
Neural, Parallel, and Scientific Computations 16 (2008) 327-336

AN ASYMPTOTIC HYBRID DIFFERENCE SCHEME FOR

SINGULARLY PERTURBED THIRD AND FOURTH ORDER

ORDINARY DIFFERENTIAL EQUATIONS WITH

DISCONTINUOUS SOURCE TERM

V. SHANTHI AND N. RAMANUJAM

Department of Mathematics, National Institute of Technology,

Tiruchirappalli-620 015, Tamilnadu (India)

Department of Mathematics, Bharathidasan University, Tiruchirappalli-620 015,

Tamilnadu (India)

ABSTRACT. We consider Singularly perturbed Boundary-Value Problems (BVPs) for third and

fourth order Ordinary Differential Equations (ODEs) with a discontinuous source term and a small

positive parameter multiplying the highest derivative. Because of the type of Boundary Conditions

(BCs) imposed on these equations these problems can be transformed into weakly coupled systems.

In this system, the first equations does not have the small parameter but the second contains it. In

this paper a computational method named as “An asymptotic hybrid finite difference scheme” for

solving these systems is presented. In this method we first find an zero order asymptotic approx-

imation to the solution and then the system is decoupled by replacing the first component of the

solution by this approximation in the second equation. Then the second equation is independently

solved by a hybrid finite difference method. Numerical experiments support our theoretical results.
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1. INTRODUCTION

Singularly Perturbed Differential Equations appear in several branches of applied

mathematics. Analytical and numerical treatment of these equations have drawn

much attention of many researchers [1, 2, 5]. In general classical numerical methods

fail to produce good approximations for these equations. Hence one has to go for non-

classical methods. A good number of articles have been appearing in the past three

decades on non-classical methods which cover mostly second order equations. But

only a few authors have developed numerical methods for singularly perturbed higher

order differential equations. Singularly perturbed higher order problems are classified

on the basis that how the order of the original differential equation is affected if one
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sets ε = 0 [5]. Here ε is a small positive parameter multiplying the highest derivative

of the differential equation. We say that the Singular Perturbation Problem (SPP) is

of convection- diffusion type if the order of the DE is reduced by one, whereas it is

called reaction-diffusion type if the order is reduced by two.

In this paper the second type is considered. For the analytical treatment SPBVPs

for the higher-order non-linear ODEs which have important applications in Fluid

dynamics, one may refer [3, 13]. In this paper we consider the following two problems.

Third Order Singularly Perturbed Boundary Value Problems [14]. Find

y ∈ C1(Ω) ∩ C2(Ω) ∩ C3(Ω− ∪ Ω+) such that

−εy′′′(x) + b(x)y′(x) + c(x)y(x) = f(x), x ∈ Ω− ∪ Ω+,(1.1)

y(0) = p, y′(0) = q, y′(1) = r,(1.2)

where b(x), c(x) are smooth functions on Ω satisfying the following conditions.

b(x) ≥ β > 0,(1.3)

0 ≥ c(x) ≥ −γ, γ > 0,(1.4)

β − θγ ≥ η > 0, for some θ arbitrarily close to 2, for some η.(1.5)

Fourth Order Singularly Perturbed Boundary Value Problems [13]. Find

y ∈ C2(Ω) ∩ C3(Ω) ∩ C4(Ω− ∪ Ω+) such that

−εy(iv)(x) + b(x)y′′(x) − c(x)y(x) = −f(x), x ∈ Ω− ∪ Ω+,(1.6)

y(0) = p, y(1) = q, y′′(0) = −r, y′′(1) = −s,(1.7)

where b(x), c(x) are smooth functions on Ω satisfying the following conditions.

b(x) ≥ β > 0,(1.8)

0 ≥ c(x) ≥ −γ, γ > 0,(1.9)

β − θγ ≥ η > 0, for some θ arbitrarily close to 2 for some η.(1.10)

For both problems defined above Ω = (0, 1), Ω− = (0, d), Ω+ = (d, 1), d ∈ Ω ε is

a small positive parameter. It is assumed that f is sufficiently smooth on Ω \ {d}.
Further it is assumed that f(x) and its derivatives have right and left limits at x = d.

It is convenient to introduce the notation for jump at d for any function w as [w](d) =

w(d+) − w(d−).

Motivated by the papers [13, 14] a computational method is suggested for the

above problems. Because of the type of the BCs imposed one can transform the prob-

lem into a weakly coupled system of DEs. Then one obtains a zero order asymptotic

expansion approximation for the solution of the problem. Then the first component of

the solution appearing in the second equation is replaced by its zero order asymptotic

expansion approximation. Then the system gets decoupled. Then second equation
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can be solved independently. Infact, the second equation was solved by earlier au-

thors [13, 14] by using FMM (Fitted Mesh Method) on Shishkin mesh and the order

of convergence obtained by them is of O(
√

ε + N−1 ln N). In the present paper we

apply hybrid finite difference scheme on Shishkin meshes and obtained higher order

convergence for small values of parameter ε.

Throughout this paper, C denotes a generic positive constant that is independent

of parameter (ε), N , the dimension of the discrete problem. In the following we use

the norm ‖ w ‖D= supx∈D | w(x) |.

2. ASYMPTOTIC EXPANSION APPROXIMATION

As mentioned above zero- order asymptotic expansion for the solution of the prob-

lem (1.1–1.2) and (1.6–1.7) are obtained. The SPBVP (1.1–1.2) can be transformed

into an equivalent problem of the form






y′

1(x) − y2(x) = 0, x ∈ (0, 1],

−εy′′

2(x) + b(x)y2(x) + c(x)y1(x) = f(x), x ∈ Ω− ∪ Ω+,
(2.1)

y1(0) = p, y2(0) = q, y2(1) = r,(2.2)

where y = (y1, y2)
T , y1 ∈ C1(Ω)∩C2(Ω)∩C3(Ω− ∪Ω+), y2 ∈ C0(Ω)∩C1(Ω)∩C2(Ω− ∪

Ω+).

Similarly the SPBVP (1.6–1.7) can be transformed into an equivalent problem of

the form






−y′′

1(x) − y2(x) = 0, x ∈ Ω,

−εy′′

2(x) + b(x)y2(x) + c(x)y1(x) = f(x), x ∈ Ω− ∪ Ω+,
(2.3)

y1(0) = p, y1(1) = q, y2(0) = r, y2(1) = s,(2.4)

where y = (y1, y2)
T , y1 ∈ C2(Ω)∩C3(Ω)∩C4(Ω− ∪Ω+), y2 ∈ C0(Ω)∩C1(Ω)∩C2(Ω− ∪

Ω+).

Remark 2.1. Hereafter, only the above systems are only considered instead of BVPS

(1.1–1.2) and (1.6–1.7) with the conditions (1.3–1.5) and (1.8–1.10). The condition

(1.4) and (1.9) are imposed to ensure that systems (2.1–2.2) and (2.3-2.4) respectively

quasi-monotone [13, 14]. The conditions (1.5)and (1.10) are sufficient to establish the

maximum principle for (2.1–2.2) and (2.3–2.4). This, in turn, can be used to derive

the stability result, error estimates etc.

Motivated by [13, 14] we can construct an asymptotic expansion approximation

for the solution of the system (2.1–2.2) and (2.3–2.4). Find a continuous functions

u01 on Ω such that

b(x)u′

01(x) + c(x)u01(x) = f(x), ∀x ∈ Ω− ∪ Ω+ ∪ {1}, u01(0) = p.
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Then find

(2.5) u02(x) =
f(x) − c(x)u01(x)

b(x)
, x ∈ (Ω− ∪ Ω+ ∪ {1}).

Further let vl0 = (vl01, vl02), vr0 = (vr01, vr02), be the left layer corrections given by

vl01 = −
√

ε

b(0)
vl02,

vl02 = k1e
−x

q

b(0)
ε , x ∈ {0} ∪ Ω−,

vr01 = −
√

ε

b(d)
vr02,

vr02 = k2e
−(x−d)

q

b(d)
ε , x ∈ Ω+ ∪ {1},

and let wl0 = (wl01, wl02), wr0 = (wr01, wr02), be the right layer corrections given by

wl01 = −
√

ε

b(0)
wl02,

wl02 = k3e
−x

q

b(0)
ε , x ∈ {0} ∪ Ω−,

wr01 = −
√

ε

b(d)
wr02,

wr02 = k4e
−(x−d)

q

b(d)
ε , x ∈ Ω+ ∪ {1},

v01 =







vl01, x ∈ Ω−

vr01, x ∈ Ω+,
and

w01 =







wl01, x ∈ Ω−

wr01, x ∈ Ω+.

Similarly for v02 and w02 on Ω− ∪ Ω+. Now define

y1as = u01 + v01 + w01, x ∈ Ω− ∪ Ω+,

y2as = u02 + v02 + w02, x ∈ Ω− ∪ Ω+.

The constants k1, k2, k3 and k4 are determined by imposing the following boundary

conditions [13, 14]:

y2as(0) = y2(0), y2as(1) = y2(1), y2as(d−) = y2as(d+).

Similarly one can construct an asymptotic expansion for the solution of the BVP

(2.3–2.4). Infact, for this problem u01 is solution of the BVP

−u
′′

01 − u02 = 0(2.6)

b(x)u02(x) + c(x)u01(x) = f(x), x ∈ (Ω− ∪ Ω+).(2.7)
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and

(2.8) u01(0) = p u01(1) = q u01(d−) = u01(d+) u′

01(d−) = u′

01(d+)

Note: One can see that there are strong layers at x = 1 as well as at x = d for the

solution component y2.

Theorem 2.2. The zero-order asymptotic expansion approximation yas of the solu-

tion y(x) of (2.1)–(2.2) satisfies the inequality

| yi(x) − yi,as(x) | ≤ C
√

ε, x ∈ Ω, i = 1, 2.

In particular we have (proof of Theorem 3.2, [14])

| y1(x) − u01(x) |≤ C
√

ε.

3. SOME ANALYTICAL AND NUMERICAL RESULTS FOR SPBVP

FOR SECOND-ORDER REACTION-DIFFUSION EQUATION

WITH A DISCONTINUOUS SOURCE TERMS

We consider the BVP

(3.1) −εy∗
′′

2 (x) + b(x)y∗

2(x) = f(x) − c(x)u01(x), x ∈ Ω− ∪ Ω+,

(3.2) y∗

2(0) = r, y∗

2(1) = s.

where b(x), f(x), c(x) are same functions as given in the BVP (2.1–2.2)and u01 is the

solutions of the initial value problem (2.1).

3.1. Analytical Results.

Theorem 3.1. If (y1, y2) and y∗

2 are solutions of the BVPs (2.1–2.2) and (3.1–3.2)

respectively, and u01 is the solution of the reduced problem (2.1), then [14]

| y2(x) − y∗

2(x) |≤ C
√

ε, x ∈ Ω.

Remark 3.2. A similar statement can be made for the BVP (2.3–2.4)

3.2. Numerical Results. Consider the following reaction-diffusion BVP (3.1–3.2).

Zhongdi Cen [3] presented a hybrid scheme for a class of SPBVPs of convection-

diffusion type for second order ODEs with discontinuous convection coefficient. We

now apply this scheme for the above problem (3.1–3.2). On Ω− ∪ Ω+ a piecewise

uniform mesh of N mesh intervals is constructed as follows. The interval Ω
−

is

subdivided into the three subintervals.

[0, τ1], [τ1, d − τ1] and [d − τ1, d]

for some τ1 that satisfies 0 < τ1 ≤ d

4
. On [0, τ1] and [d − τ1, d] a uniform mesh with

N

8
mesh intervals is placed, while on [τ1, d − τ1] has a uniform mesh with

N

4
mesh
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intervals. The subintervals [d, d + τ2], [d + τ2, 1 − τ2], [1 − τ2, 1] of Ω
+

are treated

analogously for some τ2 satisfying 0 < τ2 ≤ 1 − d

4
. The interior points of the mesh

are denoted by

ΩN
ε =

{

xi : 1 ≤ i ≤ N

2
− 1

}

∪
{

xi :
N

2
+ 1 ≤ i ≤ N − 1

}

.

Clearly xN/2 = d and Ω
N

ε = {xi}N
0 . Note that this mesh is a uniform mesh when

τ1 =
d

4
and τ2 =

1 − d

4
. It is fitted to the singular perturbation problem (3.1–3.2) by

choosing τ1 and τ2to be the following functions of N and ε

τ1 = min

{

d

4
, 2

√

ε/β ln N

}

and τ2 = min

{

1 − d

4
, 2

√

ε/β ln N

}

.

On the piecewise-uniform mesh Ω
N

ε a standard centered finite difference operator is

used. Then the mesh widths are

hi =



















H1 = 8τ/N, i = 1, . . . , N/8, i = (5N/8) + 1, . . . , N,

H2 = 4(d − 2τ)/N, i = (N/8) + 1, . . . , N/4, i = (3N/4) + 1, . . . , 5N/8,

h = 8τ/N, i = (N/4) + 1, . . . , (3N/4)

Our discretization is similar to that of [14] and [13] in those they use the central

difference approximation

LN
c ≡ −εδ2y∗

2,i + b(xi)y
∗

2,i = f(xi) − c(xi)u01(xi) = f̄i, ∀xi ∈ ΩN
ε ,(3.3)

y∗

2,0 = q, y∗

2,n = r, Lτ at x = N/2,(3.4)

where

δ2y∗

2,i =

(

y∗

2,i+1 − y∗

2,i

xi+1 − xi
−

y∗

2,i − y∗

2,i−1

xi − xi−1

)

2

xi+1 − xi−1
,

In the point xN/2 = d we shall use the difference operator Lτ ;

(3.5) Lτy
∗

2,N/2 =
−y∗

2,N/2+2 + 4y∗

2,N/2+1 − 3y∗

2,N/2

2h
−

y∗

2,N/2−2 − 4y∗

2,N/2−1 + 3y∗

2,N/2

2h
= 0

We set

(3.6) LNy∗

2,i =







LN
c y∗

2,i for i 6= N/2

LN
τ y∗

2,i for i = N/2.

and

f̄i =







fi for i 6= N/2

for i = N/2

Then our scheme reads: Find yN
2,i ∈ RN+1 with

LNy∗

2,iN = f̄i i = 1, 2, . . . , N − 1

y∗

2,0 = y∗

2(0), y∗

2,N = y∗

2(1).
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The matrix associated with LN is not an M-matrix. We transform the equation so

that the new equation has a monotonicity property. From equations (3.1–3.2) we can

get

y∗

2,N/2−2 =

(

fN/2−1 − bN/2−1y
∗

2,N/2−1 −
ε

h

y∗

2,N/2 − y∗

2,N/2−1

h
+

ε

h2
y∗

2,N/2−1

)

h2

ε

y∗

2,N/2+2 =

(

fN/2+1 − bN/2+1y
∗

2,N/2+1 +
ε

h

y∗

2,N/2+1 − y∗

2,N/2

h
+

ε

h2
y∗

2,N/2+1

)

h2

ε
.

Inserting the expressions for y∗

2,N/2+2 and y∗

2,N/2−2 in (3.5) gives

LN
υ y∗

2,N/2 =

((

2 +
h2

ε
bN/2+1

)

y∗

2,N/2+1 − 4y∗

2,N/2 + (2 +
h2

ε
bN/2−1)y

∗

2,N/2−1

)

1

h

= (fN/2+1 + fN/2−1)
h

2ε

We define the discrete linear operators

(3.7) LN
Hy∗N

2,i =







LN
c y∗N

2,i for i 6= N/2

LN
υ y∗N

2,i for i = N/2.

and

¯fHi =







f̄i for i 6= N/2

fN/2+1 + fN/2−1
h
2ε

for i = N/2

Clearly we have a system of equations

(3.8) LN
Hy∗N

2,i = f̄Hi, for i = 1, 2, . . . , N + 1, y∗

2,0 = y∗

2(0), y∗

2,N = y∗

2(1).

Then we have

Theorem 3.3. The error in using the scheme (3.7) to solve the problem (3.1)–(3.2)

at the inner grid points {xi, i = 1, 2, . . . , N − 1} satisfies

| y∗

2(xi) − y∗

2,i |≤ C(N−1 ln N)2.

Proof: Using the procedure adopted in [3] we can derive the required result.

4. ERROR ESTIMATE

Theorem 4.1. Let (y1, y2) be the solution of (2.1)–(2.2). Further, let y∗

2,i be the

numerical solution of (3.1)–(3.2) obtained by the scheme (3.3)–(3.4). Then

| y2(xi) − y∗

2,i |≤ C[(N−1 ln N)2 +
√

ε].

Proof: The result of the present theorem follows from the inequality

| y2(xi) − y∗

2,i |≤| y2(xi) − y∗

2(xi) | + | y∗

2(xi) − y∗

2,i |

and Theorems 3.1 and 3.3.
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Remark 4.2. A similar statement is true for the BVP (2.3–2.4). In [13, 14] the

authors applied FMM on Shishkin mesh and obtained an error estimate of order

(O
√

ε + N−1 ln N). From the above result it is obvious that the present method has

improved the earlier results.

5. NUMERICAL EXPERIMENTS

In this section, two examples are given to illustrate the computational methods

discussed in this paper.

Example 5.1. Consider the singularly perturbed BVP with discontinuous source

term:

−εy
′′′

(x) + 4y′(x) − y(x) =







0.7 x < 0.5

−0.6 x ≥ 0.5
, x ∈ Ω,

y(0) = 1, y′(0) = 0, y′(1) = 0,

and the corresponding system

y′

1(x) − y2(x) = 0,

−εy
′′

2 (x) + 4y2(x) − y1(x) =







0.7 x < 0.5

−0.6 x > 0.5
, x ∈ Ω,

y1(0) = 1, y2(0) = 0, y2(1) = 0.

For this problem

u01(x) =







−0.7 + 1.7ex/4, x ∈ {0} ∪ Ω−

0.6 + 1.7ex/4 − 1.3e−(0.5−x)/4, x ∈ Ω+ ∪ {0.5, 1}
,

Example 5.2. Consider the singularly perturbed BVP with discontinuous source

term:

−εyiv(x) + 4y′′(x) − y(x) =







0.7 x < 0.5

−0.6 x ≥ 0.5
, x ∈ Ω,

y(0) = 1, y(1) = 1, y′′(0) = 0, y′′(1) = 0,

and the corresponding system

−y
′′

1 (x) − y2(x) = 0,

−εy
′′

2 (x) + 4y2(x) − y1(x) =







0.7 x < 0.5

−0.6 x > 0.5,
x ∈ Ω,

y1(0) = 1, y1(1) = 1, y2(0) = 0, y2(1) = 0,
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For this problem

u01(x) =







−0.7 + C1e
x/2 + C2e

−x/2, x ∈ {0} ∪ Ω−

0.6 + C3e
x/2 + C4e

−x/2, x ∈ Ω+ ∪ {0.5, 1},

where

C1 = 1.7 − C2

C2 =
1.7 − 0.4e−1/2 + C4(e

−1 + e−1/2)

1 + e−1/2

C3 = (0.4 − C4e
−1/2)e−1/2

C4 =
1.3(e−0.5/2 + e−0.5/2) + 1.7(e−1/2 − e1/2) + 0.8e−1/2 − 3.4

2(e−1 − 1)

6. DISCUSSION

From the tables it is obvious that the scheme presented in this paper gives better

results when compared to the method presented in the corresponding literature. The

rate of convergence rN are computed using the following formula:

rN = log2

(

EN

E2N

)

.

where EN = ||y∗

2 − y∗I
2,i||∞ and y∗I

2,i denotes the piecewise linear interpolant of y∗

2.

In Table 1, we present values EN , rN for the first derivative of the solution of the

BVP given in Example 5.1 and Table 2 gives the second derivative of the solution of

the BVP given in Example 5.2.

Table 1. Values of EN and rN for the first derivative of the solution

y of the Example 5.1 for ε = 2−1 − 2−30.

Number of mesh points N

64 128 256 512 1024

EN 1.0062e-02 3.9832e-03 1.7131e-03 8.0103e-04 3.9850e-04

rN 1.3369e+00 1.2173e+00 1.0967e+00 1.0073e+00

Table 2. Values of EN and rN for the second derivative of the solution

y of the Example 5.2 for ε = 2−1 − 2−30.

Number of mesh points N

64 128 256 512 1024

EN 2.3088e-01 9.1401e-02 3.9309e-02 1.8381e-02 9.1442e-03

rN 1.3369e+00 1.2174e+00 1.0966e+00 1.0073e+00
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