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Abstract: Splitting, or decomposition, methods, associated with adaptive strategies, hy-

brid multi-scale settings, have been playing an important role in solving different differ-

ential equation problems in various applications. Latest developments in the area range

from splitting for higher accuracy and flexibility in different parallel environments, splitting

for nonlinear partial differential equations, splitting for singular differential equations and

inverse problems, nonlinear stability and convergence of splitting schemes, iterative and

adaptive splitting strategies, geometric integration and domain decomposition methods,

to quantum splitting computations in modern bio-chemistry and life science applications.

This survey will provide some key information on the most exciting recent achievements in

the areas. Computer simulated illustrations will be given.
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1 Introduction

A splitting, or decomposition, method is a numerical method for the time integration of an
ordinary or a partial differential equation. With a phase space M , differential equation

ẋ = X(x), x ∈M, (1.1)

and X a vector field on M , splitting methods involve three equally important steps:

1. choosing a set of vector fields Xk such that X =
∑

Xk;

2. integrating either exactly or approximately each Xk; and

3. combining these solutions to yield an integrator for X .

For instance, writing the flow of (1.1) as

x(t) = exp(tX)x(0),
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where x(0) is an initial flow, we might use the composition method
ϕ1(τ) = exp(τX1) exp(τX2) · · · exp(τXn), (1.2)

where
ϕ1(τ) = exp

(

τ
∑

Xk

)

+O(τ 2). (1.3)
Formula (1.2) is called a first order exponential splitting. The value of τ is refereed as the
time step, while each Xi, 1 ≤ i ≤ n, is simpler than the original vector field X in the
following two ways:

1. The types ofXi are simpler. For example, the Navier-Stokes equations contain advection,
diffusion, and pressure terms, each with distinct characteristic properties and appropriate
numerical methods. red Example: a conservation law may contain fast and slow wave
terms which can be treated separately.

2. The Xi are easier to treat numerically. For example, dimensional splitting for multidi-
mensional diffusion equations. another example is the split-step Fourier method for the
linear Schrödinger equation iu = uxx + V (x)u, where each term is linear and Hamilto-
nian, but the first term can be integrated more quickly if a splitting (1.2) is utilized.

Splitting methods are developed for the motivations of computational speed, accuracy, and
stability. The methods have been playing a significant role in numerical analysis, or more
precisely, in computational mathematics [9, 17, 24, 33-36, 40-44, 56-59].

2 Splitting preliminaries

Let us consider a more general form of the splitting:

ϕ(τ) =
K

∑

k=1

γkEk(τ), (2.1)

where Ek(τ) is a finite product of the exponentials exp(ατXn), 1 ≤ n ≤ N , and α > 0

depends on k and n. Consider the spectral norm ‖ · ‖. We have
Definition 1. The splitting formula ϕ is stable if

‖ϕ‖ < 1.

Definition 2. The splitting formula ϕ is an order ρ approximation of exp(τX) if
‖ϕ(τ) − exp(τX)‖ = O

(

τ ρ+1
)

.

It is not difficult to show that (1.2) is indeed a first order splitting. In addition to ϕ1, the
most frequently used splitting formulas including

ϕ2(τ) = [exp(τX1) exp(τX2) · · · exp(τXn)

+ exp(τXn) exp(τXn−1) · · · exp(τX1)] /2,

ϕ3(τ) = exp(τX1/2) exp(τX2/2) · · · exp(τXn−1/2)

× exp(τXn) exp(τXn−1/2) · · · exp(τX1/2).
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Both ϕ2 and ϕ2 are second order in accuracy.
Conjecture 1 (Burstein and Mirin [6]). There exist third and higher order stable splitting

formulas ϕ.

For the convexity and stability, we may assume that γk ≥ 0, 1 ≤ k ≤ K.
Theorem 1 (Sheng [43], Suzuki [59]). The highest order of a stable splitting is two.

Surprisingly, the initial proof of the theorem was acquired via applications of the La-
grangian method of multipliers which is often used in optimizations. Several objective
functions, such as

s =

K
∑

k=1

γkhk − λ

K
∑

k=1

γkfk − µ

K
∑

k=1

γkgk,

where λ, µ are Lagrangian multipliers, and proper constrains are designed and used. The
result was later refereed as the Sheng-Suzuki Theorem for the nonexistence of higher order
stable splitting formulas [10, 56].

Different proofs of the above theorem can be found in later publications by McLachlan
[32] and Schatzman [42] . Different strategies were used in the proofs. Extensions of
the discussions can be also found in numerous outstanding papers and books by Strang,
LeVeque, Hairer, Lubich and Wanner [20, 21, 28, 57, 58].

Another key question to the splitting is that, How accurate can be a splitting method in
practical applications? Although Definition 2 offers a qualitative measure of the approxi-
mation errors, a quantitative error analysis is still necessary.

Traditionally, numerical error in approximations is estimated locally, that is, the time
step τ > 0 is sufficiently small. In 1993, Sheng and Iserles [44] introduced the concept of
global error estimates which is particularly useful for splitting. The concept has been used
by many researchers in the field since then.

Without loss of generality, assume that X1, X2, . . . , XK, X ∈ C
N×N . Consider the

spectral norm.
Theorem 2 (Sheng [44]). Let K = 2. For τ > 0 we have

‖ϕ1(τ) − exp(τX)‖ ≤ τ 2

2
‖[X1, X2]‖max

{

eτµ(X1+X2), eτ(µ(X1)+µ(X2))
}

;

‖ϕ2(τ) − exp(τX)‖ ≤ τ 3

6
‖X1 −X2‖ ‖[X1, X2]‖

×max
{

etµ(X1+X2), et(µ(X1)+µ(X2))
}

;

‖ϕ3(τ) − exp(τX)‖ ≤ τ 3

6

∥

∥

∥

∥

1

2
X1 +X2

∥

∥

∥

∥

‖[X1, X2]‖

×max
{

etµ(X1+X2), et(µ(X1)/2+µ(X1/2+X2))
}

,

where [X1, X2] is the commutator of X1, X2, and µ(Y ) is the logarithmic norm of Y .
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The proof of Theorem 2 is straightforward. To do so, say, for ϕ3, we may consider the
matrix function

Y (τ) = [exp(τX1), exp(τX2)].

Different the above to yield

Y ′(τ) = (X1 +X2)Y (τ) +
[

eτX1 , X2

]

eτX2 +
[

X1, e
τX2

]

eτX1 .

Therefore we have the solution

Y (τ) =

∫ τ

0

e(τ−s)(X1+X2)
([

esX1, X2

]

esX2 +
[

X1, e
sX2

]

esX1

)

ds

=

∫ τ

0

e(τ−s)(X1+X2)

×
∫ s

0

(

e(s−υ)X1 [X1, X2]e
υX1esX2 + e(s−υ)X2 [X1, X2]e

υX2esX1

)

dυds.

An estimate of the above via the spectral norm yields our result.
General global error analysis for K > 2 were obtained by several researchers. Commu-

tator based sensitivity function,

ν(X, Y, τ) =

∥

∥

∥

∥

∫ τ

0

e(1−s)X [X, Y ]eτXds

∥

∥

∥

∥

,

has been introduced in the analysis. Effects of the linear and nonlinear perturbations to
numerical errors were also introduced and studied. Matrix exponential condition number
was introduced and studied by Sheng et al. [44, 45].
Definition 3 (Sheng [45]). A asymptotic splitting is defined as

Φk,m(τ) =

[

m
∏

j=1

ϕ`(j)

( τ

mk

)

]k

, 1 ≤ r(j) ≤ M, τ > 0,

where

ϕ`(τ) =

K
∑̀

k=1

γk(`)Ek(`)(τ), ` = 1, 2, . . . ,M,

are stable splitting operators.
Theorem 3 (Sheng [45]). The order of accuracy of a consistent asymptotic splitting is

higher than the least order of ϕ`, ` = 1, 2, . . . ,M .

Theorem 4 (Sheng [9, 45]). The global error coefficient of a consistent asymptotic splitting

is less than that of any ϕ`, ` = 1, 2, . . . ,M , when k is sufficiently large.

Many interesting discussions are followed with important applications in computational
mathematics, quantum physics, engineering research. A particularly interesting case is the
splitting for solving regular and singular perturbed differential equation problems. For this,
let us consider the approximation of the flow operator:

Pε(τ) = exp [τ(X1 + εX2)] , τ, ε > 0.
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Definition 4 (Sheng [45]). We say that the splitting operator ϕ is of order (p; qp, qp+1, . . .)

if

ϕ(τ) − Pε(τ) =

∞
∑

k=p

αkτ
k+1εqk , τ, ε > 0.

Theorem 5 (Sheng [45, 50]). The splitting operators ϕ1, ϕ2 and ϕ3 are of order

(1; 1, 1, . . .), (2; 1, 1, . . .) and (2; 1, 1, . . .), respectively.

Needless to say, we have been discussing the approximation of the following flow func-
tion

exp (τX) = exp
(

τ
∑

Xk

)

, τ > 0,

especially when X, X1, X2, . . . , XK are matrices due to the large ordinary differential
systems anticipated, many of them are consequences of the popular semi-discretization
method, or method of lines for solving partial differential equations in scientific and engi-
neering applications.

That is the reason why splitting is often referred as exponential splitting. An exponential
splitting formula can further approximated by a proper Padé or rational approximation. A
final introduction of descritization yields an appropriate numerical method implementation,
including the well-known Peaceman-Rachford, ADI and LOD methods [9, 18, 43].

As for the matrix exponential function computations involved, Moler and Van Loan pub-
lished a paper in 1978 [35]. Interestingly, the same titled article, with a slight modification,
was published again in the same journal in 2003 [36]. This indicates clearly that current
matrix exponential function computation methods, especially those used in exponential
splitting computations, are far from a satisfactory.

FIGURE 1. An illustration of the basic local grid refinement (left) and grid redistribu-
tion (right).
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FIGURE 2. An illustration of the stretching adaptive transformation of a cylindrically symmetric lens
domain (from the left to right). A dimensionless measurement is used.

3 A connection between adaptation and time scales

There are a variety of well-established techniques in adaptive computations. Among the
most important methods, there are local grid refinement, and grid redistribution. For the
former, interested readers may view recent publications by Berger, Liao, Ludwig, Oliger,
and Flaherty [2, 30, 31, 37]. For the latter, references can be found in Cao, Huang, Budd,
Russell, and Sheng [5, 7, 8, 15, 22, 48, 51, 52].

A different adaptation, called interface method and domain transformation, is introduced
and developed by several researchers, including Guha, Li, LeVeque, Reinhart, Rogers and
Sheng [18, 19, 29, 38].

No matter which adaptive method is used, the adaptation procedure involved is robotic
and the grid movements are decided solely by the monitoring functions. For detailed dis-
cussions over different choices of the monitoring functions, their basic properties and re-
strictions, the reader is referred to recent publications by Budd, Huang, Russell, Van Vleck
and Sheng [1, 5, 8, 9, 48].

A time scale can be viewed as a limit case when certain mesh steps in an adaptive mesh,
which is nonuniform, tend to zero. Therefore a time scale may be viewed as a hybrid grid

from computational point-of-view. In the case, an adaptive finite difference scheme may
reduce to a dynamic equation.

Different dynamic derivatives are fundamental to the study of dynamic equations, since
they provide necessary information about discrepancies between conventional derivatives
and their discrete counterparts, that is, finite difference formulas. It is natural to conjecture
that the most commonly used dynamic derivative formulas do offer reasonable approxima-
tions to the conventional derivatives in appropriate senses.
Theorem 6 (Sheng [46]). Let f be sufficiently smooth in (a, b). Then the ∆, ∇ and ♦α

dynamic derivatives of f are consistent approximations to the conventional derivative f ′ in

their domains of definitions. Further, their order of accuracy is one.
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Theorem 7 (Sheng [46]). Let f be sufficiently smooth in (a, b). Then none of the exist-

ing second order dynamic derivatives is a consistent approximation to the conventional

derivative f ′′ on appropriate time scales considered in general.

Theorem 8 (Rogers and Sheng [39]). There does not exist an anti-♦α dynamic derivative

of a function defined on a time scales in general.

Let us sketch the proof of Theorem 7 for the case involving f∆∇ and f∇∆. We only
need to consider the case where (f σ(t))ρ = (f ρ(t))σ = f(t) and µρ(t) = η(t), ησ(t) =

µ(t), t ∈ C ∩ Tκ
κ. For this, we have

f∆∇(t) =
η(t)fσ(t) − (η(t) + µ(t))f(t) + µ(t)f ρ(t)

µ(t)η2(t)
, t ∈ C ∩ T

κ
κ.

On the other hand,

f∇∆(t) =
η(t)fσ(t) − (η(t) + µ(t))f(t) + µ(t)f ρ(t)

µ2(t)η(t)
, t ∈ C ∩ T

κ
κ.

Combining the two equations, we obtain

η(t)f∆∇(t) = µ(t)f∇∆(t), t ∈ C ∩ T
κ
κ.

Set λ(t) = µ(t)/η(t) > 0. It follows immediately that

f∆∇(t) = λ(t)f∇∆(t), t ∈ C ∩ T
κ
κ.

Since λ solely depends on the structures of T, the theorem is clear via a contradiction.
Remark 1. Applications of the time scales theory and methods to adaptive computations
may be limited. This is because, without incorporating the detailed structure of a time
scale, a second order dynamic equation, say,

u∆∇(t) = f(t), t ∈ T
κ
κ,

is irrelevant to a second order differential equation,

v′′(t) = f(t), t ∈ [a, b],

even though T is superimposed on [a, b]. On the other hand, an adaptive finite difference
equation is independent to the nonuniform mesh used.
Remark 2. Since a second order dynamic derivative (so do higher dynamic derivatives)
is irrelevant to a second order derivative, the time scales theory and methods provide a
nonconventional way of approximation to practical problems. For instance, if the dynamic
equation

u∆t = a2u∆x∆x

does not model a heat diffusion, then what is the true physics behind it? On the other hand,
what should be a correct dynamic equation for a head flow?
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Remark 3. Suppose the above second order dynamic equation makes sense in certain
applications. Then what should be a proper numerical algorithm for solving it?

Remark 4. More detailed investigations of finite differences on arbitrary grids may be
needed.

The following interesting results were obtained during the study of derivative approxi-
mations on nonuniform meshes by Jain and Sheng.

Theorem 9 (Jain and Sheng [25]). A higher order derivative cannot be approximated by a

repeat application of the finite differences on an arbitrary grid D.

Theorem 10 (Jain and Sheng [25]). Approximations of a higher order derivative can al-

ways be obtained via proper combinations of the finite differences on an arbitrary grid

D.

Theorem 11 (Jain and Sheng [25]). Detailed relative error estimates in terms of the grid

sensitivity index of second order finite difference approximations.

Most computational approaches are based on the theory and methods of time scales im-
plemented by many researchers, including Bohner, Peterson and Hilger [3, 4, 16], Özkan,
Sarikaya and Yildirim [23, 41], Eloe, Henderson, Ehrke, Kunkel and Sheng [11-14, 47, 49,
53, 55] and Thomas et al. [26, 60].
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FIGURE 3. Numerical errors of the different approximations of u′ on the discrete time scale T. Relative
errors of the ♦1/2 (solid curve) and modified central difference formula (dotted curve) [39]. Logarith-
mic y-scale is used to show details of the error distributions.

4 Adaptive splitting

The latest developments in the area are associated with the quenching-combustion differ-
ential equations. Semi- and fully adaptive methods associated with splitting for solving
multi-dimensional problems are implemented. Let

D = (0, a) × (0, b), a, b > 0, ∂D be its boundary,

Ω = D × (0, T ), S = ∂D × (0, T ), 0 < T <∞.
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Consider the following degenerate quenching problem:

s(x, y)ut = uxx + uyy + f(u), (x, y, t) ∈ Ω, (4.1)

u(x, y, t) = 0, (x, y, t) ∈ S; u(x, y, 0) = u0(x, y), (x, y) ∈ D, (4.2)

where s(x, y) = (x2 + y2)
q/2
, q ≥ 0, and f(u) is strictly increasing for 0 ≤ u < 1 with

f(0) = f0 > 0, lim
u→1−

f(u) = ∞.

It can be shown that, the positive solution of (4.1), (4.2) exists and is unique. Further,
when certain environmental parameters exceed their limits, max{u} → 1− in a finite time.
Quenching phenomena are distinguished for their important physical, engineering and in-
dustrial interpretations. They serve as an indicator of the steady and unsteady combustion
processes, or burning and explosion of the rocket fuel. The solution of (4.1), (4.2) also
plays a significant role in the theory of ecology and environmental studies, and in particu-
lar, in the prediction and control of pipeline decays.

Let v(t) denote the numerical solution to (4.1), (4.2) through an uniform semidiscretiza-
tion in space. Then

vt(t) = Pv(t) +Rv(t) + g(v(t)), 0 < t < T, (4.3)

v(0) = v0, (4.4)

where P and R are matrices associated with discretizations in x and y directions, respec-
tively. An application of the Peaceman-Rachford splitting to (4.3), (4.4) yields

vk+1 =
(

I − τk
2
R

)−1 (

I − τk
2
P

)−1 (

I +
τk
2
P

) (

I +
τk
2
R

) (

vk +
τk
2
g(vk)

)

+
τk
2
g(w(k)), (4.5)

where w(k) = vk + τk (Cvk + g(vk)) with C = P +R and τk is the temporal adaptive step
decided through the arc-length monitor function

m(vt, t) =
√

1 + v2
tt, (x, y, t) ∈ Ω. (4.6)

Denote

Ψ =
(

ψ−1
1,1 , ψ

−1
2,1 , . . . , ψ

−1
1,N , ψ

−1
2,1 , ψ

−1
2,2 , . . . , ψ

−1
2,N , . . . , ψ

−1
N,1, ψ

−1
N,2, . . . , ψ

−1
N,N

)T
,

where ψk,l = (a2k2 + b2l2)
q/2.

Theorem 12: Monotonicity (Sheng and Cheng [9]). For any beginning step ` if

(i) τk/(hq+2ψmin) < min {a2, b2} /4 for all k ≥ `,

(ii) Cv` + g(v`) > 0, τk is sufficiently small and h < 1/
√

2f(0) min{a2, b2},

or Cv` + g(v`) + τ 2
` PRg(v`)/4 > 0 and τk = τ` for all k ≥ `,
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then the sequence {vk}k≥` produced by the semi-adaptive splitting scheme (4.5) increases

monotonically until unity is exceeded by a component of vk (i. e., until quenching occurs),
or converges to the steady solution of the problem for both constant and variable τk, k ≥ `.

In the latter case, we do not have a quenching solution.

Theorem 13: Weak Stability (Sheng and Cheng [9]). Let τk/(h
q+2ψmin) < min {a2, b2}.

Then the semi-adaptive splitting scheme (4.5) is stable in the weak von Neumann sense.

Theorem 14: Stability (Sheng and Khaliq [27]). Assume that τi maxj

∣

∣

∣
λ

(R)
j

∣

∣

∣
≤ 2 for all

i ≤ k. Then the semi-adaptive splitting scheme (4.5) is stable in the von Neumann sense

under the l2 norm, i.e.,

‖zk+1‖2 ≤ cN‖z0‖2,

where z0 = v0−ṽ0 is an initial perturbation or error. zk+1 = vk+1−ṽk+1 is the perturbation

arising from the initial perturbation z0, and cN is a positive constant independent of the

number of time steps k and of adaptive time step τk.

Let us sketch a brief proof. First, it can be shown that

P = B1/2
(

B1/2T1B
1/2

)

B−1/2 and R = B1/2
(

B1/2T2B
1/2

)

B−1/2,

where B is diagonal and T1, T2 are block tridiagonal and symmetric. Note that
ψi−[i/N ]N,[i/N ]+1 > 0. Therefore, eigenvalues of P and R are real. Furthermore, T1 and
T2 are symmetric negative definite according to Gers̆chgorin circle theorem or Bauer’s the-
orem.

On the other hand, there exist orthogonal matrices Q1, Q2 such that

QT
1

(

B1/2T1B
1/2

)

Q1 = Λ1 = diag
(

λ
(P )
i

)

i=1,2,...,N2

,

QT
2

(

B1/2T2B
1/2

)

Q2 = Λ2 = diag
(

λ
(R)
i

)

i=1,2,...,N2

,

where λ(P )
i and λ(R)

i are eigenvalues of P and R, respectively, and λ(P )
i , λ

(R)
i < 0, i =

1, 2, . . . , N2. Further,

zk+1 = B1/2
(

I − τk
2
B1/2T2B

1/2
)−1 (

I − τk
2
B1/2T1B

1/2
)−1

×
(

I +
τk
2
B1/2T1B

1/2
)

×
(

I +
τk
2
B1/2T2B

1/2
) (

I − τk−1

2
B1/2T2B

1/2
)−1

· · ·

×
(

I − τ0
2
B1/2T1B

1/2
)−1

×
(

I +
τ0
2
B1/2T1B

1/2
) (

I +
τ0
2
B1/2T2B

1/2
)

B−1/2z0. (4.7)
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The following estimates can be derived:
∥

∥B1/2
∥

∥

2
=

√

1

ψmin

,
∥

∥

∥

∥

(

I − τk
2
B1/2T2B

1/2
)−1

∥

∥

∥

∥

2

≤ max
j

(

∣

∣

∣
1 − τk

2
λ

(R)
j

∣

∣

∣

−1
)

,

∥

∥

∥

∥

(

I − τ`
2
B1/2T1B

1/2
)−1 (

I +
τ`
2
B1/2T1B

1/2
)

∥

∥

∥

∥

2

≤ max
j

∣

∣

∣
1 + τ`

2
λ

(P )
j

∣

∣

∣

∣

∣

∣
1 − τ`

2
λ

(P )
j

∣

∣

∣

≤ 1, ` = 0, 1, . . . , k,

∥

∥

∥

∥

(

I +
τ`
2
B1/2T2B

1/2
) (

I − τ`−1

2
B1/2T2B

1/2
)−1

∥

∥

∥

∥

2

≤ max
j

∣

∣

∣
1 + τ`

2
λ

(R)
j

∣

∣

∣

∣

∣

∣
1 − τ`−1

2
λ

(R)
j

∣

∣

∣

, ` = 1, 2, . . . , k,

∥

∥

∥
I +

τ0
2
B1/2T2B

1/2
∥

∥

∥

2
=

∥

∥

∥
Q2

(

I +
τ0
2

Λ2

)

QT
2

∥

∥

∥

2
≤ max

j

∣

∣

∣
1 +

τ0
2
λ

(R)
j

∣

∣

∣
,

∥

∥B−1/2
∥

∥

2
≤

√

ψmax .

Therefore,

‖zk+1‖2 ≤
√

ψmax

ψmin

maxj

∣

∣

∣
1 + τ0

2
λ

(R)
j

∣

∣

∣

minj

∣

∣

∣
1 − τk

2
λ

(R)
j

∣

∣

∣

k
∏

`=1



max
j

∣

∣

∣
1 + τ`

2
λ

(R)
j

∣

∣

∣

∣

∣

∣
1 − τ`−1

2
λ

(R)
j

∣

∣

∣



 ‖z0‖2.

To explore the above, we need the auxiliary function

σ(τ`−1, τ`) = max
j

∣

∣

∣
1 + τ`

2
λ

(R)
j

∣

∣

∣

∣

∣

∣
1 − τ`−1

2
λ

(R)
j

∣

∣

∣

, 1 ≤ ` ≤ k.

It follows subsequently that

‖zk+1‖2 ≤
√

ψmax

ψmin

maxj

∣

∣

∣
1 + τ0

2
λ

(R)
j

∣

∣

∣

minj

∣

∣

∣
1 − τk

2
λ

(R)
j

∣

∣

∣

k
∏

`=1

σ(τ`−1, τ`)‖z0‖2

≤
√

ψmax

ψmin

1 − τ0
2

minj

∣

∣

∣
λ

(R)
j

∣

∣

∣

1 + τk

2
minj

∣

∣

∣
λ

(R)
j

∣

∣

∣

1 − τk

2
minj

∣

∣

∣
λ

(R)
j

∣

∣

∣

1 + τ0
2

minj

∣

∣

∣
λ

(R)
j

∣

∣

∣

‖z0‖2 ≤
√

ψmax

ψmin
‖z0‖2.

The theorem is thus proved.
Remark 5. Set τ` = τ = const., ` = 0, 1, . . .. We have

‖zk+1‖2 ≤
√

ψmax

ψmin

maxj

∣

∣

∣
1 + τ

2
λ

(R)
j

∣

∣

∣

minj

∣

∣

∣
1 − τ

2
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(R)
j

∣

∣

∣

‖z0‖2 ≤
√
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maxj

∣

∣

∣
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(R)
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∣

∣

∣

minj

∣

∣

∣
λ

(R)
j

∣

∣

∣

‖z0‖2
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without imposing any constraint on the step sizes τ and h.
Remark 6. Since

max
j

∣

∣

∣
λ

(R)
j

∣

∣

∣
≤ 4

b2hq+2ψmin

by using the Gers̆chgorin circle theorem. Hence, the condition τi
2

max
j

∣

∣

∣λ
(R)
j

∣

∣

∣ ≤ 1 can be
replaced by the following:

τi
hq+2ψmin

≤ b2

2
.

The above may simplify the inequality in the theorem by suggesting a stronger constraint.
Remark 7. The time discretization is of trapezoidal type. It is A-stable but does not always
damp local errors. A smaller step size is thus expected if there are local irregularities.
However, such a step size restriction is in general not necessary in the smooth solution
region.

Now, let us consider a full adaptation.

0.7747

0.7755

0.7764

0.7774

0.7782

0.7788

0.9947 0.9958 0.9969 0.9982 0.9992 1

y

x

FIGURE 4. An illustration of the adaptation in space at t = tk.

We adopt a nonuniform finite difference approximation,
f∆(x) − f∇(x)

(h+ + h−)/2
≈ f ′′(x), a < x < b, (4.8)

where ∇ and ∆ are the backward and forward difference operators, respectively.
Again, we may write a fully adaptive split scheme into the matrix form:

vk+1 =
(

I − τk
2
R

)−1 (

I − τk
2
P

)−1 (

I +
τk
2
P

) (

I +
τk
2
R

) (

vk +
τk
2
g(vk)

)

+
τk
2
g(w(k)), (4.9)

where w(k) and C are in the same form as defined before.
Theorem 15: Monotonicity (Sheng and Khaliq [27]). Let

ĥ = max(h+
x , h

+
y , h

−
x , h

−
y ), t = tk.

For any beginning step ` if

(i)
(

τk/αĥ
2
)

< 1
4
min {a2, b2} for all k ≥ `,
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(ii) Cv` + g(v`) > 0, τk is sufficiently small and ĥ < 1/
√

2f(0) min{a2, b2}, or Cv` +

g(v`) + τ 2
` PRg(v`)/4 > 0 and τk = τ` for all k ≥ `,

then the sequence {vk}k≥` produced by the fully adaptive split scheme (4.9) based on (4.8)

increases monotonically until unity is exceeded by a component of the solution vector, or

converges to the steady solution of the problem for both constant and variable τk, k ≥ `.

In the latter case, we do not have a quenching solution.

Remark 8. Stabilities of the fully adaptive splitting scheme remain to be proved.
Adaptive splitting can also be used for solving multidimensional solitary wave equations,

such as the Schrödinger equation,

iut + uxx + uyy + f(|u|2)u = 0, −∞ < x <∞, t ≥ t0,

dispersive KdV equation,

ut + uxxx + uyyy + κ1uux + κ2uuy = 0, −∞ < x <∞, t ≥ t0,

and the sine-Gordon equation,

utt = uxx + uyy − φ(x, y) sinu, − a < x < a, − b < y < b, t > t0, (4.10)

where the function φ can be determined through a Josephson current density. Spline collo-
cations may be used for achieving a better long time stability.

Let us concentrate on the split solution of (4.10). A spacial semi-discretization of (4.10)

yields
u′′k =

(

h−2
x B1 + h−2

y B2

)

uk + r(uk) = Buk + r(uk).

It further leads to the nonlinear cosine scheme

uk+1 − 2uk + uk−1 = τ 2ψ(τ 2A)(Buk + r(uk)), k = 1, 2, . . . , (4.11)

where

A =
∂

∂u
(Bu+ r(u))

∣

∣

∣

∣

u=uk

= B + ru(uk),

ψ(z) =
cos

√
−z − 1

z/2
,

ru(uk) = diag (φ1,1 cos u1,1,k, φ1,2 cos u1,2,k, . . . ,

φ1,n cos u1,n,k, φ2,1 cos u2,1,k, . . . , φm,n cos um,n,k)

and τ can be selected adaptively. Note that (4.11) can be written as

uk+1 − 2cosh(τ
√
A)uk + uk−1 = τ 2ψ(τ 2A) [r(uk) − ru(uk)uk] (4.12)

and
cosh(τ

√
A) = e

τ2

2
A +O(τ 4)
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when the real parts of the eigenvalues of A are negative.
Thus, (4.12) can be approximated by

uk+1 − 2e
τ2

2
Auk + uk−1 = τ 2 (r(uk) − ru(uk)uk) (4.13)

incurring a local error O(τ 4). Set

A1 =
1

h2
x

B1 −
1

2
ru(uk), A2 =

1

h2
y

B2 −
1

2
ru(uk).

Recall the Strang’s splitting ϕ3. We have

uk+1 − 2e
τ2

4
A1e

τ2

2
A2e

τ2

4
A1uk + uk−1 = τ 2 (r(uk) − ru(uk)uk) .

Now, replace the matrix exponential functions in the above equation by [0/1], [1/1] and
[1/0] Padé formulas, respectively. We acquire the two-stage linearly implicit ADI cosine
scheme:

(

I − τ 2

4
A1

)

vk =

(

I +
τ 2

4
A2

) (

I − τ 2

4
A2

)−1 (

I +
τ 2

4
A1

)

uk, (4.14)

uk+1 = 2vk + τ 2(r(uk) − ru(uk)uk) − uk−1, k = 1, 2, . . . (4.15)

Set

σ1 = max
i

∣
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∣

∣

∣

2 + τ 2λ
(A1)
i

2 − τ 2λ
(A1)
i

∣

∣

∣

∣

∣

and σ2 = max
i

∣

∣

∣

∣

∣

2 + τ 2λ
(A2)
i

2 − τ 2λ
(A2)
i

∣

∣

∣

∣

∣
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FIGURE 5. Simulation of the solution of (4.14), (4.15). The solution corresponds to the optical
collapse of instability status of R3 [54].

Theorem 16: Stability (Sheng [54]). If

2σ1σ2 ≤ 1, (4.16)

then the two-stage split cosine scheme (4.14), (4.15) is stable in the von Neumann sense.

The proof of the theorem can be implemented through a throughout matrix analysis of
the split matrices involved. A spectral norm is again utilized.
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Adaptive splitting methods have also be extended for solving the Maxwell’s field equa-
tions as well as Helmholtz equation for light,

∇2
Tu− 2iκuz + uzz = 0,

where ∇2
T is the transverse Laplacian operator and κ(x, y, z) > 0 is discontinuous over

the given physical domain. For detailed results and discussions the reader is refereed to
recent publications of Gonzelez, Guha, Haus, Rogers and Sheng [18, 19, 54].

5 Conclusions

It has been evident that, as being pointed out by many researchers in the fields, splitting,
adaptive and hybrid computational methods have been providing incredibly powerful and
reliable computational tools for solving different ordinary and partial differential equations.
New splitting schemes are highly popular in real applications because of their outstanding
simplicity in structures, great flexibility in working together with other numerical compo-
nents, such as iteration, adaptation and hybridizartion, and their exceptionally high effi-
ciency in solution procedures. Many new concepts and splitting strategies have emerged,
such as the asymptotic splitting and hybrid splitting, in recent years.
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element approximation and continuation techniques, Numer. Math., 39 (1982), 371-
404.

[39] J. W. Rogers, Jr. and Q. Sheng, Notes on the diamond-α dynamic derivative on time
scales, J. Math. Anal. Appl., 326 (2007), 228-241.

[40] B. N. Ryland, R. I. McLachlan and J. Frank, On the multisymplecticity of partitioned
Runge-Kutta and splitting methods, Int. J. Comput. Math. 84 (2007), 847-869.

[41] M. Z. Sarikaya, H. Yildirim, On the Bessel diamond and the nonlinear Bessel di-
amond operator related to the Bessel wave equation, Nonlinear Anal. 68 (2008),
430-442.

[42] M. Schatzman, Higher order alternate directions methods, Comput. Methods Appl.

Mech. Engrg., 116 (1994), 219-225.

[43] Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA

J. Numer. Anal., 9 (1989), 199-212.

[44] Q. Sheng, Global error estimate for exponential splitting, IMA J. Numer. Anal., 14

(1993), 27-56.

[45] Q. Sheng, A note on asymptotic splitting and its applications, Math. Comput. Mod-

elling, 20 (1994), 45-58.

[46] Q. Sheng, A view of dynamic derivatives on time scales from approximations, J.

Diff. Eqn. Appl., 11 (2005), 63-82.

[47] Q. Sheng, Hybrid approximations via second order combined dynamic derivatives
on time scales, Electr. J. Qualitative Theory Diff. Eqns, 17 (2007), 1-13.



Recent Trends in Splitting, Adaptive and Hybrid Numerical Methods for Differential Equations 301

[48] Q. Sheng, A moving-mesh splitting scheme for 2-dimensional quenching problems,
Proc. Appl. Math. Mech., 7 (2008), 1023303-1023304.

[49] Q. Sheng, Hybrid approximations via second order crossed dynamic derivatives with
the ♦α derivative, Nonlinear Anal.: Real World Appls., 9 (2008), 628-640.

[50] Q. Sheng and R. P. Agarwal, Solutions of n-point boundary value problems asso-
ciated with nonlinear summary difference equations, J. of Comp. Appl. Math., 80

(1997), 49-70.

[51] Q. Sheng and H. Cheng, An adaptive grid method for degenerate semilinear quench-
ing problems, Computers Math. Appl., 39 (2000), 57-71.

[52] Q. Sheng and H. Cheng, On monotone adaptive algorithms for solving singular
reaction-diffusion equations, Proc. Second International Conf. on Neural, Parallel,

and Scientific Computations, 2 (2002), 233-236.

[53] Q. Sheng, M. Fadag, J. Henderson and J. Davis, An exploration of combined dy-
namic derivatives on time scales and their applications, Nonlinear Analysis: Real

World Applications, 7 (2006), 395-413.

[54] Q. Sheng and J. W. Haus, On the n-th mode numerical solutions of a second order
boundary value problem on semi-infinite domain, Comm. Appl. Nonlinear Anal, 14

(2007), 121-133.

[55] Q. Sheng and A. Wang, A study of the dynamic difference approximations on time
scales, submitted.

[56] A. T. Sornborger, Higher-order operator splitting methods for deterministic parabolic
equations, Int. J. Computer Math., 84 (2007), 887-894.

[57] G. Strang, Accurate partial difference method I: linear Cauchy problems, Arch. Ra-

tional Mech., 12 (1963), 392-402.

[58] G. Strang, On the construction and comparison of difference schemes, SIAM J. Nu-

mer. Anal., 5, 507-517.

[59] M. Suzuki, General theory of fractal path integrals with applications to many-body
theories and statistical physics, J. Math Phys, 32 (1991), 400-407.

[60] D. M. Thomas and B. Urena, A model describing the evolution of West Nile-like
encephalitis in New York City, Math. Comput. Modelling, 34 (2001), 771-781.


