propose explicit Runge-Kutta methods for the coarser

scales to approximate the intermediate values.
The second-order differential equation is transformed into a system of first-order deriva-

tives:

u′

1 = u2 , u1(x0) = c0, (3.8)

u′

2 = (A + B)u1 , u2(x0) = c1. (3.9)

The explicit Runge-Kutta method is given as

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 2/6 2/6 1/6

, (3.10)

or with the 3/8-rule as 4th-order RK method:

0

1/3 1/3

2/3 −1/3 1

1 1 −1 1

1/8 3/8 3/8 1/8

. (3.11)

4 Iterative operator-splitting methods for wave equations

In the following we present the iterative operator-splitting method as an extension of the
traditional splitting method for wave equations.

We deal with the second-order Cauchy problem, derived from applying a semi-
discretization in space with our finite difference methods. We concentrate on the abstract
equation

d2c(t)

dt2
= (A + B) c(t), for t ∈ [0, T ], (4.1)

where the initial conditions are c0 = c(0) and c1 = dc
dt

(0). The operators A, B are a matrices
given with rank(A) = rank(B) = m, and we assume them to be bounded operators.
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The idea is to repeat the splitting steps with the improved computed solutions. At least
we have to solve a fixed-point iteration and we obtain higher-order results. The iterative
splitting method is given as

d2ci(t)

dt2
= Aci(t) + Bci−1(t) + f(t), t ∈ [tn, tn+1],

with ci(t
n) = cn

sp,
dci(t

n)

dt
=

dcn
sp

dt
, (4.2)

d2ci+1(t)

dt2
= Aci(t) + Bci+1(t) + f(t), t ∈ [tn, tn+1],

with ci+1(t
n) = cn

sp,
dci+1(t

n)

dt
=

dcn
sp

dt
, (4.3)

for i = 1, 3, 5, . . . , 2m + 1, where c0(t),
dc0(t)

dt
are fixed functions for each iteration. (Here,

as before, cn
sp,

dcn
sp

dt
denote known split approximations at the time level t = tn.) The time

step is given as τ = tn+1 − tn. The split approximation at the time level t = tn+1 is
cn+1
sp = c2m+2(t

n+1).
For the discrete version of the iterative operator-splitting method, we apply the second-

order discretization of the time derivations and obtain:

ci − 2c(tn) + c(tn−1) = τ 2
nA(ηci + (1 − 2η)c(tn) + ηc(tn−1)) (4.4)

+ τ 2
nB(ηci−1 + (1 − 2η)c(tn) + ηc(tn−1))

+ τ 2
n(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

ci+1 − 2c(tn) + c(tn−1) = τ 2
nA(ηci + (1 − 2η)c(tn) + ηc(tn−1)) (4.5)

+ τ 2
nB(ηci+1 + (1 − 2η)c(tn) + ηc(tn−1))

+ τ 2
n(ηf(tn+1) + (1 − 2η)f(tn) + ηf(tn−1)),

where we iterate for i = 1, 3, 5, . . . and the starting solutions c0(t),
dc0(t)

dt
are any fixed

functions for each iteration, for example c0(t) = dc0(t)
dt

= 0. The result is given as c(tn+1)

with the initial conditions c(tn) = cn
sp and dc(tn)

dt
=

dcn
sp

dt
, and η ∈ [0, 0.5], using the fully

coupled method for η = 0 or the decoupled method for 0 < η ≤ 0.5, which is a mixing of
explicit and implicit Euler methods.

The stop criteria is given as
|cĩ+2 − cĩ| ≤ ε,
where ĩ ∈ 1, 3, 5, . . . ε ∈ IR+.
Therefore the solution is given as c(tn+1) = cĩ+2.

The consistency result is given in the following Theorem 4.1.

Theorem 4.1 Let A, B ∈ L(X ) be given linear bounded operators. Then the abstract

Cauchy problem (4.1) has a unique solution and the iterative splitting method (4.2)–(4.2)

with i = 1, 3, . . . , 2m + 1 is consistent with the order of the consistency O(τ 2m
n ).
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The error estimate is given as:

‖ei‖ = K‖B‖τn‖ei−1‖ + O(τ 2
n), (4.6)

where ei = max{|e1,i|, |ei,2|}.

Proof. The proof is outlined in [9]. �

In the next section we discuss the strategies to compute the efficient starting vector.

5 Error estimates

For the error estimates we derive the a priori and a posteriori error estimates with respect
to the iterative solutions.

The a priori error estimate is given as:

Theorem 5.1 Let A, B ∈ L(X ) be given linear bounded operators. Then the abstract

Cauchy problem (4.1) has a unique solution and the iterative splitting method (4.2)–(4.2)

with i = 1, 3, . . . , 2m + 1 is consistent with the order of the consistency O(τ 2m
n ).

The error estimate is given as:

‖ui(t
n+1) − ui−1(t

n+1)‖ =
1

i!
τ iλi

A+B,1u(tn), (5.1)

where i = 1, 3, . . . , 2m + 1.

Proof. By starting with u0(t
n+1) = 0 as initialization of our iterative method we can derive

the iterative solutions as

ui(t
n+1) =

(

i
∑

j=0

1

j!
τ j(A + B)j

)

u(tn), (5.2)

where i = 1, 3, . . . , 2m + 1 and u(tn) is the solution at tn. The time step is given as τ , see
also [5].

Therefore we can calculate the error estimate as

ui(t
n+1) − ui−1(t

n+1) =

(

i
∑

j=0

1

j!
τ j(A + B)j

)

u(tn) −
(

i−1
∑

j=0

1

j!
τ j(A + B)j

)

u(tn),

=
1

i!
τ i(A + B)iu(tn), (5.3)

where we assume an equidistant time step τ and the exact initial condition u(tn).
If we assume the diagonalization of the operators to the eigenvalues λA and λB , the error

estimate is given as

‖ui(t
n+1) − ui−1(t

n+1)‖ =
1

i!
τ iλi

A+B,1u(tn), (5.4)

where λA+B,1 is the maximal eigenvalue for the operator A + B. �
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Remark 5.2 The a priori error estimate is dominated by the maximal eigenvalues of A and
B. With more iterations we can take control of the eigenvalues, because we can decrease
the error. So the balance between the time step, which is given as τ , and the number of
iterations i is important to control the error of the underlying methods.

The a posteriori error estimate is discussed in the following theorem.

Theorem 5.3 Let A, B ∈ L(X ) be given linear bounded operators. Then the abstract

Cauchy problem (4.1) has a unique solution and the iterative splitting method (4.2)–(4.2)

with i = 1, 3, . . . , 2m + 1 is consistent with the order of the consistency O(τ 2m
n ).

The error estimate is given as:

‖ui(t
n+1) − ui−1(t

n+1)‖ ≤ ‖ui−1(t
n+1) − ui−2(t

n+1)‖, 1

i
τλA+B,1εi ≤ εi−1, (5.5)

where i = 1, 3, . . . , 2m + 1.

Proof. We also start with u0(t
n+1) = 0 as initialization of our iterative method and obtain

the iterative solution as

ui(t
n+1) =

(

i
∑

j=0

1

j!
τ j(A + B)j

)

u(tn), (5.6)

where i = 1, 3, . . . , 2m + 1 and u(tn) is the solution at tn. The time step is given as τ , see
also [5].

We assume the diagonalization of the operators to the eigenvalues λA and λB. So we can
derive the error estimate as

|ui(t
n+1) − ui−1(t

n+1)| ≤ |ui−1(t
n+1) − ui−2(t

n+1)|, (5.7)

| 1
i!

τ iλi
A+B,1u(tn)| ≤ | 1

(i − 1)!
τ i−1λi−1

A+B,1u(tn)|, (5.8)

1

i
τλA+B,1 ≤ 1, (5.9)

where we assume an equidistant time step τ and the exact initial condition u(tn). λA+B,1 is
the maximal eigenvalue for the operator A + B.

Therefore the error reduction between two iterations is given as
1

i
τλA+B,1εi ≤ εi−1, (5.10)

where εi = ui(t
n+1) − ui−1(t

n+1) and εi−1 = ui−1(t
n+1) − ui−2(t

n+1) . �

Remark 5.4 The a posteriori error estimate is given by the maximal eigenvalues of A and
B and also by the underlying iterations and time steps. The stability condition is given with
1
i
τλA+B,1 ≤ 1. Thus more iterations stabilize the scheme. A balancing between time steps

and iterations can be done to optimize the computational time.
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6 Decoupling ideas based on eigenvalue problems

To detect the operators in the differential equation as stiff or non-stiff operators, we can
apply the eigenvalues of each operator and use them as reciprocal time scales.

The operator equations are analyzed with the eigenvalue problem:

∂ttc(t) = (A + B)c(t) = (λA + λB)c(t), t ∈ (tn, tn+1), (6.1)

c(tn) = g(t), c′(tn) = f(t),

where the operators A and B result form the spatial discretization.
The eigenvalues are detected in the decoupled equations:

∂ttc(t) = Ac(t) = λAc(t), t ∈ (tn, tn+1), c(tn) = g(t), c′(tn) = f(t), (6.2)

∂ttc(t) = Bc(t) = λBc(t), t ∈ (tn, tn+1), c(tn) = g(t), c′(tn) = f(t). (6.3)

Based on the eigenvalues λA, λB we can propose the time steps ∆tA ≈ 1/λA and ∆tB ≈
1/λB.

We propose the vector iteration based on the Rayleigh quotient for the computation of
the eigenvalues of the operators A and B:

Aci+1,k = ci+1,k+1, (6.4)

Bci+1,m = ci+1,m+1, (6.5)

where k, m = 0, 1, 2, . . . and the eigenvalues are given as
ci+1,k+1

ci+1,k

= |λA,1| + O(pk), (6.6)

ci+1,m+1

ci+1,m

= |λB,1| + O(qm), (6.7)

where λA,1 and λB,1 are the maximal eigenvalues. The values are given as p =
λA,2

λA,1
with

λA,1 ≥ λA,2 · · · ≥ λA,n, q =
λB,2

λB,1
with λB,1 ≥ λB,2 · · · ≥ λB,n.

The following algorithm is used for separating the different scales of the operators A and
B:

Algorithm 6.1 1) We have the operators A, B.
2) We compute pre-eigenvalues with a given norm || · ||:
||Au|| , ||Bu|| ,
where u is a possible solution vector of the equations (4.4)-(4.5).

3) We compare the pre-eigenvalues:
||Au|| ≤ ||Bu||: A is stiff,
or
||Au|| ≥ ||Bu||: B is stiff.

4) We initialize our splitting method.
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Remark 6.2 The efficiency of the method is given with the correct decomposition, which
means the correct ordering of the underlying operators. With respect to the local error,
the starting operator B in the first iterative equation dominates the error. Therefore the
pre-processing to obtain the underlying eigenvalues is important and accelerates the solver
process. Here we propose the vector iterations to compute the eigenvalues as a method that
is embedded to our iterative splitting method. The declaration of the operators to be stiff or
non-stiff results in the correct splitting operators.

In the next section we apply our theoretical results to a test example with respect to
correct or incorrect decompositions.

7 Numerical examples of the splitting methods with respect to the eigenvalues of the
operators

We discuss in the following the linear and nonlinear operator equations with respect to the
approximation error and the computational benefits.

We deal with a two-dimensional example, where we can derive an analytical solution.

∂ttu = D2
1∂xxu + D2

2∂yyu, (7.1)

c(x, y, 0) = c0(x, y) = sin(
1

D1
πx) sin(

1

D2
πy), ∂tc(x, y, 0) = c1(x, y) = 0, (7.2)

with c(x, y, t) = 0, on∂Ω × (0, T ), (7.3)

where Ω = [0, 1] × [0, 1], D1 = 1, D2 = 0.5, and the initial conditions can be written as
c(x, y, tn) = c0(x, y) and c(x, y, tn−1) = c(x, y, tn+1) = c(x, y, ∆t).

The analytical solution is given as

uexact(x, y, t) = sin(
1

D1
πx) sin(

1

D2
πy) cos(

√
2 πt). (7.4)

The discretization is given with the implicit time-discretization and the finite difference
method for the space-discretization.

Therefore have for the space-discretization:

Au(t) = D2
1∂xxu(t) ≈ D2

1

u(x + ∆x, y, t) − 2u(x, y, t) + u(x − ∆x, y, t)

∆x2
, (7.5)

Bu(t) = D2
2∂yyu(t) ≈ D2

2

u(x, y + ∆y, t) − 2u(x, y, t) + u(x, y − ∆y, t)

∆y2
, (7.6)

and the time-discretization is given as:

∂ttu ≈ u(t + ∆t) − 2u(t) + u(t − ∆t)

∆t2
. (7.7)

The implicit discretization is given as:

u(tn+1) − 2u(tn) + u(tn−1) (7.8)

= ∆t2(A + B)(ηu(tn+1) + (1 − 2η)u(tn) + ηu(tn−1)).
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For the approximation error we choose the L1-norm.
The L1-norm is given as

errL1
:=

∑

i,j=1,...,m

Vi,j |unum(xi, yj, t
n) − uexact(xi, yj, t

n)|, (7.9)

where unum(xi, yj, t
n) is the numerical and uexact(xi, yj, t

n) is the analytical solution, Vi,j =

∆x ∆y.
The model domain is given by an rectangle with ∆x = 1/16 and ∆y = 1/32. The time

steps are given with ∆t = 1/16, and we have 0 ≤ η ≤ 0.5.
The eigenvalue problem is given as:

D2
1DxxU = ΛAU, (7.10)

D2
2DyyU = ΛBU, (7.11)

where U = u1, . . . , un, with n grid points, DxxU is the space-discretization of uxx, DyyU

is the space-discretization of uyy, ΛA = diag(λAi
)i=1,...,n contains the eigenvalues of the

operator A and ΛB = diag(λBi
)i=1,...,n contains the eigenvalues of the operator B.

We computed the underlying problem with the following values for the equation:
Ω = [0, 1] × [0, 1], D1 = 1, D2 = 0.5, and the initial conditions c(x, y, tn) = c0(x, y) and
c(x, y, tn−1) = c(x, y, tn+1) = c(x, y, ∆t).

The computational results for the correct decomposition are given in Table 1.

D1 D2 err = |uexact − unum| |∂yyuexact − ∂yyunum|
4.0 0.01 1.878 · 10−3 1.8504 · 10−4

4.0 0.0001 1.878 · 10−3 1.8502 · 10−6

Table 1: Numerical results for the iterative splitting method with correct decomposition.

The computational results for the incorrect decomposition, while neglecting the eigen-
values of the operator, are given in Table 2.

D1 D2 err = |uexact − unum| |∂yyuexact − ∂yyunum|
0.01 1.0 2.074 · 10−1 2.0433 · 100

0.0001 1.0 1.843 · 10−1 1.818 · 100

Table 2: Numerical results for the iterative splitting method with incorrect decomposition.

The visualization of the numerical results for the correct decomposition is shown in Fig-
ures 1 and 2.
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Figure 1: Results for the iterative splitting method with RK method and parameters D1 =

4.0, D2 = 0.01.

8 Conclusions and discussions

We present an iterative operator-splitting method to solve partial differential equations with
respect to their underlying time scales. The correct splitting into the underlying operators of
the equations is important to reduce the splitting error and contribute an efficient method.
Therefore we present an embedded eigenvalue solver. First numerical results can vali-
date the correct splitting and the efficiency. In future it will be important to have efficient
eigenvalue methods, which can be embedded into the splitting methods, to contribute the
operator-splitting methods as efficient solver methods for large evolution equations.
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Figure 2: Results for the iterative splitting method with RK method and parameters D1 =

4.0, D2 = 0.0001.
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