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ABSTRACT. In this article, we study the numerical solution of singularly perturbed parabolic

reaction-diffusion initial-boundary-value problems. To solve these problems, we develop a numerical

scheme which combines the cubic spline scheme and the classical finite difference scheme for the

spatial derivatives, and backward difference scheme for the time derivative. To resolve the boundary

layers, we use the piecewise uniform Shishkin mesh for the spatial discretization. Stability analysis

and error estimates are obtained. The proposed method is applied to a test problem, which shows

the parameter-uniform convergent results.
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1. INTRODUCTION

Consider the singularly perturbed parabolic initial-boundary value problem (IBVP)

in the domain Ω = (0, 1) × (0, T ]:

(1.1)





Lu(x, t) ≡ ∂u

∂t
− ε

∂2u

∂x2
+ b(x, t)u(x, t) = f(x, t), (x, t) ∈ Ω

u(x, 0) = s(x), on Sx = {(x, 0) : 0 ≤ x ≤ 1},

u(0, t) = a0(t), on S0 = {(0, t) : 0 ≤ t ≤ T},

u(1, t) = a1(t), on S1 = {(0, t) : 0 ≤ t ≤ T},
where 0 < ε ≪ 1 is a small parameter, and b, f are sufficiently smooth functions

with b(x, t) ≥ β > 0 on Ω. Under suitable continuity and compatibility conditions

on the data, the IBVP (1.1) has a unique solution u(x, t). Boundary layers occur in

the solution when ε → 0. These boundary layers are neighbors of the boundaries of

the domain, where the solution varies rapidly, while away from the layers the solution
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changes slowly, and smoothly. Away from any corner of the domain a boundary layer

of either regular or parabolic type may occur. A boundary layer is said to be of

parabolic type, if the characteristics of the reduced equation corresponding to ε = 0

are parallel to the boundary, and of regular type, if these characteristics are not

parallel to the boundary. A boundary layer near to a corner is said to be of corner

type. These types of problems include the linearized Burgers’ equation which arises

in oil reservoir simulation [2].

Numerical treatment of the IBVP (1.1) is difficult because of the presence of

boundary layers in its solution. In particular, classical finite difference methods fail

to yield satisfactory numerical results on uniform meshes, and to obtain stability one

has to reduce the spatial step-size in relation with ε. The same is true for finite element

methods in the case of uniform mesh and polynomial basis functions. Basically, by

these methods one cannot obtain ε-uniform error estimates. When regular layers are

present it is possible to obtain an ε-uniform method by constructing an appropriately

fitted finite difference operator (i.e., finite difference scheme with fitting factor) on

uniform meshes. Indeed, Shishkin [12] proved that this approach is not possible if

a parabolic boundary layer is present, more details can be obtained from the book

of Miller et al. [6]. One can also refer the books of Farrell et al. [3], and Roos et

al. [11] for further results related to the theory and numerics of singularly perturbed

parabolic problems.

The main goal of this paper is to provide an ε-uniform numerical method for

the IBVP (1.1). In this method, the time derivative is replaced by the backward

difference scheme, and the spatial derivative is replaced by an hybrid scheme, which

is a combination of the cubic spline and the classical central difference scheme (more

details about the hybrid scheme can be found in the articles [9, 10] for ordinary

differential equations). The proposed scheme is parameter-uniform convergent of

order O(N−2
x ln2Nx+N−1

t ). Truncation errors are derived, stability analysis is carried

out; and ε-uniform error estimates are obtained.

There are various numerical methods exist in the literature for singularly per-

turbed parabolic PDEs. To cite a few: Stynes and O’Riordan [13] presented a uni-

formly convergent finite element method for these types of problems using exponential

basis functions. In [5], finite element method of exponentially fitted lumped schemes

were given. Farrell et al. [4] proposed numerical methods for IBVPs of the form (1.1).

The authors proposed two higher-order time accurate schemes for the parabolic IBVP

(1.1) in [1]. In [8], we developed an efficient hybrid numerical scheme for singularly

perturbed parabolic IBVPs with interior layer.

The paper is organized in the following way: Section 2 presents some results re-

garding the analytical solution of the IBVP (1.1). Section 3 deals with the Shishkin
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mesh, and the numerical scheme. Section 4 provides the truncation error, stabil-

ity analysis and error estimate for the numerical solution. Section 5 carries some

numerical results, and the paper ends with conclusions.

Through out this paper C denotes a generic positive constant independent of ε,

the meshes (xi, tj), and the step sizes hi, τj. The norm || · || denotes the supremum

norm.

2. ANALYTICAL BEHAVIOR OF THE SOLUTION

In this section, we present some bounds for the analytical solution u(x, t) of (1.1)

and its derivatives. The proof of the theorems and more details can be found in the

article by Miller et. al. [7].

Theorem 2.1. [7] Assume that the coefficients of the parabolic PDE, and the initial

and boundary conditions given in (1.1) are sufficiently smooth, and satisfy the neces-

sary compatibility conditions stated in Theorem 3 of [7]. Then, the IBVP (1.1) has a

unique solution u(x, t) ∈ C4
λ(Ω), where

C4
λ(Ω) =

{
u :

∂i+ju

∂xi∂tj
∈ C0

λ(Ω), for all non-negative integers i, j with 0 ≤ i+ 2j ≤ 4

}
,

here C0
λ(Ω) is the set of Hölder continuous functions. Furthermore, the derivatives of

the solution u satisfy, for all non-negative integers i, j, such that 0 ≤ i+ 2j ≤ 4,
∥∥∥∥
∂i+ju

∂xi∂tj

∥∥∥∥ ≤ Cε−i/2.

Proof. The proof can be found in [7].

We shall decompose the solution u as u = v + w, where v, w are respectively

the smooth and singular components. The smooth part is further decomposed into

v = v0 + εv1, where




b(x, t)v0 +

∂v0

∂t
= f(x, t), Ω

v0(x, 0) = s(x), on Sx,

and 




Lv1 =
∂2v0

∂x2
, Ω

v1(x, 0) = 0, on Sx,

v1(0, t) = 0, v1(1, t) = 0, on S0, S1.

Thus, v satisfies the following IBVP:




Lv = f, in Ω,

v(x, 0) = s(x), on Sx,

v(0, t) = v0(0, t), v(1, t) = v0(1, t), on S0, S1.
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The singular component w is the solution of the IBVP





Lw = 0, in Ω,

w(x, 0) = 0, on Sx,

w(0, t) = a0(t) − v0(0, t), w(1, t) = a1(t) − v0(1, t), on S0, S1.

Further, we decompose the singular component w into left and right components as

w = wℓ + wr, where wℓ and wr respectively, satisfy the following problems:





Lwℓ = 0, in Ω,

wℓ(x, 0) = 0, on Sx,

wℓ(0, t) = a0(t) − v0(0, t), wℓ(1, t) = 0, on S0, S1,

and 



Lwr = 0, in Ω,

wr(x, 0) = 0, on Sx,

wr(0, t) = 0, wr(1, t) = a1(t) − v0(1, t), on S0, S1.

The smooth and singular components v, and w satisfy the following bounds.

Theorem 2.2. [7] Let u(x, t) be the solution of the IBVP (1.1). And assume that

the coefficients of the parabolic PDE, and the initial and boundary conditions given

in (1.1) are sufficiently smooth, and satisfy the necessary compatibility conditions.

Then, for all non-negative integers i, j, such that 0 ≤ i+ 2j ≤ 4, we have
∥∥∥∥
∂i+jv

∂xi∂tj

∥∥∥∥ ≤ C(1 + ε1−i/2), ∀(x, t) ∈ Ω,

∣∣∣∣
∂i+jwℓ

∂xi∂tj

∣∣∣∣ ≤ Cε−i/2e−x/
√

ε, and

∣∣∣∣
∂i+jwr

∂xi∂tj

∣∣∣∣ ≤ Cε−i/2e−(1−x)/
√

ε.

3. THE DISCRETE PROBLEM

Here, in this section, we present the piecewise-uniform Shishkin mesh for the

spatial discretization of the domain. And, we derive the difference scheme which is a

combination of the cubic spline scheme and the classical central difference scheme for

the spatial derivatives, and the backward difference (implicit-Euler) scheme for the

time derivative.

3.1. Discretization of the Domain. Consider the domain Ω = (0, 1) × (0, T ].

First, we present the Shishkin mesh for the spatial part: Let D = [0, 1] be the spatial

domain, which is divided into three subintervals as D = [0, σ) ∪ [σ, 1 − σ] ∪ (1− σ, 1]

for some σ such that 0 < σ ≤ 1/4. On the subintervals [0, σ), (1 − σ, 1] a uniform

mesh with Nx/4 mesh-intervals are placed, where [σ, 1− σ] has a uniform mesh with

Nx/2 mesh-intervals. It is obvious that the mesh is uniform when σ = 1/4, and it is

fitted to the problem by choosing σ be the following function of Nx, ε

σ = min

{
1

4
, σ0

√
ε lnNx

}
,
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where σ0 ≥ 2 is a constant.

Here, we use the multi-index notation N = (Nx, Nt), where Nt denotes the num-

ber of mesh elements in the t-direction. We shall introduce the meshes in the spatial

and temporal variables respectively as ωNx : 0 = x0 < x1 < · · · < xNx
= 1, and

ωNt : 0 = t0 < t1 < · · · < tNt
= T . Let the meshes in Ω be the tensor product

of the one-dimensional meshes ωNx and ωNt , and denote it by Ω
Nx,Nt

ε . Further, let

hi = xi+1 − xi be the mesh diameter in the spatial dimension, and τj = tj+1 − tj ,

with ~i = (hi−1 + hi)/2, h = 4σ/Nx, H = 2(1 − 2σ)/Nx, k = maxj=1,...,Nt
τj . The

domain is discretized in the x-direction with Shishkin mesh and uniform mesh in the

t-direction.

3.2. The Difference Scheme. We discretize the IBVP (1.1) in the outer region

[σ, 1 − σ] by the backward difference in time, and the central difference in space, as
(
U j+1

i − U j
i

k

)
− ε

~i

[(
U j+1

i+1 − U j+1
i

hi

)
−
(
U j+1

i − U j+1
i−1

hi−1

)]
+ bj+1

i U j+1
i = f j+1

i .

After rearranging the terms, we obtain the following, for i = Nx/4, . . . , 3Nx/4, j =

0, . . . , Nt − 1:

(3.1)

(
− ε

hi−1~i

)
U j+1

i−1 +

(
1

k
+

2ε

hihi−1

+ bj+1
i

)
U j+1

i +

(
− ε

hi~i

)
U j+1

i+1 − U j
i

k
= f j+1

i .

In the boundary layer regions, i.e., in the subintervals [0, σ) and (1 − σ, 1] the

time derivative is replaced by the backward difference, and the spatial derivative is

replaced by the cubic spline scheme

(3.2) εM j+1
i =

(
U j+1

i − U j
i

k

)
+ bj+1

i U j+1
i − f j+1

i .

Using equation (3.2) to obtain the values of M j+1
i−1 , and M j+1

i+1 , and substituting these

values in the following cubic spline relation

(
hi−1

6

)
M j+1

i−1 +

(
hi−1 + hi

3

)
M j+1

i +

(
hi

6

)
M j+1

i+1 =

(
U j+1

i+1 − U j+1
i

hi

)
−
(
U j+1

i − U j+1
i−1

hi−1

)
,

we obtain the difference scheme, for i = 1, . . . , Nx/4−1 and 3Nx/4+1, . . . , Nx−1, j =

0, . . . , Nt − 1:

(3.3)



(
hi−1

6k
+
hi−1

6
bj+1
i−1 − ε

hi−1

)
U j+1

i−1 +

((
hi−1 + hi

3k

)
+

(
hi−1 + hi

3

)
bj+1
i +

+ε

(
1

hi−1
+

1

hi

))
U j+1

i +

(
hi

6k
+
hi

6
bj+1
i+1 − ε

hi

)
U j+1

i+1 − hi−1

6k
U j

i−1 −
(
hi−1 + hi

3k

)
U j

i −

− hi

6k
U j

i+1 =
hi−1

6
f j+1

i−1 +

(
hi−1 + hi

3

)
f j+1

i +
hi

6
f j+1

i+1 .
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Combining (3.1) and (3.3), we obtain the following difference scheme

(3.4)



LNx,Nt [U j+1
i ] ≡

[
r−i,j+1U

j+1
i−1 + rc

i,j+1U
j+1
i + r+

i,j+1U
j+1
i+1

]
+
[
p−i U

j
i−1 + pc

iU
j
i + p+

i U
j
i+1

]

= q−i f
j+1
i−1 + qc

i f
j+1
i + q+

i f
j+1
i+1 , for i = 1, . . . , Nx − 1, j = 0, . . . , Nt − 1,

U j+1
0 = aj+1

0 , U j+1
Nx

= aj+1
1 , for j = 0, . . . , Nt − 1,

U0
i = si, for i = 1, . . . , Nx − 1,

where, for i = 1, . . . , Nx/4 − 1 and 3Nx/4 + 1, . . . , Nx − 1

(3.5)



r−i,j+1 =
hi−1

6k
+
hi−1

6
bj+1
i−1 − ε

hi−1
, rc

i,j+1 =

(
hi−1 + hi

3k

)
+

(
hi−1 + hi

3

)
bj+1
i +

+ε

(
1

hi−1

+
1

hi

)
, r+

i,j+1 =
hi

6k
+
hi

6
bj+1
i+1 − ε

hi

,

p−i = −hi−1

6k
, pc

i = −
(
hi−1 + hi

3k

)
, p+

i = − hi

6k
,

q−i =
hi−1

6
, qc

i =

(
hi−1 + hi

3

)
, q+

i =
hi

6
,

and for i = Nx/4, . . . 3Nx/4

(3.6)





r−i,j+1 = − ε

hi−1~i
, rc

i,j+1 =
1

k
+

2ε

hihi−1
+ bj+1

i , r+
i,j+1 = − ε

hi~i
,

p−i = 0, pc
i = −1

k
, p+

i = 0,

q−i = 0, qc
i = 1, q+

i = 0.

4. ERROR ANALYSIS

Here, we derive the truncation error for the numerical scheme, and carry out the

stability analysis. Finally, we obtain the ε-uniform error estimate.

Lemma 4.1. Assume that Nx is sufficiently large and 16σ2
0N

−2
x ln2Nx[1+kβ∗] < 6k,

where β∗ = max
0≤i≤Nx, 0≤j≤Nt

b(xi, tj). Then, for i = 1, . . . , Nx, j = 0, . . . , Nt−1, we have

r−i,j+1 < 0, r+
i,j+1 < 0, |rc

i,j+1| − |r−i,j+1| − |r+
i,j+1| > 0.

Proof. For i = Nx/4, . . . , 3Nx/4, from (3.1), we can easily see that r−i,j+1 < 0

and r+
i,j+1 < 0. And, also |rc

i,j+1| − |r−i,j+1| − |r+
i,j+1| ≥ 0.

Now, for r−i,j+1 < 0, i = 1, . . . , Nx/4 − 1 and i = 3Nx/4 + 1, . . . , Nx − 1, from

(3.3), we have to prove that

r−i,j+1 =

(
hi−1

6k
+
hi−1

6
bj+1
i−1 − ε

hi−1

)
< 0,
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i.e., we require that

h2
i−1 < 6ε

(
1

k
+ max(b(xi, tj))

)−1

σ0 < Nx(4 lnNx)
−1

[
1

6k
+

max(b(xi, tj))

6

]−1/2

,

this is true from our assumption on Nx, i.e., from 16σ2
0N

−2
x ln2Nx[1 + kβ∗] < 6k.

Similarly, it can be shown that r+
i,j+1 < 0 for i = 1, . . . , Nx/4 − 1 and i =

3Nx/4 + 1, . . . , Nx − 1.

For i = 1, . . . , Nx/4 − 1 and i = 3Nx/4 + 1, . . . , Nx, we have

|rc
i,j+1| − |r−i,j+1| − |r+

i,j+1| =

(
hi−1 + hi

2k

)
+

(
hi−1 + hi

3

)
bj+1
i +

(
hi−1b

j+1
i−1 + hib

j+1
i+1

6

)

> min{hi−1, hi}
[
1

k
+ min{b(xi, tj)}

]
> 0.

Hence, we have obtained the required result.

The following lemma provides the stability result for a general numerical scheme

for the IBVP (1.1). The proof of this lemma can be found in the book of Roos et al.

[11]. Here, we are only stating the result.

Lemma 4.2. [11] Consider the IBVP (1.1). Assume that we solve this IBVP by

applying some numerical scheme, and the difference scheme (excluding the initial and

boundary conditions) can be written as

(4.1) (Lh,τuh,τ)
j+1 := Aûj+1 −Duj = wj, for j = 0, . . . , N − 1,

where uj = (uj
0, . . . , u

j
M)T , ûj+1 = (uj+1

1 , . . . , uj+1
M−1)

T , wj is a vector independent of

the computed solution, and A and D are matrices. Suppose also that A is an M-

matrix, and D ≥ 0.

Let y and z be two mesh functions, such that yj = (yj
0, . . . , y

j
M)T , and zj =

(zj
0, . . . , z

j
M)T for each j. Assume that |(Lh,τy)

j+1| ≤ (Lh,τz)
j+1, for j = 0, . . . , N −1,

and |y| ≤ z on the boundary Sx ∪ S0 ∪ S1. Then, |y| ≤ z on Ω
Nx,Nt

ε .

Proof. The proof of this lemma can be found in [11].

Corollary 4.3. If a difference scheme satisfies the hypotheses of Lemma 4.2, then it

satisfies the discrete maximum principle.

Lemma 4.4. Consider the IBVP (1.1), and the numerical scheme given in (3.4).

Assume that the statement given in Lemma 4.2 holds true for the difference scheme

(3.4). Then, the difference operator defined in (3.4) satisfies the discrete maximum

principle.
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Proof. The difference scheme (3.4) can be written in the form of (4.1) with

A = (aij) and D = (dij) as






for i = 1, . . . , Nx/4 − 1 and 3Nx/4 + 1, . . . , Nx − 1

ai,i−1 =
hi−1

6k
+
hi−1

6
bj+1
i−1 − ε

hi−1
, ai,i =

(
hi−1 + hi

3k

)
+

(
hi−1 + hi

3

)
bj+1
i +

+ε

(
1

hi−1

+
1

hi

)
, ai,i+1 =

hi

6k
+
hi

6
bj+1
i+1 − ε

hi

,

di,i−1 =
hi−1

6k
, di,i =

(
hi−1 + hi

3k

)
, di,i+1 =

hi

6k
,

for i = Nx/4, . . . 3Nx/4

ai,i−1 = − ε

hi−1~i
, ai,i =

1

k
+

2ε

hihi−1
+ bj+1

i , ai,i+1 = − ε

hi~i
,

di,i−1 = 0, di,i =
1

k
, di,i+1 = 0.

Lemma 4.1 shows that the matrix A is an M-matrix. And the matrix D ≥ 0.

Therefore, Corollary 4.3 implies that the difference operator (3.4) satisfies the discrete

maximum principle.

Theorem 4.5. Let u and U be respectively the continuous and the numerical solutions

of the IBVPs (1.1), and (3.4). Then, we have the following ε-uniform error estimate

sup
0<ε≤1

||U − u||
Ω

Nx,Nt
ε

≤ C(N−2
x ln2Nx +N−1

t ).

Proof. As like in the continuous case, we decompose the numerical solution by

U = V +W,

where V is the solution of the nonhomogeneous problem

LNx,NtV j
i = q−i f

j
i−1 + qc

i f
j
i + q+

i f
j
i+1, V = v, on the boundary,

and W satisfies the homogeneous problem





LNx,NtW j
i = 0,

W j
0 = aj

0 − (v0)
j
0, W j

Nx
= aj

1 − (v0)
j
Nx

W 0
i = 0.

The error can be written as

U − u = (V − v) + (W − w).
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The smooth component (V − v) of the error is estimated by a classical argument.

From the differential and difference equations, we can obtain that

LNx,Nt(V − v) = f − LNx,Ntv

= (L− LNx,Nt)v

= −ε
(
∂2

∂x2
− δ2

hyb

)
v +

(
∂

∂t
−D−

t

)
v,

where δ2
hyb(·) is the hybrid scheme for the second-order spatial derivative ∂2(·)/∂x2.

Using the bounds on the solution and its derivatives, we have

|LNx,Nt(V − v)| ≤
∣∣∣∣ε
(
∂2

∂x2
− δ2

hyb

)
v

∣∣∣∣+
∣∣∣∣
(
∂

∂t
−D−

t

)
v

∣∣∣∣

≤






C

[
εh2

∥∥∥∥
∂4v

∂x4

∥∥∥∥+ k

∥∥∥∥
∂2v

∂t2

∥∥∥∥
]
, ∀ xi 6= σ, xi 6= 1 − σ,

C

[
ε(H − h)

∥∥∥∥
∂3v

∂x3

∥∥∥∥+ k

∥∥∥∥
∂2v

∂t2

∥∥∥∥
]
, for xi = σ, xi = 1 − σ.

Using the estimates for the derivatives of v from Theorem 2.2, we obtain that

|LNx,Nt(V − v)| ≤






C
[
N−2

x +N−1
t

]
, ∀ xi 6= σ, xi 6= 1 − σ,

C
[√
εN−1

x +N−1
t

]
, for xi = σ, xi = 1 − σ.

Define the following function

φ(xi, tj) = C

[
σ√
ε
N−2

x θ(xi) + (1 + tj)N
−2
x + tjN

−1
t

]
,

where

θ(x) =





x

σ
, 0 ≤ x ≤ σ

1, σ ≤ x ≤ 1 − σ,

1 − x

σ
, 1 − σ ≤ x ≤ 1.

Then, for all (xi, tj) ∈ Ω
Nx,Nt

ε , we have

0 ≤ φ(xi, tj) ≤ C(N−2
x +N−1

t ),

and

LNx,Ntφ(xi, tj) ≥





C(N−2

x +N−1
t ), if xi 6= σ, xi 6= 1 − σ,

C(
√
εN−1

x +N−1
t ), if xi = σ, xi = 1 − σ.

Introducing the barrier functions

ψ±(xi, tj) = φ(xi, tj) ± (V − v)(xi, tj)

it follows that for each point (xi, tj) ∈ ΩNx,Nt
ε , we have

LNx,Ntψ(xi, tj) ≥ 0,
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and at each point on the boundary (xi, tj) ∈ ΓNx,Nt
ε (= Ω

Nx,Nt

ε \ ΩNx,Nt
ε )

ψ±(xi, tj) = φ(xi, tj) ≥ 0.

Thus from the discrete maximum principle (Lemma 4.4), we obtain

(4.2) |(V − v)(xi, tj)| ≤ C(N−2
x ln2Nx +N−1

t ).

To estimate the error in the singular component, we rewrite W as

W = Wℓ +Wr,

where Wℓ and Wr are respectively defined by

LNx,NtWℓ = 0, in ΩNx,Nt

ε , (Wℓ)
j
0 = aj

0 − (v0)
j
0, (Wℓ)

j
Nx

= 0, (Wℓ)
0
i = 0,

and

LNx,NtWr = 0, in ΩNx,Nt

ε , (Wr)
j
0 = 0, (Wr)

j
Nx

= aj
1 − (v0)

j
Nx
, (Wr)

0
i = 0,

The error can be written as

W − w = (Wℓ − wℓ) + (Wr − wr).

From the differential and difference equations, it is easily seen that the truncation

error for W is

(4.3) LNx,Nt(W − w) = LNx,Nt(Wℓ − wℓ) + LNx,Nt(Wr − wr).

Now, consider the first part (Wℓ − wℓ)

|LNx,Nt(Wℓ − wℓ)| ≤
∣∣∣∣ε
(
∂2

∂x2
− δ2

hyb

)
wℓ

∣∣∣∣ +
∣∣∣∣
(
∂

∂t
−D−

t

)
wℓ

∣∣∣∣ .

First, consider the case, where xi ∈ (0, σ):

|LNx,Nt(Wℓ − wℓ)| ≤ C

[
εh2

∥∥∥∥
∂4wℓ

∂x4

∥∥∥∥+ k

∥∥∥∥
∂2wℓ

∂t2

∥∥∥∥
]

≤ C [εh2ε−2 + k]

≤ C
[
N−2

x ln2Nx +N−1
t

]
.

For xi ∈ (σ, 1), we use the following trick to obtain the bound
∣∣∣∣ε
(
∂2

∂x2
− δ2

hyb

)
wℓ

∣∣∣∣ ≤ εC max
xi−1≤x≤xi+1

∣∣∣∣
∂2wℓ

∂x2

∣∣∣∣

≤ (εCε−1) exp(−xi−1/
√
ε)

≤ C exp(−σ/√ε)

≤ C exp(−σ0 lnNx)

≤ C(N−σ0

x ).
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Similarly, we can show that

|LNx,Nt(Wr − wr)| ≤





C
[
N−2

x ln2Nx +N−1
t

]
, ∀ xi ∈ (1 − σ, 1),

CN−σ0

x , ∀ xi ∈ (0, 1 − σ),

Combining the estimates for (Wℓ − wℓ), and (Wr − wr), we will obtain

|LNx,Nt(W − w)| ≤ C
[
N−2

x ln2Nx +N−1
t +N−σ0

x

]
.

We have assumed that σ0 ≥ 2, thus, we have

|LNx,Nt(W − w)| ≤ C
[
N−2

x ln2Nx +N−1
t

]
.

Using the discrete maximum principle (Lemma 4.4), we can show that

(4.4) |W − w| ≤ C
[
N−2

x ln2Nx +N−1
t

]
.

Finally, combining the estimates obtained in (4.2) and (4.4), we obtain the required

error estimate.

5. NUMERICAL RESULTS

In this section, we shall implement the proposed scheme to a test problem stud-

ied by various researchers earlier. The numerical results are presented in terms of

maximum point-wise errors, and rate of convergence.

Here, in the numerical experiments, we have taken Nt = O((Nx/ lnNx)
2), mainly

to obtain the error estimate of order O(N−2
x ln2Nx); and σ0 = 3. The numerical

results are obtained at time T = 1.

Example 5.1. [7] Consider the following parabolic initial-boundary-value problem:

(5.1) ut(x, t) − εuxx(x, t) + u(x, t) = f(x, t), (x, t) ∈ (0, 1) × (0, 1]

The right-hand side source term, initial and boundary conditions are calculated

from the exact solution

u(x, t) =

(
t+

x2

2ε

)
erfc

(
x

2
√
εt

)
−
√

t

πε
xe−x2/4εt.

The exact solution is used to calculate the maximum nodal error, more precisely, we

determine the maximum error as

ENx,Nt

ε = max
Ω

Nx,Nt
ε

||u(xi, tj) − U j
i ||, and ENx,Nt = max

ε
ENx,Nt

ε ,

where u(x, t) denotes the exact solution, and U j
i stands for the numerical solution

obtained by using Nx, Nt mesh intervals in the domain Ω
Nx,Nt

ε . In addition, the rate
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of convergence is calculated by

p = log2

(
ENx,Nt

ε

E2Nx, eNt
ε

)
, and p

uni
= log2

(
ENx,Nt

E2Nx, eNt

)
.

where Ñt = round(2Nx/ ln 2Nx)
2.

Further, we have calculated the normalized flux

Fε(x, t) =
√
ε
∂u(x, t)

∂x
,

and its numerical approximation

FNx

ε (x, t) =
√
εD+

x U(x, t).

The errors in the normalized fluxes have been calculated as

QNx

ε = max
0≤t≤T

||Fε(0, t) − FNx

ε (0, t)||, and QNx = max
ε
QNx

ε ,

and the rate of convergence is determined from

q = log2

(
QNx

ε

Q2Nx
ε

)
, and q

uni
= log2

(
QNx

Q2Nx

)
.

The maximum point-wise errors of the solution, and the normalized flux and

the respective rates of convergence are presented in Tables 1, and 2. The maximum

point-wise errors are plotted in loglog scale in Figure 1.

The numerical results given in Tables 1-2, and Figure 1 reveal that the proposed

method performs well, and produces second-order (up to a logarithmic factor) ε-

uniform numerical results.

6. CONCLUSIONS

In this article, we proposed a numerical method for singularly perturbed para-

bolic initial-boundary-value problem with parabolic boundary layers. The time de-

rivative is discretized by the backward difference scheme, and the spatial derivative

is discretized by the hybrid scheme, which is a combination of cubic spline (for the

boundary layer regions) and classical finite difference scheme (for the outer region).

Truncation errors are obtained, and the stability analysis is carried out via. the

discrete maximum principle. Further, we derived the ε-uniform error estimates for

the numerical solution. To validate the theoretical results, a test problem is solved

numerically.
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Table 1. Maximum point-wise errors ENx,Nt
ε , rate of convergence p

and ε uniform errors ENx,Nt and rate of convergence p
uni

for Exam-

ple 5.1.

ε Number of mesh points Nx

16 32 64 128 256 512

1e-0 6.7199e-03 1.7184e-03 4.3525e-04 1.1012e-04 2.7885e-05 7.0707e-06

1.9674 1.9811 1.9828 1.9815 1.9796

1e-2 1.8144e-03 5.1634e-04 1.4254e-04 3.9977e-05 1.1265e-05 3.1848e-06

1.8131 1.8570 1.8341 1.8273 1.8226

1e-4 2.0440e-02 9.3563e-03 3.2077e-03 1.0567e-03 3.3687e-04 1.0698e-04

1.1274 1.5444 1.6020 1.6493 1.6548

1e-6 2.0446e-02 9.3573e-03 3.2080e-03 1.0568e-03 3.3690e-04 1.0699e-04

1.1276 1.5444 1.6020 1.6492 1.6548

1e-24 2.0446e-02 9.3594e-03 3.2080e-03 1.0625e-03 3.3690e-04 1.0700e-04

1.1273 1.5448 1.5942 1.6571 1.6548

ENx,Nt 2.0446e-02 9.3594e-03 3.2085e-03 1.0625e-03 3.3693e-04 1.0700e-04

puni 1.1273 1.5445 1.5944 1.6569 1.6548

Table 2. Maximum point-wise errors for the normalized flux QNx
ε ,

rate of convergence q and ε uniform errors QNx and rate of convergence

q
uni

for Example 5.1.

ε Number of mesh points Nx

16 32 64 128 256 512

1e-0 2.5972e-01 1.2541e-01 6.1265e-02 3.0233e-02 1.5011e-02 7.4786e-03

1.0503 1.0335 1.0189 1.0101 1.0052

1e-2 1.1384e-01 6.2209e-02 3.2651e-02 1.6749e-02 8.4858e-03 4.2717e-03

0.8718 0.9300 0.9631 0.9809 0.9902

1e-4 2.0401e-01 1.5526e-01 1.0859e-01 7.0565e-02 4.3265e-02 2.5415e-02

0.3939 0.5158 0.6218 0.7057 0.7675

1e-6 2.0326e-01 1.5479e-01 1.0831e-01 7.0401e-02 4.3172e-02 2.5363e-02

0.3930 0.5152 0.6215 0.7055 0.7674

1e-24 2.0325e-01 1.5479e-01 1.0830e-01 7.0400e-02 4.3171e-02 2.5362e-02

0.3929 0.5152 0.6215 0.7055 0.7674

QNx 2.0401e-01 1.5526e-01 1.0859e-01 7.0565e-02 4.3265e-02 2.5415e-02

quni 0.3939 0.5158 0.6218 0.7057 0.7675
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(a) Solution. (b) Normalized flux.

Figure 1. Loglog plot of the maximum error for Example 5.1.


