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Abstract: In this paper, we develop notions of Lyapunov stability for the nabla time scale

exponential function. We begin by reviewing some of the necessary prerequisite definitions

and theorems for nabla differential equations. We then proceed to discuss the stability of the

ordinary dynamic equation (ODE) that defines the nabla exponential function. We conclude

with a state feedback result showing that the arbitrary linear ODE can be stabilized by

using the controllability Gramian.
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1 Introduction

The theory of time scales originated in Stefan Hilger’s dissertation [12] that evolved into

his seminal paper on the subject [11]. Originally intended to unify continuous and discrete

analysis, the theory has gone well beyond this aspect into extension of familiar properties

of dynamic equations on arbitrary domains. Recently, time scales analysis has received a

considerable amount of attention in the context of engineering applications, particularly in

systems theory and control (see [8, 9, 10]). These results on stability and control have dealt

almost solely with the delta (forward) derivative.

Here, we wish to establish analogous results for the nabla (backward) derivative. The

utility of such an analysis becomes evident when one considers that the time scales analysis

could also have important implications for numerical analysts, who often use backward

differences rather than forward differences to handle their computations.

With this in mind, we begin with a review of the appropriate time scale definitions and

theorems in the nabla setting. The interested reader is urged to examine the works of

Bohner and Peterson in [1, 2].

2 Background

We first review several definitions and theorems about the nabla derivative.

Definition 2.1. Let T be a nonempty closed subset of the reals, called atime scale. For

eachT andf : T→ R, the following are defined:
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(i) The backward jump operator ρ : T→ T is given by

ρ(t) := sup{s ∈ T : s < t}.
If ρ(t) = t, thent is left dense: otherwiset is left scattered.

(ii) The backward graininessν : T→ R is defined by

ν(t) = t− ρ(t).

(iii) The nabla derivative f∇(t) of f : T→ R is the quantity (provided it exists)

f∇(t) =
f(t)− f(ρ(t))

ν(t)
.

In this definition, ifν(t) = 0 (i.e. if t is left dense) then this quantity is interpreted in the

limit sense asν → 0.

(iv) f : T→ R is said to beleft dense continuous(abbreviated ld-continuous) iff(t) exists

for all t ∈ T andf is continuous from the left at left dense points ofT.

(v) For f(t) a ld-continuous function, suppose there exists a functionF (t) with F∇(t) =

f(t). Then thenabla integral of f(t) is given by
∫

f(t)∇t = F (t) + c.

Theorem 2.1.Assumef, g : T→ R are nabla differentiable att ∈ Tκ. Then:

(i) The sumf + g : T→ R is nabla differentiable att with

(f + g)∇(t) = f∇(t) + g∇(t).

(ii) The productfg : T→ R is nabla differentiable att , and we get the product rules

(fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t) = f(t)g∇(t) + f∇(t)g(ρ(t)).

(iii) If g(t)g(ρ(t)) 6= 0, thenf/g is nabla differentiable att, and we get the quotient rule
(

f

g

)∇
(t) =

f∇(t)g(t)− f(t)g∇(t)

g(t)g(ρ(t))
.

(iv) If f andf∇(t) are continuous, then
(∫ t

a

f(t, s)∇s

)∇
= f(ρ(t), t) +

∫ t

a

f∇t(t, s)∇s.

Definition 2.2. The functionp : T→ R is ν-regressive if

1− ν(t)p(t) 6= 0 for all t ∈ Tκ.

Theν-regressive group(Rν ,⊕ν ,ªν) is the set

Rν = {p : T→ R : p is ld-continuous andν-regressive},
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together with the operations

p⊕ν q = p + q − νpq

and

ªνp = − p

1− νp
.

p is positivelyν-regressive if

1− νp > 0.

Definition 2.3. Forp ∈ Rν , the unique solution to the equation

y∇(t) = p(t)y(t), y(t0) = 1,

is called thenabla time scale exponential functionand is denoted byy(t) = êp(t, t0). The

nabla exponential function has closed form

êp(t, t0) = exp

(∫ t

t0

−Log(1− ν(τ)p(τ))

ν(τ)
∇τ

)
.

Theorem 2.2 (Properties of the Nabla Exponential).Letp, q ∈ Rν ands, t, r ∈ T. Then

(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;

(ii) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s);

(iii) 1
êp(t,s)

= êªνp(t, s);

(iv) êp(t, s) = 1
êp(s,t)

= êªνp(s, t);

(v) êp(t, r)êp(r, s) = êp(t, s);

(vi) êp(t, r)êq(t, r) = êp⊕νq(t, r);

(vii) êp(t,s)

êq(t,s)
= êpªνq(t, s);

(viii)
(

1
êp(t,s)

)∇
= − p(t)

êp(ρ(t),s)
;

(ix) If p is positivelyν-regressive, then̂ep(t, t0) > 0.

3 Stability of the Nabla Exponential

A natural question is the following: For whatz ∈ C does it follow that

lim
t→∞

êz(t, t0) = 0?

If we examine the closed form of the nabla exponential, then a sufficient collection of such

z ∈ C would be the set {
z ∈ C :

∣∣∣∣∣z −
1

ν(t)

∣∣∣∣∣ >
1

ν(t)

}
.

(For the corresponding result in the delta case, see [3, 4, 7].) We will call the set

Hν :=

{
z ∈ C :

∣∣∣∣∣z −
1

ν(t)

∣∣∣∣∣ =
1

ν(t)

}
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theν-Hilger circle due to its importance in determining exponential stability.

We would like a geometric interpretation and connection of the set of exponential stability

akin to the one known for the delta case (see [1]). To do this, we will need to define the

ν-Hilger complex plane.

Definition 3.1 (ν-Hilger Complex Plane). For ν > 0 we define theν-Hilger complex

numbers, theν-Hilger real axis, theν-Hilger alternating axis, and theν-Hilger imaginary

circle as

Cν :=

{
z ∈ C : z 6= 1

ν

}
,

Rν :=

{
z ∈ Cν : z ∈ R andz <

1

ν

}
,

Aν :=

{
z ∈ Cν : z ∈ R andz >

1

ν

}
,

Iν :=

{
z ∈ Cν :

∣∣∣∣∣z −
1

ν

∣∣∣∣∣ =
1

ν

}
= Hν ,

respectively. Forh = 0, letC0 := C, R0 := R, I0 := iR, andA0 := ∅.
Definition 3.2 (The ν-Hilger Complex plane). Let ν > 0 andz ∈ Cν . We define the

ν-Hilger real part ofz by

Reν(z) :=
1− |1− νz|

ν
and theν-Hilger imaginary part ofz by

Imν(z) := −Arg(1− zν)

ν
,

where Arg(z) denotes the principal argument ofz (i.e.,−π < Arg(z) ≤ π). For−π
ν
≤

ω < π
ν
, we define theν-Hilger purely imaginary number̊̂ιω by

ˆ̊ιω =
1− e−iων

ν
.

Note that Reν(z) and Imν(z) satisfy

−∞ < Reν(z) <
1

ν
and − π

ν
≤ Imν(z) <

π

ν
,

respectively. In particular, Reν(z) ∈ Rν . Also, for z ∈ Cν , we have that̊̂ιImν(z) ∈ Hν .

Theν-Hilger complex plane can be seen in Figure 1.

Theorem 3.1.For z ∈ Cν we have

z = Reν(z)⊕ν
ˆ̊ιImν(z).
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Figure 1: Theν-Hilger Complex Plane. Points interior to theν-Hilger circleHν have

positiveν-Hilger real part, while points exterior to the circle have negativeν-Hilger real

part. Points on the circle therefore have zeroν-Hilger real part. The shading indicates that

points exterior to the largestν-Hilger circle (i.e. the one corresponding toν∗) lie in the

stability region.

Proof. Let z ∈ Cν . Then

Reν(z)⊕ν
ˆ̊ιImν(z) =

1− |1− zν|
ν

⊕ν
ˆ̊ι

(
−Arg(1− zν)

ν

)

=
1− |1− zν|

ν
⊕ν

1− exp(iArg(1− zν))

ν

=
1− |1− zν|

ν
+

1− exp(iArg(1− zν))

ν

−ν
1− |1− zν|

ν

1− exp(iArg(1− zν))

ν

=
1

ν

{
1− |1− zν| exp(iArg(1− zν))

}

=
1− (1− zν)

ν
= z.

Notice that as we stated before, the stability region is cast in terms ofHν . Points in the

stability region that we have chosen always have negativeν-Hilger real part. (Note that we

often abuse the notation and say that points in the stability region lie in theν-Hilger circle

when actually they are exterior to the largestν-Hilger circle corresponding toνmin = ν∗.)

We could extend our stability region by considering points for which theν-Hilger real part

is negative on average as Pötsche, Siegmund, and Wirth do for the delta case in [16], but
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for our purposes the Hilger circle will suffice for stability.

It is also worth noting that for pointsz = ˆ̊ιω on theν-Hilger circle, we have
∣∣∣∣∣êˆ̊ιω(t, t0)

∣∣∣∣∣ = 1.

Further, theν-Hilger real axis is so named because for pointsc < 1
ν

on this axis, we have

êc(t, t0) > 0, while for points on theν-Hilger alternating axis, we have that the nabla

exponential is real valued and changes sign at every point. The nabla exponential is never

zero for any regressive subscript. Finally, the positively regressive constants for the nabla

exponential are simply the negative real axis.

As ν → 0, we see that theν-Hilger circle tends to the open left-half plane as we would

expect since forT = R (whereν ≡ 0), the time scale exponential function is the continuous

exponential (i.e.ez(t, 0) = ezt). As ν → 1, we see that the stability region tends to the

exterior of a circle of unit radius centered atz = 1. This should also make sense because

for T = Z, we haveez(t, 0) = (1− z)t. However, notice in general that theν-Hilger circle

is dynamic, varying asν varies overT. Thus, in some sense, exponential stability becomes

a “moving target”.

4 Gronwall’s Inequality For the Nabla Integral

We shall need Gronwall’s inequality for later results, so we state and prove it here. (Ac-

tually, the proofs that follow mirror their delta counterparts given in [1], but we give them

here for the sake of completeness.)

Theorem 4.1.Lety, f ∈ Cld andp ∈ R+
ν . Then

y∇(t) ≤ p(t)y(t) + f(t) for all t ∈ T

implies

y(t) ≤ y(t0)êp(t, t0) +

∫ t

t0

êp(t, ρ(τ))f(τ)∇τ for all t ∈ T.

Proof. We use the product rule and Theorem 2.2 (ii) to calculate

[yêªνp(·, t0)]∇ (t) = y∇(t)êªνp(ρ(t), t0) + y(t)(ªνp)(t)êªνp(t, t0)

= y∇(t)êªνp(ρ(t), t0) + y(t)
ªνp)(t)

1− ν(t)(ªνp)(t)
êªνp(ρ(t), t0)

=
[
y∇(t)− (ªν(ªνp))(t)y(t)

]
êªνp(ρ(t), t0)

=
[
y∇(t)− p(t)y(t)

]
êªνp(ρ(t), t0).

Sincep ∈ R+
ν ,ªνp ∈ R+

ν since the positivelyν-regressive functions are a subgroup of the
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ν-regressive functions. Thus,êªνp > 0 by Theorem 2.2 (ix). Now

y(t)êªνp(t, t0)− y(t0) =

∫ t

t0

[
y∇(τ)− p(τ)y(τ)

]
êªνp(ρ(τ), t0)∇τ

≤
∫ t0

t

f(τ)êªνp(ρ(τ), t0)∇τ

=

∫ t

t0

êp(t0, ρ(τ))f(τ)∇τ,

and hence the assertion follows by applying Theorem 2.2.

Theorem 4.2 (Bernoulli’s Inequality.). Letα ∈ R with α ∈ R+
ν . Then

êα(t, s) ≥ 1 + α(t− s) for all t ≥ s.

Proof. Sinceα ∈ R+
ν , we havêeα(t, s) > 0 for all t, s ∈ T. Supposet, s ∈ T with t ≥ s.

Let y(t) = α(t− s). Then

αy(t) + α = α2(t− s) + α ≥ α = y∇(t).

Sincey(s) = 0, we have by Theorem 4.1 (withp(t) = f(t) ≡ α)

y(t) ≤
∫ t

s

êα(t, ρ(τ))α∇τ = êα(t, s)− 1.

Hence,̂eα(t, s) ≥ 1 + y(t) = 1 + α(t− s) follows.

Theorem 4.3 (Gronwall’s Inequality.). Lety, f ∈ Cld andp ∈ R+
ν , p ≥ 0. Then

y(t) ≤ f(t) +

∫ t

t0

y(τ)p(τ)∇τ for all t ∈ T

implies

y(t) ≤ f(t) +

∫ t

t0

êp(t, ρ(τ))f(τ)p(τ)∇τ for all t ∈ T.

Proof. Define

z(t) =

∫ t

t0

y(τ)p(τ)∇τ.

Thenz(t0) = 0 and

z∇(t) = y(t)p(t) ≤ [f(t) + z(t)] p(t) = p(t)z(t) + p(t)f(t).

By Theorem 4.1,

z(t) ≤
∫ t

t0

êp(t, ρ(τ))f(τ)p(τ)∇τ.

and hence the claim follows because ofy(t) ≤ f(t) + z(t).
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Corollary 4.1. Lety ∈ Cld andp ∈ R+
ν with p ≥ 0. Then

y(t) ≤
∫ t

t0

y(τ)p(τ)∇τ for all t ∈ T

implies

y(t) ≤ 0 for all t ∈ T.

Proof. This is Theorem 4.3 withf(t) ≡ 0.

Corollary 4.2. Lety ∈ Cld, p ∈ R+
ν , p ≥ 0, andα ∈ R. Then

y(t) ≤ α +

∫ t

t0

y(τ)p(τ)∇τ for all t ∈ T

implies

y(t) ≤ αêp(t, t0) for all t ∈ T.

Proof. In Theorem 4.3, letf(t) ≡ α. Then by Theorem 4.3,

y(t) ≤ α +

∫ t

t0

êp(t, ρ(τ))αp(τ)∇τ

= α

[
1 +

∫ t

t0

p(τ)êp(t, ρ(τ))∇τ

]

= α[1 + êp(t, t0)− êp(t, t)]

= αêp(t, t0).

Thus, the claim follows.

Corollary 4.3. Lety ∈ Cld andα, β, γ ∈ R with γ > 0. Then

y(t) ≤ α + β(t− t0) + γ

∫ t

t0

y(τ)∇τ for all t ∈ T

implies

y(t) ≤
(

α +
β

γ

)
êγ(t, t0)− β

γ
for all t ∈ T.

Proof. In Theorem 4.3, letf(t) = α+β(t−t0) andp(t) ≡ γ. Note that forw(τ) = êγ(t, τ)
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we havew∇(τ) = −γêγ(t, ρ(τ)). By Theorem 4.3,

y(t) ≤ f(t) +

∫ t

t0

êγ(t, ρ(τ))γf(τ)∇τ

= f(t)w(t)−
∫ t

t0

w∇(τ)f(τ)∇τ

= f(t0)w(t0) +

∫ t

t0

w(ρ(τ))f∇(τ)∇τ

= αêγ(t, t0) +

∫ t

t0

êγ(t, ρ(τ))β∇τ

= αêγ(t, t0) +
β

γ

∫ t

t0

γêγ(t, ρ(τ))∇τ

= αêγ(t, t0) +
β

γ
(êγ(t, t0)− 1).

Hence, the claim follows.

5 The Systems Case

We now wish to turn our attention to the systems case. As with the scalar case, we begin

by reviewing some of the pertinent definitions and results that we will need later.

Definition 5.1. LetA be ann×n-matrix-valued function onT. A is ld-continuous if every

entry ofA is ld-continuous. The class of all ld-continuous matrices is denoted by

Cld = Cld(T) = Cld(T,Rm×n).

A is nabla differentiable onT if every entry ofA is nabla differentiable onT, in which case

A∇(t) = (a∇ij(t))1≤i≤n,1≤j≤n.

We sayA is ν-regressive if

I − ν(t)A(t) is invertible for all t ∈ Tκ,

and the class of all suchν-regressive and ld-continuous matrix functions is denoted by

Rν = Rν(T) = Rν(T,Rn×n).

The system

x∇(t) = A(t)x(t), x(t0) = x0,

is calledν-regressive ifA is ν-regressive.

Theorem 5.1. SupposeA andB are nabla differentiablen × n-matrix-valued functions.

Then

(i) (A + B)∇(t) = A∇(t) + B∇(t);

(ii) (αA)∇(t) = αA∇(t) if α is constant;
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(iii) (AB)∇(t) = A∇(t)B(ρ(t)) + A(t)B∇(t) = A(ρ(t))B∇(t) + A∇(t)B(t);

(iv) (A−1)∇ = −(A(ρ(t)))−1A∇(t)A−1(t) = −A−1(t)A∇(t)(A(ρ(t)))−1 if A(t)A(ρ(t)) is

invertible.

(v) (AB−1)∇(t) = (A∇(t)− A(t)B−1(t)B∇(t))(B(ρ(t)))−1 =

(A∇(t)− A(ρ(t))B−1(ρ(t))B∇(t))B−1(t) if B(t)B(ρ(t)) is invertible.

Definition 5.2. Theν-regressive group(Rν(T,Rn×n),⊕ν ,ªν) is the set

Rν(T,Rn×n) = {A ∈ Rn×n : A is regressive and ld-continuous}
together with the operation⊕ν defined by

A⊕ν B := A + B − νAB,

and inverse operationªν given by

ªνA = −A(I − νA)−1.

We are interested in solutions to nabla dynamic equations. We shall denote the solution

of

Y ∇(t) = A(t)Y (t), Y (t0) = I

asY (t) = φ̂A(t, t0).

Theorem 5.2 (Variation of Parameters.).Let A ∈ Rν(T,Rn×n) and suppose thatf :

T→ Rn is ld-continuous. Lett0 ∈ T andy0 ∈ Rn. Then the initial value problem

y∇(t) = A(t)y(t) + f(t), y(t0) = y0,

has a unique solutiony : T→ Rn given by

y(t) = φ̂A(t, t0)y0 +

∫ t

t0

φ̂A(t, ρ(τ))f(τ)∇τ.

6 Exponential Stability and Lyapunov Criteria

We seek conditions that guarantee that solutions of

x∇(t) = A(t)x(t), x(t0) = x0

tend to zero ast → ∞. That is, we wish to establish a notion ofasymptotic stabilityfor

this equation. For our purposes,uniform exponential stabilitywill suffice, so we define this

notion here. For the reader interested in the analogous results for the delta case, see [3, 4].

Definition 6.1. The time varyingν-regressive linear nabla dynamic equation

x∇(t) = A(t)x(t), x(t0) = x0

is said to beuniformly exponentially stableif there exist constantsγ, λ > 0 such that for

anyt0 andx(t0), the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γê−λ(t, t0), t ≥ t0.
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We make the blanket assumption thatT is unbounded above. We associate with the state

equation the scalar function

||x(t)||2 = xT (t)x(t)

that acts as the system’s associated energy function. We want conditions on our system that

guarantee that||x(t)||2 → 0 ast → ∞. We begin by noting that the energy function has

time nabla derivative

(||x(t)||2)∇t = (xT (t)x(t))∇t

= xT∇(t)x(t) + xT ρ

(t)x∇(t)

= xT (t)AT (t)x(t) + xT (t)(I − ν(t)AT (t))A(t)x(t)

= xT (t)[AT (t) + A(t)− ν(t)AT (t)A(t)]x(t).

Thus, if the quadratic form we obtain from the derivative is negative definite, then we will

have||x(t)||2 → 0 as t → ∞, as desired. From this discussion, we see that if we can

establish the existence of a symmetric matrixQ(t) ∈ C1
ld(T,Rn×n) such that

[xT (t)Q(t)x(t)]∇t = xT∇(t)Q(t)x(t) + xT ρ

(t)(Q∇(t)xρ(t) + Q(t)x∇(t))

= xT (t)[AT (t)Q(t) + (I − ν(t)AT (t))Q∇(t)(I − ν(t)A(t))

+(I − ν(t)AT (t))Q(t)A(t)]x(t)

is negative definite, then we get asymptotic decay. We shall need other versions of the

derivative of the quadratic functional given above, so we present them here. Note that

[xT (t)Q(t)x(t)]∇ = (xT (t)Q(t))∇xρ(t) + xT (t)Q(t)x∇(t)

= xT (t)[AT (t)Qρ(t)(I − ν(t)A(t))

+Q∇(t)(I − ν(t)A(t)) + Q(t)A(t)]x(t),

and also

[xT (t)Q(t)x(t)]∇ = xT∇(t)Q(t)x(t) + xT ρ

(t)(Q∇(t)xρ(t) + Q(t)x∇(t))

=
1

ν(t)
(xT (t)− xT ρ

(t))Q(t)x(t) +
1

ν(t)
xT ρ

(t)(Q(t)−Qρ(t))xρ(t)

+
1

ν(t)
xT ρ

(t)Q(t)(x(t)− xρ(t))

= xT (t)

[
Q(t)− (I − ν(t)AT (t))Qρ(t)(I − ν(t)A(t))

ν(t)

]
x(t).

Theorem 6.1 (Lyapunov Stability Criterion I). The time varying regressive nabla linear

dynamic system

x∇(t) = A(t)x(t), x(t0) = x0

is uniformly exponentially stable if there exists a symmetric matrixQ(t) ∈ C1
ld(T,Rn×n)

such that for allt ∈ T
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(i) ηI ≤ Q(t) ≤ κI,

(ii) AT (t)Q(t) + (I − ν(t)AT (t))Q∇(t)(I − ν(t)A(t)) + (I − ν(t)AT (t))Q(t)A(t) ≤ −γI,

whereη, κ, γ > 0.

Proof. For any initial conditiont0 andx(t0) = x0 with corresponding solutionx(t) of the

state equation, we see that for allt ≥ t0, (ii) gives

[xT (t)Q(t)x(t)]∇ ≤ −γ||x(t)||2.
Also, for all t ≥ t0, (i) implies

xT (t)Q(t)x(t) ≤ κ||x(t)||2.
Thus,

[xT (t)Q(t)x(t)]∇ ≤ −γ

κ
xT (t)Q(t)x(t)

for all t ≥ t0. Since−γ
κ
∈ R+

ν , we can employ Theorem 4.1 to obtain

xT (t)Q(t)x(t) ≤ xT (t0)Q(t0)x(t0)ê−γ/κ(t, t0), t ≥ t0. (6.1)

By (i), ηI ≤ Q(t) so thatη||x(t)||2 ≤ xT (t)Q(t)x(t), and thus an application of (6.1)

yields

||x(t)||2 ≤ 1

η
xT (t)Q(t)x(t) ≤ 1

η
xT (t0)Q(t0)x(t0)ê−γ/κ(t, t0), t ≥ t0.

Now, x(t0)Q(t0)x(t0) ≤ κ||x(t0)||2 implies

||x(t)||2 ≤ κ

η
||x(t0)||2ê−γ/κ(t, t0),

which yields

||x(t)|| ≤ ||x(t0)||
√

κ

η
ê−γ/κ(t, t0), t ≥ t0.

Since this is true for arbitraryt0 andx(t0), uniform exponential stability is established.

If we use the other two representations of the derivative given above, then we see the

proofs of the following two theorems are the same as the same as the previous one.

Theorem 6.2 (Lyapunov Stability Criterion II). The time varying regressive nabla linear

dynamic system

x∇(t) = A(t)x(t), x(t0) = x0

is uniformly exponentially stable if there exists a symmetric matrixQ(t) ∈ C1
ld(T,Rn×n)

such that for allt ∈ T
(i) ηI ≤ Q(t) ≤ κI,

(ii) AT (t)Qρ(t)(I − ν(t)A(t)) + Q∇(t)(I − ν(t)A(t)) + Q(t)A(t) ≤ −γI,
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whereη, κ, γ > 0.

Theorem 6.3 (Lyapunov Stability Criterion III). The time varying regressive nabla lin-

ear dynamic system

x∇(t) = A(t)x(t), x(t0) = x0

is uniformly exponentially stable if there exists a symmetric matrixQ(t) ∈ C1
ld(T,Rn×n)

such that for allt ∈ T

(i) ηI ≤ Q(t) ≤ κI,

(ii)
(
Q(t)− (I − ν(t)AT (t))Qρ(t)(I − ν(t)A(t))

)
/ν(t) ≤ −γI,

whereη, κ, γ > 0.

7 Control and State Feedback

We desire an analogue of the feedback result obtained in [13] for the nabla dynamic equa-

tion. To do that, we first need to discuss controllability. The reader can see [6, 13] for the

control results concerning the delta derivative, and [5, 14, 15, 17, 18] for the control and

feedback theorems stated and proved for the special casesT = R andT = Z.

Definition 7.1. Theν-regressive linear nabla dynamic state equation

x∇(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t) + D(t)u(t) (7.1)

is calledcontrollableon [t0, tf ]T if given any initial statex0 there exists a ld-continuous

input signalu(t) such that the corresponding solution of the system satisfiesx(tf ) = xf .

Theorem 7.1.Theν-regressive nabla linear state equation (7.1) is controllable on[t0, tf ]T

if and only if then× n controllability Gramian matrix

ĜC(t0, tf ) =

∫ tf

t0

φ̂A(t0, ρ(s))B(s)BT (s)φ̂T
A(t0, ρ(s))∇s

is invertible.

Proof. SupposeĜC(t0, tf ) is invertible. Then, givenx0 andxf , we can choose the input

signalu(t) as

u(t) = −BT (t)φ̂A(t0, ρ(t))Ĝ−1
C (t0, tf )(x0 − φ̂A(t0, tf )xf ), t ∈ (t0, tf ],

and extendu(t) continuously for all other values oft. The corresponding solution of the
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system att = tf can be written as

x(tf ) = φ̂A(tf , t0)x0 +

∫ tf

t0

φ̂A(tf , ρ(s))B(s)u(s)∇s

= φ̂A(tf , t0)x0 −
∫ tf

t0

φ̂A(tf , ρ(s))B(s)BT (s)φ̂T
A(tf , ρ(s))

× Ĝ−1
C (t0, tf )(x0 − φ̂A(t0, tf )xf )∇s,

= φ̂A(tf , t0)x0

− φ̂A(tf , t0)

∫ tf

t0

φ̂A(t0, ρ(s))B(s)BT (s)φ̂A(t0, ρ(s))∇s

× Ĝ−1
C (t0, tf )(x0 − φ̂A(t0, tf )xf )

= φ̂A(tf , t0)x0 − (φ̂A(tf , t0)x0 − xf )

= xf ,

so that the state equation is controllable on[t0, tf ].

Conversely, suppose that the state equation is controllable, but for the sake of a contra-

diction, assume the matrix̂GC(t0, tf ) is not invertible. IfĜC(t0, tf ) is not invertible, then

there exists a vectorxa 6= 0 such that

0 = xT
a ĜC(t0, tf )xa =

∫ tf

t0

xT
a φ̂A(t0, ρ(s))B(s)BT (s)φ̂T

A(t0, ρ(s))xa∇s. (7.2)

But, the function in this expression is the nonnegative continuous function

||xT
a φ̂A(t0, ρ(s))B(s)||2, and so it follows that

xT
a φ̂A(t0, ρ(s))B(s) = 0, t ∈ (t0, tf ]. (7.3)

However, the state equation is controllable on[t0, tf ]T, and so choosingx0 = xa +

φ̂A(t0, tf )xf , there exists an input signalua(t) such that

xf = φ̂A(tf , t0)x0 +

∫ tf

t0

φ̂A(tf , ρ(s))B(s)ua(s)∇s,

which is equivalent to the equation

xa = −
∫ tf

t0

φ̂A(t0, ρ(s))B(s)ua(s)∇s.

Multiplying through byxT
a and using (7.2) and (7.3) yieldsxT

a xa = 0, a contradiction.

Thus, the matrix̂GC(t0, tf ) is invertible.

Before producing our feedback theorem, we need a couple of lemmas.

Lemma 7.1. Theν-Hilger circleHν is closed under the operation⊕ν .
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Proof. Let α ∈ C be such that|α| > 1. Thena = 1−α
ν
∈ Hν since

∣∣1−α
ν
− 1

ν

∣∣ =
∣∣−α

ν

∣∣ > 1
ν
.

Similarly, letβ ∈ C be such that|β| > 1, so thatb = 1−β
ν
∈ Hν . We set

c := a⊕ν b = a + b− νab.

Now, c ∈ Hν if there exists aγ ∈ C such that|γ| > 1 with c = 1−γ
ν

. We claim that the

choiceγ = αβ will suffice, from which the claim follows immediately. Indeed, with this

choice ofγ, we have that

1− γ

ν
=

1− α

ν
+

1− β

ν
− ν

1− α

ν

1− β

ν
,

and since|γ| = |α| · |β| > 1, the claim follows.

Lemma 7.2 (Stability Under Change of State Variables).Theν-regressive nabla linear

state equation

x∇(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

is ν-uniformly exponentially stable with rate(λ + α)/(1 − ν∗α), whereλ, α > 0 and

α ∈ R+
ν , if the linear state equation

z∇(t) = [(1− ν(t)α)A(t) + αI]z(t), z(t0) = x0

is ν-uniformly exponentially stable with rateλ.

Proof. By direct calculation,x(t) satisfies

x∇(t) = A(t)x(t), x(t0) = x0,

if and only if z(t) = êα(t, t0)x(t) satisfies

z∇(t) = [(1− ν(t)α)A(t) + αI]z(t), z(t0) = x0. (7.4)

Now assume there exists aγ > 0 such that for anyx0 andt0, the solution of (7.4) satisfies

||z(t)|| ≤ γê−λ(t, t0)||x0||, t ≥ t0.

Then substituting forz(t) yields

||êα(t, t0)x(t)|| = êα(t, t0)||x(t)|| ≤ γê−λ(t, t0)||x0||,

so that

||x(t)|| ≤ γê−λªνα(t, t0)||x0|| ≤ γê−(λ+α)/(1−ν∗α)(t, t0)||x0||,
where we note that−(λ + α)/(1− ν∗α) ∈ R+

ν .
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We defined the controllability Gramian̂GC(t, C(t)) earlier as

ĜC(t0, tf ) =

∫ tf

t0

φ̂A(t0, ρ(s))B(s)BT (s)φ̂T
A(t0, ρ(s))∇s. (7.5)

To obtain the feedback result, we need to use the following shifted version of this matrix.

Forα > 0 ∈ R+
ν , define the matrix

ĜCα(t0, tf ) =

∫ tf

t0

(êα(t0, s))
4φ̂A(t0, ρ(s))B(s)BT (s)φ̂T

A(t0, ρ(s))∇s. (7.6)

Theorem 7.2 (Gramian Exponential Stability Criterion). Let T be a time scale with

bounded graininess. For theν-regressive nabla linear state equation

x∇(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

suppose there exist positive constantsε1, ε2 and a strictly increasing functionC : T → T
such that0 < C(t)− t ≤ M < ∞ with

ε1I ≤ ĜC(t, C(t)) ≤ ε2I, (7.7)

for all t. Then given a positively regressive constantα > 0, the state feedback gain

K(t) = −BT (t)(I − ν(t)AT (t))−1Ĝ−1
Cα

(t, C(t)), (7.8)

is such that the resulting closed-loop state equation is uniformly exponentially stable with

rateα.

Proof. We first note that forN = inf
t∈T

log(1− ν(t)α)

ν(t)
, we have−∞ < N < 0 sinceT has

bounded graininess. Thus,

êα(t, C(t)) = exp

(∫ C(t)

t

log(1− ν(τ)α)

ν(τ)
∇τ

)

≥ exp

(∫ C(t)

t

N∇τ

)

= eN(C(t)−t)

≥ eMN , (since N < 0).

Comparing the quadratic formsxT ĜCα(t, C(t))x andxT ĜC(t, C(t))x using their respective

definitions (7.5) and (7.6) gives

e4MN ĜC(t, C(t)) ≤ ĜCα(t, C(t)) ≤ ĜC(t, C(t)),

for all t. Thus, (7.7) gives

ε1e
4MNI ≤ Ĝα(t, C(t)) ≤ ε2I (7.9)
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for all t, and so the existence of̂G−1
Cα

(t, C(t)) is immediate. Now, we show that the linear

state equation

z∇(t) = [(1− ν(t)α)Â(t) + αI]z(t), (7.10)

whereÂ(t) − B(t)BT (t)(I − ν(t)AT (t))−1Ĝ−1
Cα

(t, C(t)), is ν-uniformly exponentially by

Theorem 6.3 with the choice

Q(t) = Ĝ−1
Cα

(t, C(t)). (7.11)

Lemma 7.2 then yields the result. To apply the theorem, we first note thatQ(t) is symmetric

and continuously nabla differentiable. Thus, (7.9) gives

1

ε2

I ≤ Q(t) ≤ e−4MN

ε1

I, (7.12)

for all t. Hence, it only remains to show that there existsγ > 0 such that

Q(t)− (I − ν(t)ÂT (t))Q(ρ(t))(I − ν(t)Â(t))

ν(t)
≤ −γI.

We begin with the second term, writing
[
I − ν(t)[(1− ν(t)α)Â(t) + αI]T

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

= (1− ν(t)α)2
[
[I − ν(t)AT (t)] + Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ν(t)B(t)BT (t)

]

· Ĝ−1
Cα

(ρ(t), C(ρ(t)))
[
[I − ν(t)A(t)] + ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1

Cα
(t, C(t))

]
.

We pause to establish an important identity. Notice that

[I − ν(t)A(t)]ĜCα(t, C(t))[I − ν(t)AT (t)]

=
1

(1− ν(t)α)4
ĜCα(ρ(t), C(t))− ν(t)B(t)BT (t). (7.13)

This leads to

I + ν(t)[I − ν(t)A(t)]−1B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1
Cα

(t, C(t))

=
1

(1− ν(t)α)4
[I − ν(t)A(t)]−1ĜCα(ρ(t), C(t))[I − ν(t)AT (t)]−1

·Ĝ−1
Cα

(t, C(t)), (7.14)

which in turn yields

I + ν(t)Ĝ−1
Cα

(t, C(t))[I − ν(t)A(t)]−1B(t)BT (t)[I − ν(t)AT (t)]−1

=
1

(1− ν(t)α)4
Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ĜCα(ρ(t), C(t))

·[I − ν(t)AT (t)]−1. (7.15)
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The second term can now be rewritten as

(1− ν(t)α)2
[
[I − ν(t)AT (t)] + Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ν(t)B(t)BT (t)

]

· Ĝ−1
Cα

(ρ(t), C(ρ(t)))
[
[I − ν(t)A(t)] + ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1

Cα
(t, C(t))

]

= (1− ν(t)α)2
[
I + Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1

]

· [I − ν(t)AT (t)]Ĝ−1
Cα

(ρ(t), C(ρ(t)))[I − ν(t)A(t)]

·
[
I + [I − ν(t)A(t)]−1ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1

Cα
(t, C(t))

]
.

Using (7.14) and (7.15), we can now write[
I − ν(t)[(1− ν(t)α)Â(t) + αI]T

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

= (1− ν(t)α)−6Ĝ−1
Cα

(t, C(t))[I − ν(t)A(t)]−1ĜCα(ρ(t), C(t))Ĝ−1
Cα

(ρ(t), C(ρ(t)))

· ĜCα(ρ(t), C(t))[I − ν(t)AT (t)]−1Ĝ−1
Cα

(t, C(t)). (7.16)

On the other hand, from the definition ofĜCα(t, C(t)), we have

ĜCα(ρ(t), C(ρ(t))) ≤ ĜCα(ρ(t), C(t)),

which in turn implies

Ĝ−1
Cα

(ρ(t), C(ρ(t))) ≥ Ĝ−1
Cα

(ρ(t), C(t)).

Combining this with (7.16) gives[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

≥ (1− ν(t)α)−6Ĝ−1
Cα

(t, C(t))
[
[I − ν(t)A]−1ĜCα(ρ(t), C(t))[I − ν(t)AT (t)]

]

· ĜCα(t, C(t)).

Applying (7.13) again yields[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

≥ (1− ν(t)α)−6Ĝ−1
Cα

(t, C(t))

·
[
(1− ν(t)α)4ĜCα(t, C(t)) + ν(t)(1− ν(t)a)4[I − ν(t)A(t)]−1B(t)BT (t)[I − ν(t)AT (t)]−1

]

· Ĝ−1
Cα

(t, C(t))

≥ (1− ν(t)α)2Ĝ−1
Cα

(t, C(t)).

Thus,

Q(t)−
[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

ν(t)

≤ −1− (1− ν(t)α)2

ν(t)(1− ν(t)α)2
Ĝ−1

Cα
(t, C(t))

≤ − 1− (1− ν(t)α)2

ν(t)(1− ν(t)α)2ε2

I.
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Now, the quantity(1− (1− ν(t)α)2)/(ν(t)(1− ν(t)α)2ε2) is certainly not constant, but it

can be bounded by a quantity that is (hereν∗ = νmin):

1− (1− ν(t)α)2

ν(t)(1− ν(t)α)2ε2

=
2α− ν(t)α2

(1− ν(t)α)2ε2

≥ 2α− ν∗α2

(1− ν∗α)2ε2

.

Thus, if we setγ = 2α−ν∗α2

(1−ν∗α)2ε2
, then

Q(t)−
[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

ν(t)

≤ −γI.

At this point, it is worth discussing possible choices for the functionC(t) which we term

thecompactification operator. If T is purely discrete (i.e. has no points withν(t) = 0),

then one possible choice forC(t) is C(t) = σk(t) for somek ∈ N. For T = R, it is

well known that the choiceC(t) = t + δ, for someδ > 0 will suffice. If T = Pa,b (a

disjoint union of closed intervals of lengtha and gaps between intervals of lengthb), then

the choiceC(t) = t + a + b is a possibility. These examples show that the choice of the

compactification operator can vary widely with the time scale involved, and so this is why

we cast the theorem in terms of a general operator.
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