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Abstract:  A terminal boundary condition for Singularly Perturbed two-Point Boundary 

value Problems (with left and right layer) is presented. By using a terminal point, the 

original second order problem is partitioned in to inner and outer region problems. An 

implicit terminal boundary condition at the terminal point is determined from the outer 

region problem. The outer region problem with the implicit boundary condition is 

solved and produces a condition for the inner region problem. The modified inner region 

problem (using the transformation) is solved as a two-point boundary value problem. 

We used Chawla’s fourth order finite difference method to solve both the inner and 

outer region problems. The proposed method is iterative on the terminal point. To 

demonstrate the applicability of the method, we solved seven singular perturbation 

problems.  

Key words: Singular perturbation problems, Finite Differences, Terminal Boundary 

Condition, Terminal point 

1. INTRODUCTION 

The numerical treatment of singular perturbation problems is far from the trivial,    

because of the boundary layer behavior of solutions.  Singular perturbation problems 

appear in varies areas of applied mathematics, science and engineering, like fluid 

mechanics (boundary layer theory). A wide variety of papers and books are available, 

describing varies techniques for solving singular perturbation problems, among these one 

can refer Bellman [1], Bender and Orsazag [2], Hinch [5], Kadalbajo and Reddy [6-7], 

Kevorkian and Cole [8], O’Malley [10], Nayfah [8-9] and Van Dyke [13].  Several 

authors published papers on solving SSP by dividing the interval (domain decomposition) 

of definition (the domain of definition of the problem) into non-overlapping subintervals 

called outer and inner regions, among these; we mention Vigo-aguiar and Natesan 

[14], Wang [15] and Chakravarthy and Reddy [3]. 
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In the present paper, the method of a Terminal Boundary Condition for 

Singularly Perturbed two point Boundary value Problems with the boundary layer at the 

left and right end is presented. The method consists of the following steps: (1) The 

original second order problem is divided in to two problems, an inner region and an 

outer region problem using a terminal point. (2) An implicit terminal boundary 

condition at the terminal point is determined from the outer region problem. (3) The 

outer region problem with the implicit boundary condition is solved. (4) Using the 

stretching transformation, the modified inner region problem is solved as a two- point 

boundary value problem. Finally, we combine the solutions of both the inner region and 

outer region problems to get the approximate solution of the original problem.  

  The present method is iterative on the terminal point. We repeat the process 

(numerical scheme) for various choices of the terminal point, until the solution profiles 

do not differ materially from iteration to iteration. 

 

2. Left Boundary Layer Problems 

Consider a linear singularly perturbed two-point boundary value problem of the form:  

       )()()()()()( xfxyxbxyxaxy =+′+′′ε  ,  10 ≤≤ x                              (1) 

     with   α=)0(y                  (2a) 

         and β=)1(y ;                                         (2b) 

where  ε is a small positive parameter )10( <<< ε and α, β are known constants. We 

assume that f(x) and )(),( xbxa  are sufficiently continuously differentiable functions in 

[0,1]. Further more, we assume that 0)( >≥ Mxa  throughout the interval [0, 1], where 

M is some positive constant.  Under these assumptions, (1) has a unique solution )(xy  

which in general, displays a boundary layer of width O(ε) at x=0 for small values of ε. 

As mentioned the method consists of the following steps: 

Step 1: Dividing the original problem in to two regions, an inner region and outer region 

problem. Let px ( 10 <<< px ) be the terminal point or width or thickness of the 

boundary layer (inner region), then the inner and outer region problems are defined on 

pxx ≤≤0  and 1≤≤ xx p  respectively. 

Step 2: Determining the terminal boundary condition 

By using Taylor’s expansion, we have 

  )()()( xyxxyxxy pp
′′−′≈−′                                                         (3) 

Using (3) in to (1), we get 

)()()()()()()( xfxxyxbxxyxaxxxyxy pppp =+′+−′−′ εε                 (4) 

Again, we approximate 

p

p

p
x

xxyxy
xxy

)()(
)(

−−
=−′                                                            (5) 
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Substituting (5) in (4), we get 

 )()()()()()()()( 222
xfxxyxbxxyxaxxxyxyxxyx pppppp =+′+−+−′ εεε           (6) 

Evaluating (6) at pxx = , we get: 

       sxyrxqy pp =′+ )()(                                                          (7) 

Where, ))(( ε−= ppp xbxxq                                                   (8a) 

            ))(( ppp xaxxr += ε                                                                  (8b) 

           )0()(2
yxfxs pp ε−=                                                                    (8c) 

Equation (7) which is in explicit form is taken as the terminal boundary condition at 

pxx = (the terminal point). 

Step 3: Solving the outer region problem 

          )()()()()()( xfxyxbxyxaxy =+′+′′ε  ,  1≤≤ xx p                       (9) 

     With    sxyrxqy pp =′+ )()(              (10a) 

         and β=)1(y ;                                            (10b) 

From the solution o f the outer region problem we get the value of )( pxy .Let us denote 

it by γ=)( pxy  

Step 4: Solving the inner region problem: 

    To solve the inner region problem, we take the transformation 

                
ε

x
t =                         (11) 

By using (11), we transform equations (1) with 

             )()()( tYtyxy == ε                                  (12a) 

            
εε

ε )()(
)(

tYty
xy

′
=

′
=′                        (12b) 

           
22

)()(
)(

εε

ε tYty
xy

′′
=

′′
=′′                         (12c) 

            )()()( tAtaxa == ε                                    (12d) 

            )()()( tBtbxb == ε                                  (12e) 

              )()()( tftfxf == ε                     (12f) 

to obtain the new inner region problem of the form: 

      )()()()()()( tHtYtBtYtAtY εε =+′+′′ , ptt ≤≤0               (13) 

    with   α=)0(y                             (14a) 

     and  γ== )()( pp xytY  where 
ε

p

p

x
t =              (14b) 
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Solution of the original problem 

    To solve the two-point boundary value problems given in equations (9)-(10) [outer 
region problem] and (13)-(14) [inner region problem), we used Chawla’s [4] fourth- 
order finite difference method. In fact, any standard analytic or numerical method can 
be used. Finally, we combine the solutions of both the inner region defined on 

pxx ≤≤0  and outer region defined on 1≤≤ xx p  problems to get the approximate 

solution of the original problem. 

    We repeat the process (numerical scheme) for various choices of px (the terminal 

point), until the solution profiles do not differ materially from iteration to iteration. For 

computational point of view, we use an absolute error criterion, namely  

       σ≤−+ )()(1
xyxy

mm    pxx ≤≤0                                              (15) 

Where )(xy m  = the solution for the mth iterate of xp  

           σ = the prescribed tolerance bound. 

 

3. FOURTH-ORDER FINITE DIFFERENCE SCHEME 

A finite difference scheme is often a convenient choice for the numerical solution of two 

point boundary value problems. We used Chawla’s [4] fourth- order finite difference 

method to solve the inner and outer region problems. 

Outer region problem: 

 )()()()()()( xfxyxbxyxaxy =+′+′′ε  ,  1≤≤ xx p                  (9) 

     With    sxyrxqy pp =′+ )()(             (10a) 

         and β=)1(y ;                                            (10b) 

Now let us rewrite equation (9) in the form: 

),,()()()()()()( yyxgxyxbxyxaxfxy ′=−′−=′′ε                            (16) 

With    sxyrxqy pp =′+ )()(               (17a) 

         and β=)1(y ;                                           (17b) 

Now we divide the interval ]1,[ px into N equal parts with constant mesh length h.  Let 

1,....,, 10 == Np xxxx be the mesh points.  Then we have ihxx pi += ; i=0, 1, 2… N. 

 Let us denote the exact solution )(xy  at the grid points ix  by iy  ; similarly, 0)( yxy p =  

and )( ii xyy ′=
′

. 

For i=1,2, ….., N-1, let 

h

yy
y ii

i
2

11 −+ −
=

′
                                                                               (18a) 

h

yyy
y iii

i
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43 11
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−+
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+−
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′                                                                     (18b) 
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h

yyy
y iii

i
2

34 11

1

−+
−

−+−
=

′                                                                  (18c) 

)(
20

111 −+− −−
′

=
′

iiii
gg

h
yy                                                              (18d)    

Then for each ix  , i=1, 2…N-1, (15) can be described as: 

  
iy

h

2

2
δ

ε
= )10(

12

1
11 −+ ++

iii
ggg                                                              (19) 

Where   ),(
′

= iiii yyxgg                                                                  (20a) 

 And ),,( 1111

′
= ±±±± iiii

yyxgg                                                         (20b) 

Using (18) and (20), terms of the right hand side expressions of (19) can be simplified: 

1
12

1
+ig  = 

1
11

1
111

246
)

128
(

12
−

++
+

+++ −++− i

i

i

i

i

iii y
h

a
y

h

a
y

b

h

afε
                            (21a) 
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−
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baaa
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       +
h

ai

24

10
(−

16
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24

1+− iibha
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ii y
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if

12

10
1

24
++ i

i f
ha

1
24

−− i
i f

ha        (21b)                                                                                                                           

1
12

1
−ig =

1
111

1
11 )

128
(

62412
−

−−−
+

−− −+−+ i

ii

i

i

i

ii y
b

h

a
y

h

a
y

h

af
                             (21c) 

Now substituting (21) in (19) we get: 

)2( 112 +− +− iii yyy
h

ε
=

h

aa ii

24

10
( 1 +− +

48

1+− ii aa

16

1−− ii aa

24

1−+ iibha
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10)( 11 iiii baaa −+
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i
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h

a
)

6

1−− +
128

( 11 ++ −− ii b

h

a

h

ai

24

10
−

16
1+− iiaa

24

1+− iibha

48

1−− ii aa

1
1 )

24
+

−+ i

i y
h

a
+(

12

)10( 11 −+ ++ iii fff

24

)( 11 −+ −
+ iii ffha

)                               (22) 

From equation (22) we get the recurrence relation of the form: 

iiiiiii HYGYFYE =+− +− 11   ; i=0, 1, 2, 3… N-1                             (23) 

Where 

  
12824164824

10 111111

2

−−−−++ +−−++
−

+= iiiiiiiiii

i

b

h

abhaaaaa

h

aa

h
E

ε
                (24a)                                                                          
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6
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2

iiiiii

i

baaa

h

aa

h
F

−+
+

−
+= −+−+ε

                                         (24b)                                     
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Equation (23) gives a system of N equations with N+1 unknowns 1−y  to 
1−Ny  . 

To eliminate the unknowns 1−y , we make use of the equation (17a) given as boundary 

condition in implicit form.  

By employing the second order central difference approximation in (17a), we get  

     
r

sh
yy

r

hq
y 2

101

22
−+=−

                                                                   (25)   

Where q, r and s are defined in (8).Making use of (25) in the first equation of the 

recurrence relation (23) at i=0, we get 

00100000

2
)()

2
( E

r

hs
HyGEyE

r

hq
F +=++−−                                          (26) 

Now, equations (23) and (26) give an N by N tri-diagonal system which can be solved 

by using Thomas Algorithm. 

The inner region Problem: 

A similar approach to inner region problem  

 )()()()()()( tHtYtBtYtAtY εε =+′+′′ , ptt ≤≤0                (13) 

    with   α=)0(y  and  γ== )()( pp xytY                  (14) 

   where 
ε

p

p

x
t =  produces the recurrence relation 

iiiiiii HYGYFYE =+− +− 11   ; i=1, 2, 3… N-1                                          (27) 

Where 

  
12824164824

101 111111

2

−−−−++ +−−++
−

+= iiiiiiiiii

i

B

h

ABhAAAAA

h

AA

h
E

εε
           (28a)                                        
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10)(
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2 1111

2

iiiiii

i
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h
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h
F

ε−+
+

−
+= −+−+                                        (28b)                                     

  
48162424
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1 111111
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+++= iiiiiiiiii

i

AAAABhA

h

AAB

h

A

h
G

εε
            (28c)                                                                   

  
24

)(

12

)10( 1111 −+−+ −
+

++
= iiiiii

i

FFhAFFF
H

εε
                 (28d) 

Where the interval ptt ≤≤0  is subdivided in to N subintervals of equal mesh 

h=
N

t p 0−
with nodes pN tttt == ,...,,0 10 .To solve the tri diagonal system (27), we used 

Thomas Algorithm. 

 

4. NUMERICAL EXAMPLES 

Example 4.1: Consider the following singular perturbation problem from fluid 

dynamics for fluid of small viscosity, Reinhardt [[12], Example 2]. 

xxyxy 21)()( +=′+′′ε ;  10 ≤≤ x , with y(0)=0 and y(1)=1.  
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 Outer region problem: 

         xxyxy 21)()( +=′+′′ε , 1≤≤ xx p , with sxyrxqy pp =′+ )()( and 1)1( =y  

Using the transformation t=x/ε 

 Inner region problem: 

          ttYtY ε21)()( +=′+′′ , ptt ≤≤0 , with 0)0( =Y and γ== )()( pp xytY        

The exact solution is given by: )
)/1exp(1

)/exp(1
)(12()21()(

ε

ε
εε

−−

−−
−+−+=

x
xxxy  

Numerical maximum errors are presented in table 1 for ε=10-3 and ε=10-4 respectively. 

Example 4.2: Consider the following singular perturbation problem from Kevorkian 

and Cole [[8] Page 33 equations 2.3.26 and 2.3.27 with α=-1/2] 

0)(
2

1
)()

2
1()( =−′−+′′ xyxy

x
xyε ; 10 ≤≤ x , with y(0)=0 and y(1)=1.  

Outer region problem: 

     0)(
2

1
)()

2
1()( =−′−+′′ xyxy

x
xyε ; 1≤≤ xx p , with sxyrxqy pp =′+ )()( and 1)1( =y  

Using the transformation t=x/ε 

 Inner region problem: 

     0)(
2

)()
2

1()( =−′−+′′ tYtY
t

tY
εε

, ptt ≤≤0 , with 0)0( =Y and γ== )()( pp xytY        

The exact solution is given by: ε−−−
−

= /)4/xx( 2

e
2

1

x2

1
)x(y   

Numerical maximum errors are presented in table 2 for ε=10-3 and ε=10-4 respectively. 

 

5. NON-LINEAR PROBLEM 

To solve non-linear singular perturbation problems we used the method of 

quasilinearization. 

Example 5.1: Consider the following singular perturbation problem from Bender and 

Orszag [[2], page 463; equations: 9.7.1]   

0e)x(y2)x(y )x(y =+′+′′ε ;  10 ≤≤ x , with y(0)=0 and y(1)=0.  

The linear problem concerned to this example is 

 







−








+









+
=

+
+′+′′ε 1

1x

2
log

1x

2
)x(y

1x

2
)x(y2)x(y e  

Outer region problem: 







−








+









+
=

+
+′+′′ε 1

1x

2
log

1x

2
)x(y

1x

2
)x(y2)x(y e

;  1≤≤ xx p  

 with sxyrxqy pp =′+ )()( and 0)1( =y  

Using the transformation t=x/ε 
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 Inner region problem: 







−








+









+
=

+
+′+′′ 1

1

2
log

1

2
)(

1

2
)()(

tt
tY

t
tYtY

εε
ε

ε

ε , ptt ≤≤0 ,  

       with 0)0( =Y and γ== )()( pp xytY         

We have chosen to use Bender and Orszag’s uniformly valid approximation [[2], page 

463; equation: 9.7.6] for comparison,   

ε−−








+
= /x2

ee e)2(log
1x

2
log)x(y  

Numerical maximum errors are presented in table 3 for ε=10-3 and ε=10-4 respectively. 

 

6. RIGHT BOUNDARY LAYER PROBLEMS 

Now let us discuss our present method for singularly perturbed two point 

boundary value problems with right-end boundary layer of the underlying interval. To 

be specific, we consider a class of singular perturbation problem of the form: 

)x(f)x(y)x(b)x(y)x(a)x(y =+′+′′ε  , 10 ≤≤ x                   (29) 

 With  α=)0(y               (30a) 

 and β=)1(y                                            (30b) 

where ε is a small positive parameter (0<ε<<1) and α, β are known constants.  We 

assume that f(x) and )(),( xbxa  are sufficiently continuously differentiable functions in 

[0, 1].  Further more, we assume that 0)( <≤ Mxa  throughout the interval [0, 1], where 

M is some negative constant.  This assumption merely implies that the boundary layer 

will be in the neighborhood of 1=x . 

Consider px be the cutting point or thickness of the boundary layer (inner 

region). Now we divide the original problem into two problems, an inner region 

problem and an outer region problem. The outer region problem is defined in the 

interval )1(0 pxx −≤≤  and the inner region problem is defined in the 

interval 1)1( ≤≤− xx p .  

Terminal boundary condition at the cutting point: 

 By using Taylor’s expansion, we have 

  )()()( xyxxyxxy pp
′′+′≈+′                                                          (31) 

Using (31) in to (29), we get 

)()()()()()()( xfxxyxbxxyxaxxyxxy pppp =+′+′−+′ εε             (32) 

Again, we approximate 

p

p

p
x

xyxxy
xxy

)()(
)(

−+
=+′                                                          (33) 

Substituting (33) in (32), we get 

 )()()()()()()()( 222
xfxxyxbxxyxaxxyxxyxxy ppppp =+′+′−−+ εεε         (34) 
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Evaluating (34) at pxx −= 1 , we get: 

  sxyrxqy pp =−′+− )1()1(                                                        (35) 

where  ε−−= )1(2

pp xbxq                                                       (36a) 

            ))1(( ε−−= ppp xaxxr                                                (36b) 

           )1()1(2
yxfxs pp ε−−=                                                   (36c) 

   Equation (35) which is in explicit form is taken as the terminal boundary condition 

at pxx −= 1 (the terminal point). 

The outer region problem 

     )()()()()()( xfxyxbxyxaxy =+′+′′ε  ,  )1(0 pxx −≤≤          (37) 

     With    α=)0(y and sxyrxqy pp =−′+− )1()1( ;                            (38) 

From the solution of the outer region problem we get the value of )1( pxy − .Let us 

denote it by γ=− )1( pxy  

The inner region problem: 

    To solve the inner region problem, we take the transformation 

                
ε

x
t

−
=

1
                (39) 

By using (39), we transform equation (37) with 

             )()1()( tYtyxy =−= ε            (40a) 

            
εε

ε )()1(
)(

tYty
xy

′
−=

−′
−=′            (40b) 

           
22

)()1(
)(

εε

ε tYty
xy

′′
=

−′′
=′′           (40c) 

            )()1()( tAtaxa =−= ε          (40d) 

            )()1()( tBtbxb =−= ε          (40e) 

              )()1()( tFtfxf =−= ε          (40f) 

to obtain the new inner region problem of the form: 

      )()()()()()( tHtYtBtYtAtY εε =+′+′′ , 1≤≤ tt p          (41) 

    with   γ== )()( pp xytY  and  β=)1(y  where 
ε

p

p

x
t

−
=

1
                  (42) 

Solution of the original problem 

    To solve the two-point boundary value problems given in equations (37)-(38) [outer 
region problem] and (41)-(42) [inner region problem), we used Chawla’s fourth- order 
finite difference method. In fact, any standard analytic or numerical method can be used. 

Finally, we combine the solutions of both the inner region defined on 1)1( ≤≤− xx p  

and outer region defined on )1(0 pxx −≤≤  problems to get the approximate solution of 

the original problem. We repeat the process (numerical scheme) for various choices of  



  

444     Andargie  and Reddy 

 

px (the terminal point), until the solution profiles do not differ materially from iteration 

to iteration. For computational point of view, we use an absolute error criterion, namely  

       σ≤−+ )()(1
xyxy

mm    pxx ≤≤0                                            (43) 

Where )(xy m  = the solution for the mth iterate of xp,σ = the prescribed tolerance bound. 

 

7. EXAMPLES WITH RIGHT -END BOUNDARY LAYER 

Example 7.1 Consider the following singular perturbation problem   

       0)x(y)x(y =′−′′ε ; 10 ≤≤ x , with y(0)=1 and y(1)=0.    

Outer region problem:  

0)x(y)x(y =′−′′ε  ; )1(0 pxx −≤≤ , with α=)0(y and sxyrxqy pp =−′+− )1()1( ;                                  

For this example the stretching transformation is   
ε

−
=

x1
t  

Inner region problem: 0)t(Y)t(Y =′+′′ ; with, 0)1()0( == yY  and )1()( pp xytY −=  

The exact solution is given by: ( )
( )1e

1e
)x(y

/1

/)1x(

−

−
=

ε−

ε−
 

Numerical maximum errors are presented in table 4 for ε=10-3 and ε=10-4 respectively. 

Example 7.2 Now we consider the following singular perturbation problem 

0)x(y)1()x(y)x(y =ε+−′−′′ε ;  10 ≤≤ x with )/)1(exp(1)0( εε+−+=y  and   

ey /11)1( += .     

Outer region problem: 0)x(y)1()x(y)x(y =ε+−′−′′ε ; )1(0 pxx −≤≤  

                          with  )/)1(exp(1)0( εε+−+=y  and sxyrxqy pp =−′+− )1()1( . 

For this example the stretching transformation is: 
ε

−
=

x1
t  

and the inner region problem is given by: 0)t(Y)1()t(Y)t(Y =ε+ε−′+′′ ;  

with eyY /11)1()0( +== and )1()( pp xytY −=  

The exact solution is given by  x/)1x)(1( ee)x(y −ε−ε+ +=  

Numerical maximum errors are presented in table 5 for ε=10-3 and ε=10-4 respectively. 

 

8. DISCUSSION AND CONCLUSION 

          We have described a terminal boundary condition method for the numerical 
solution of singularly perturbed two-point boundary value problems. As mentioned the 

method is iterative on the terminal point px  and the process is to be repeated for 

different values of px (the terminal point which is not unique), until the solution profile 

stabilizes in both the inner and outer region. We have implemented the present method 
first on two linear problems with left-end boundary layer, one non-linear problem and 

two problems with right-end  boundary  layer,  by taking  different  values of ε.We have  
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tabulated the maximum errors occurred in the approximation by taking the mesh size 

ε=h in the outer region and 210−=h in the inner regions in all examples cindered. It is 
observed that the present approach approximates the exact solution very well. 

 

Table 1 Maximum Errors for Example 4.1 
 

 5=pt  10=pt  20=pt  

 Inner Outer Inner Outer Inner Outer 
310−=ε  5.62E-03 4.00E-07 

 

9.04E-04 

 

4.00E-07 

 

4.33E-03 

 

4.00E-07 

 
410−=ε   6.56E-03 1.00E-07 

 

4.72E-04 

 

1.00E-07 

 

3.42E-03 

 

1.00E-07 

 

 

Table 2 Maximum Errors for Example 4.2 
 

 5=pt  10=pt  20=pt  

 Inner Outer Inner Outer Inner Outer 
310−=ε  6.45E-03 

 

2.60E-03 

 

2.28E-03 

 

2.70E-03 

 

3.77E-03 

 

2.70E-03 

 
410−=ε  3.53E-03 

 

1.43E-04 

 

1.39E-03 

 

1.43E-04 

 

4.16E-03 

 

1.43E-04 

 

 

Table 3 Maximum Errors for Example 5.1 
 

 5=pt  10=pt  20=pt  

 Inner Outer Inner Outer Inner Outer 
310−=ε  9.03E-04 

 

7.67E-04 

 

9.07E-04 

 

7.67E-04 

 

2.34E-03 

 

7.67E-04 

 
410−=ε  1.95E-04 

 

2.63E-05 

 

9.90E-04 

 

2.63E-05 

 

2.69E-03 

 

2.63E-05 

 

 

Table 4 Maximum Errors for Example 7.1 
 

 5=pt  10=pt  20=pt  

 Inner  Outer Inner Outer Inner Outer 
310−=ε  

  
2.92E-02 

 

3.48E-03 

 

3.48E-03 

 

1.30E-02 

 

9.39E-03 

 

6.15E-03 

 
410−=ε  1.85E-02 

 

8.04E-04 

 

7.92E-03 

 

8.04E-04 

 

5.92E-03 

 

8.04E-04 
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Table 5 Maximum Errors for Example 7.2 
 

 5=pt  10=pt  20=pt  

 Inner Outer Inner Outer Inner Outer 
310−=ε  2.47E-02 

 

7.84E-04 

 

1.00E-02 

 

7.84E-04 

 

6.41E-03 

 

7.84E-04 

 
410−=ε  1.77E-02 

 

1.83E-05 

 

6.76E-03 

 

1.83E-05 

 

1.80E-03 

 

1.83E-05 
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