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Abstract: A terminal boundary condition for Singularly Perturbed two-Point Boundary
value Problems (with left and right layer) is presented. By using a terminal point, the
original second order problem is partitioned in to inner and outer region problems. An
implicit terminal boundary condition at the terminal point is determined from the outer
region problem. The outer region problem with the implicit boundary condition is
solved and produces a condition for the inner region problem. The modified inner region
problem (using the transformation) is solved as a two-point boundary value problem.
We used Chawla’s fourth order finite difference method to solve both the inner and
outer region problems. The proposed method is iterative on the terminal point. To
demonstrate the applicability of the method, we solved seven singular perturbation
problems.
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1. INTRODUCTION
The numerical treatment of singular perturbation problems is far from the trivial,

because of the boundary layer behavior of solutions. Singular perturbation problems
appear in varies areas of applied mathematics, science and engineering, like fluid
mechanics (boundary layer theory). A wide variety of papers and books are available,
describing varies techniques for solving singular perturbation problems, among these one
can refer Bellman [1], Bender and Orsazag [2], Hinch [5], Kadalbajo and Reddy [6-7],
Kevorkian and Cole [8], O’Malley [10], Nayfah [8-9] and Van Dyke [13]. Several
authors published papers on solving SSP by dividing the interval (domain decomposition)
of definition (the domain of definition of the problem) into non-overlapping subintervals
called outer and inner regions, among these; we mention Vigo-aguiar and Natesan
[14], Wang [15] and Chakravarthy and Reddy [3].
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In the present paper, the method of a Terminal Boundary Condition for
Singularly Perturbed two point Boundary value Problems with the boundary layer at the
left and right end is presented. The method consists of the following steps: (1) The
original second order problem is divided in to two problems, an inner region and an
outer region problem using a terminal point. (2) An implicit terminal boundary
condition at the terminal point is determined from the outer region problem. (3) The
outer region problem with the implicit boundary condition is solved. (4) Using the
stretching transformation, the modified inner region problem is solved as a two- point
boundary value problem. Finally, we combine the solutions of both the inner region and
outer region problems to get the approximate solution of the original problem.

The present method is iterative on the terminal point. We repeat the process
(numerical scheme) for various choices of the terminal point, until the solution profiles
do not differ materially from iteration to iteration.

2. Left Boundary Layer Problems

Consider a linear singularly perturbed two-point boundary value problem of the form:

&' (x)+a(x)y' (x)+b(x)y(x)= f(x) , 0<x<1 (1)
with y(0) = & (2a)
and y(1) = B; (2b)

where € is a small positive parameter (0< € <<1)and «, B are known constants. We
assume that a(x),b(x)and f(x) are sufficiently continuously differentiable functions in
[0,1]. Further more, we assume that a(x) > M >0 throughout the interval [0, 1], where
M is some positive constant. Under these assumptions, (1) has a unique solution y(x)
which in general, displays a boundary layer of width O(g) at x=0 for small values of €.

As mentioned the method consists of the following steps:

Step 1: Dividing the original problem in to two regions, an inner region and outer region
problem. Let x,(0<x, <<I) be the terminal point or width or thickness of the
boundary layer (inner region), then the inner and outer region problems are defined on
0<x<x,and x, < x<1 respectively.

Step 2: Determining the terminal boundary condition

By using Taylor’s expansion, we have

Yx=x,)=y(x)-x,y"(x) (3)
Using (3) in to (1), we get
&' (x)— & (x—x,)+x,a(x)y (x) + x,b(x) y(x) = x,, f (x) “)
Again, we approximate

Y(xr—x,)= yx) —y(x—x,) )

Xp
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Substituting (5) in (4), we get

&x,y'(x) —&x, y(x) + &y(x—x,) + x,a(x)y'(x) + xb(x) y(x) = x, f (x) (6)
Evaluating (6) atx = x,, we get:
qy(x,)+ry'(x,)=s (7)
Where, g = x,(x,b(x,)—€) (8a)
rzxp(8+xpa(xp)) (8b)
s=x,f(x,)—&(0) (8c)

Equation (7) which is in explicit form is taken as the terminal boundary condition at
x = x, (the terminal point).

Step 3: Solving the outer region problem

&"(x) +a(x)y' (x)+b(x)y(x) = f(x) , x, <x<1 )
With  gy(x,)+ry'(x,)=s (10a)
and y(1)=f; (10b)

From the solution o f the outer region problem we get the value of y(x,).Let us denote
itby y(x,)=7
Step 4: Solving the inner region problem:

To solve the inner region problem, we take the transformation
X
== (11
€

By using (11), we transform equations (1) with

y(x) = y(te) =Y (1) (12a)
y'(x) _30) Y0 (12b)

£ £
V)= y”(ie) _Y ”gt) (12¢)

£
a(x) =a(te) = A(t) (124d)
b(x) =b(te) = B(t) (12e)
f)=f@e)=fQ) (12f)

to obtain the new inner region problem of the form:

Y'()+ A@Y (1) +eB()Y (1) = eH (1), 0<t<t, (13)
with y(0)=a (14a)
and Y(z,)=y(x,)=y wherer, =x—” (14b)

&
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Solution of the original problem

To solve the two-point boundary value problems given in equations (9)-(10) [outer
region problem] and (13)-(14) [inner region problem), we used Chawla’s [4] fourth-
order finite difference method. In fact, any standard analytic or numerical method can
be used. Finally, we combine the solutions of both the inner region defined on
0<x<x, and outer region defined on x, <x<1 problems to get the approximate

solution of the original problem.

We repeat the process (numerical scheme) for various choices of x,(the terminal
point), until the solution profiles do not differ materially from iteration to iteration. For
computational point of view, we use an absolute error criterion, namely
y’"“(x)—y"’(x)‘SO' 0<x<x, (15)

Where y™(x) = the solution for the m" iterate of Xp

¢ = the prescribed tolerance bound.

3. FOURTH-ORDER FINITE DIFFERENCE SCHEME

A finite difference scheme is often a convenient choice for the numerical solution of two
point boundary value problems. We used Chawla’s [4] fourth- order finite difference
method to solve the inner and outer region problems.

Outer region problem:

& (x)+a(x)y' () +b(x)y(x) = f(x) , x, <x<1 )

With  gy(x,)+ry'(x,)=s (10a)

and y(1)=f; (10b)
Now let us rewrite equation (9) in the form:

&"(x) = f(x) = a(x)y'(x) =b(x)y(x) = g(x,y,y) (16)

With  gy(x,)+ry'(x,)=s (17a)

and y(1) =4 (17b)

Now we divide the interval [x,,1]into N equal parts with constant mesh length h. Let
X, = X Xp ey Xy = 1 be the mesh points. Then we have x; = x, + ih;1=0,1,2... N.

Let us denote the exact solution y(x) at the grid points x; by y; ; similarly, y(x,) =y,
andy, = y,('xi) .
Fori=1,2, ....., N-1, let

’

Y~ Yia
Vi h
-7 3V —4y, Y,

= 18b
yl+1 Zl’l ( )

(18a)




Singularly Perturbed Two-point Boundary Value Problems 439

— 7 =y t4y, -3y,

L= 18c
yl*l 2]’l ( )
= ’ 7 h — P
Yia =Y _Z_O(giﬂ_gi—l) (18d)
Then for each x, , i=1, 2...N-1, (15) can be described as:

£ 1 - = _

h_zé‘zyi_a(gm"'l()g["'gifl) (19)
Where g, = g(x,y,,,) (20a)
And g4 = 8(Xip> Yirr> Yy ) (20b)
Using (18) and (20), terms of the right hand side expressions of (19) can be simplified:

1 - ) a. b. a. a.

- . - i+l i+1 i+1 ‘ i+l o i+1 ‘ 213.
1280 T Ty TG e T YT Y (1)
10= _ 10a, aa,, a4, +haibi—l o+ a,(a,, +a;,)—10b,
2% "G s 16 oo 12 )
a, ha.b. a.a. 10
10a. @;4;, i%itl i“i-1 ha, ha,
+ D T - o t—=fi+ i N, 21b
S 16 24 48 O 12f tog Sy e (21b)

1 — f.l a, a, a, b.l
—g. =r 4y Iy (L )y 21c
12807 o Y e Y g T (21e)

Now substituting (21) in (19) we get:

E —a,.,+10a. aqa a.a. hab. , a., b._
—(y., —2y. + . =(— i Yi%ia % lll+ -1 Yi-l -
h? i =25 % i) =( 24h 48 16 24 8h 12 )i

(ﬂ + 4 (@, +a,,)=10b; _ h)y +(— i _ b,y _ 10a; _ iy _ hab.,, _a;a;,
6h 12 /A 8h 12 24h 16 24 48
a,, (fia +10f, + fi) | hai(fiy = fi)
+ = o+ i+ i i + 22
24h)y’+1 ( B o ) (22)
From equation (22) we get the recurrence relation of the form:
EY —-FY +GY, =H, ;i=0,1,2,3... N-1 (23)
Where
E, =& Gz 10a;,  aa, 4 4% hab,, a,, +£ (24a)
h* 24h 48 16 24 8h 12
F :E " Qi —aiy " a;(a,, +a,_,)—10b, (24b)
h’ 6h 12
G _£€ " Ain +h " 10a; —a;_, " hab;,, " a,a;y " a,a;, (24¢)
h* 8h 12 24h 24 16 48
g =S t10fi+ fi) | ha(fiy = fi)) (24d)

’ 12 24
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Equation (23) gives a system of N equations with N+1 unknowns y_, to y .

To eliminate the unknowns y_; we make use of the equation (17a) given as boundary
condition in implicit form.

By employing the second order central difference approximation in (17a), we get

2hgq 2h,s

y71=7y0+y1_ (25)

Where g, r and s are defined in (8).Making use of (25) in the first equation of the
recurrence relation (23) at i=0, we get

2/’!6] 2hs (26)

_(FO _TEO)yO +(E0 +G0)yl ZHO +TEO

Now, equations (23) and (26) give an N by N tri-diagonal system which can be solved
by using Thomas Algorithm.
The inner region Problem:
A similar approach to inner region problem
Y () +A@DY (1) +eBM)Y (1) =eH (1), 0<1<t, (13)

with y(0)=a and Y(,)=y(x,)=y (14)

X
where 7, = —~ produces the recurrence relation
&

EY_ -FY +GY, =H, ;i=1,2,3...N-1 27)
Where
E, :i + Ay —104, + AAi, + AA _ €hAB,_, _ A + €B; (28a)
h? 24h 48 16 24 8h 12
F, :i + A — AL + A (A, +A)—10eB, (28b)
h’ 6h 12
G, _ 1 + A 4 B, 4 104, — A, 4 €hA;B, + AA, + AAL (28¢)
R’ 8h 12 24h 24 16 48
Hi — 8(Fi+1 +10Fz + Fi—l) + EhAl. (Fi+1 — Fi—l) (28(1)
12 24

Where the interval 0<7<7, is subdivided in to N subintervals of equal mesh

hzﬂ with nodes 0=1,,t,,....ty, = ‘, .To solve the tri diagonal system (27), we used
N

Thomas Algorithm.

4. NUMERICAL EXAMPLES

Example 4.1: Consider the following singular perturbation problem from fluid
dynamics for fluid of small viscosity, Reinhardt [[12], Example 2].

& (x)+y (x)=142x; 0<x<1, with y(0)=0 and y(1)=1.



Singularly Perturbed Two-point Boundary Value Problems 441

Outer region problem:

&"(x)+y'(x) =1+2x,x, <x<1, with gy(x,)+ry’(x,) =sand y(1)=1
Using the transformation t=x/¢
Inner region problem:

Y'()+Y'(r)=1+2& ,0<t<¢,, with Y(0)=0and Y(r,) = y(x,) =7
The exact solution is given by: y(x) = x(x+1-2&)+ (2 — 1)(M)

I—-exp(=1/¢)

Numerical maximum errors are presented in table 1 for =10~ and e=10" respectively.

Example 4.2: Consider the following singular perturbation problem from Kevorkian
and Cole [[8] Page 33 equations 2.3.26 and 2.3.27 with a=-1/2]

&' () + 1= D)y —%y(x) —0; 0<x<1, with y(0)=0 and y()=1.
Outer region problem:
” ’ 1 . ’
&y (x)+(l—§)y (x)—ay(x)=0; x, <x <1, with gy(x,)+ry(x,)=sand y(I)=1

Using the transformation t=x/¢

Inner region problem:

Y'(6) + (1—%)1/’@) —gY(t) =0,0<7<¢,, with Y(0) =0and Y(¢,) = y(x,) = 7
The exact solution is given by: y(x) = % - %e‘(x‘xz I4)/e
—X

Numerical maximum errors are presented in table 2 for =10~ and e=10"* respectively.

5. NON-LINEAR PROBLEM

To solve non-linear singular perturbation problems we used the method of
quasilinearization.

Example 5.1: Consider the following singular perturbation problem from Bender and
Orszag [[2], page 463; equations: 9.7.1]

ey’ (x)+ 2y (x) +e"™ =0; 0<x<1, with y(0)=0 and y(1)=0.

The linear problem concerned to this example is

ey (x) + 2y (X) + ——y(x) = (Zj[loge( 2 j—l}
X+1 X+1 x+1

Outer region problem: gy”(x)+2y/(x) + 2 y(x) = (2) {loge(
x+1 x+1

2 ]_1 ; x, Sx<1
x+1

with gy(x,)+ ry'(xp) =sand y(1)=0

Using the transformation t=x/g
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Inner region problem: y”(r)+Y'(¢) + 26 Y(t) = 8[2j|:10g[2j _ 1} 0<1<1,,
&+1 &+1 &+1

with Y(0)=0and Y(r,) = y(x,) =y

We have chosen to use Bender and Orszag’s uniformly valid approximation [[2], page
463; equation: 9.7.6] for comparison,

y(x) = loge(LJ —(log.2) e 2x/e
x+1

Numerical maximum errors are presented in table 3 for =10~ and e=10" respectively.

6. RIGHT BOUNDARY LAYER PROBLEMS

Now let us discuss our present method for singularly perturbed two point
boundary value problems with right-end boundary layer of the underlying interval. To
be specific, we consider a class of singular perturbation problem of the form:

ey’ (x)+a(x)y' (x) +b(x)y(x) =f(x) ,0<x<1 (29)
With y(0)=« (30a)
and y(1)= 3 (30b)

where € is a small positive parameter (0<eé<<l) and a, B are known constants. We
assume thata(x),b(x) and f(x) are sufficiently continuously differentiable functions in
[0, 1]. Further more, we assume that a(x) < M <0 throughout the interval [0, 1], where
M is some negative constant. This assumption merely implies that the boundary layer
will be in the neighborhood of x =1.

Considerx,be the cutting point or thickness of the boundary layer (inner
region). Now we divide the original problem into two problems, an inner region
problem and an outer region problem. The outer region problem is defined in the
interval 0<x<(-x,) and the inner region problem is defined in the
interval (1-x,) < x <1.

Terminal boundary condition at the cutting point:

By using Taylor’s expansion, we have

Y(x+x,) =y () +x,y"(x) 31)
Using (31) in to (29), we get
&' (x+x,)—&'(x)+x,a(x)y'(x) + x,b(x) y(x) = x, f (x) (32)

Again, we approximate
yx+x,)—y(x)

Xp

Substituting (33) in (32), we get
e(x+x,)—ey(x)—&r,y'(x)+ Xia(X)y'(X) + Xf,b(X)y(X) = X§f(X) (34)

Y(x+x,)= (33)
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Evaluating (34) atx =1-x,, we get:

gy(l—x,)+ry’(-x,)=s (35)
where g=xb(1-x,)—¢ (36a)
r=x,(x,a(l-x,)—¢&) (36b)
s=x,fl-x,) -1 (36¢)

Equation (35) which is in explicit form is taken as the terminal boundary condition
at x =1-x  (the terminal point).

The outer region problem
& (x)+a(x)y’ () +b(x)y(x) = f(x) , 0Sx<(1-x,) (37)
With  y(0)=aandgy(1-x,)+ry(1-x,)=s; (38)

From the solution of the outer region problem we get the value of y(1—x,).Let us
denote itby y(1-x,)=y

The inner region problem:

To solve the inner region problem, we take the transformation

f= 1-x (39)
£

By using (39), we transform equation (37) with

y(x)=y(d-16) =Y (1) (40a)
y,(x)z_y(l—ts):_Y(t) (40b)
£ £
V)= y'(1 ; te) _ Y"Et) (40c)
£ £
a(x)=a(l—te) = A(t) (40d)
b(x)=b(1—-t€) = B(t) (40e)
fx)=fd-1&)=F@) (401)
to obtain the new inner region problem of the form:
Y'(O)+ A@DY (1) +eB)Y (1) = eH(1), 1, <t <1 (41)
1-
with Y(t,)=y(x,)=y and y(1)=/p where ¢, = all (42)
£

Solution of the original problem

To solve the two-point boundary value problems given in equations (37)-(38) [outer
region problem] and (41)-(42) [inner region problem), we used Chawla’s fourth- order
finite difference method. In fact, any standard analytic or numerical method can be used.

Finally, we combine the solutions of both the inner region defined on (1-x,) <x<1

and outer region defined on 0 < x < (I—-x,) problems to get the approximate solution of
the original problem. We repeat the process (numerical scheme) for various choices of
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x, (the terminal point), until the solution profiles do not differ materially from iteration
to iteration. For computational point of view, we use an absolute error criterion, namely
Y@=y (<o 0<x<yx, (43)

Where y"(x) = the solution for the m™ iterate of Xp,0 = the prescribed tolerance bound.

7. EXAMPLES WITH RIGHT -END BOUNDARY LAYER
Example 7.1 Consider the following singular perturbation problem
ey’ (x)—y'(x)=0; 0< x <1, with y(0)=1 and y(1)=0.
Outer region problem:
ey’ (x)—y' (x)=0;0<x<(1-x,), withy(0) =aandgy(l—x,)+ry'(Il—x,) = s;

. . .. 1-x
For this example the stretching transformation is t =

€
Inner region problem: Y"(t) +Y'(t) = 0; with, Y(0) = y(1)=0 and Y(z,) = y(1-x,)

(e(x—l)/e B 1)

The exact solution is given by: y(x) =
-1/¢e
c _

Numerical maximum errors are presented in table 4 for e=10" and =10 respectively.
Example 7.2 Now we consider the following singular perturbation problem
ey’ (x) -y (x)—(1+€)y(x) =0; 0<x<1with y(0)=1+exp(-(1+¢&)/&) and
y(h)=1+1/e.
Outer region problem: £y”(x) —y'(x) - (1+€&)y(x) =0; 0<x<(1-x,)

with y(0) =1+exp(-(1+¢&)/¢) and gy(1—x,)+ ry’(1- x,)=5s.

1-x
€

For this example the stretching transformation is: t =

and the inner region problem is given by: Y’(t)+ Y'(t) —e(1+¢€)Y(t) =0;

with Y(0) = y()=1+1/eand Y(7,) = y(1-x,)

(I+e)(x-1) /¢ X

The exact solution is given by y(x)=e +e

Numerical maximum errors are presented in table 5 for e=10" and =10 respectively.

8. DISCUSSION AND CONCLUSION
We have described a terminal boundary condition method for the numerical
solution of singularly perturbed two-point boundary value problems. As mentioned the
method is iterative on the terminal point x, and the process is to be repeated for

different values of x, (the terminal point which is not unique), until the solution profile

stabilizes in both the inner and outer region. We have implemented the present method
first on two linear problems with left-end boundary layer, one non-linear problem and
two problems with right-end boundary layer, by taking different values of €. We have
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tabulated the maximum errors occurred in the approximation by taking the mesh size
h = € in the outer region and & =107 in the inner regions in all examples cindered. It is

observed that the present approach approximates the exact solution very well.

Table 1 Maximum Errors for Example 4.1

tp=5 tp=10 tp=20
Inner Outer Inner Outer Inner Outer
e=10" 5.62E-03 | 4.00E-07 9.04E-04 4.00E-07 4.33E-03 4.00E-07
E= 10_4 6.56E-03 | 1.00E-07 4.72E-04 1.00E-07 3.42E-03 1.00E-07
Table 2 Maximum Errors for Example 4.2
tp:5 tp=10 tp:ZO
Inner Outer Inner Outer Inner Outer
E= 10_3 6.45E-03 | 2.60E-03 2.28E-03 2.70E-03 3.77E-03 2.70E-03
e=10" 3.53E-03 1.43E-04 1.39E-03 1.43E-04 | 4.16E-03 1.43E-04
Table 3 Maximum Errors for Example 5.1
tp=5 tp=10 tp=20
Inner Outer Inner Outer Inner Outer
e=10" 9.03E-04 | 7.67E-04 9.07E-04 7.67E-04 2.34E-03 7.67E-04
e=10" | 1.95E-04 2.63E-05 9.90E-04 2.63E-05 2.69E-03 2.63E-05
Table 4 Maximum Errors for Example 7.1
tp=5 tp=10 tp=20
Inner Outer Inner Outer Inner Outer
e=10" 2.92E-02 | 3.48E-03 3.48E-03 1.30E-02 9.39E-03 6.15E-03
e=10" 1.85E-02 8.04E-04 7.92E-03 8.04E-04 5.92E-03 8.04E-04
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Table 5 Maximum Errors for Example 7.2
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