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Abstract

We present a new two-level implicit high accuracy variabksh cubic spline method for the
non-linear parabolic partial differential equation,, = qp(x,t,u,ux,ut), O<x<1, t>0 subject to
appropriate initial and Dirichlet boundary conditions presttjbwheree>0 is a small real
constant. The proposed variable mesh approximation prodteesch time level a cubic spline
function which can be used to obtain the solution at any pothie range 0<x<1. The presented
variable mesh strategy is applicable to parabolic equaitiopslar coordinates. In all the cases,
we require only 3-spatial variable grid points. The sitghbélinalysis for diffusion equations on a
non-uniform mesh shows that the linear cubic spline schemaadsnditionally stable. The
advantage of using this new variable mesh method is highliglaputationally especially for
better stability with a relatively large time step.

Keywords - variable mesh, cubic spline, nonlinear parabolic equaingpljcit method,
diffusion equation, Burgers’ equation, RMS errors.

1. INTRODUCTION

This paper primarily aims at developing a new highly accusatelevel implicit cubic
spline method for the solution of nonlinear parabolic equaton a non-uniform mesh
(see Fig.1). It is known that finite difference methofor obtaining approximate
solutions of partial differential equations can vary aembly in terms of accuracy and
efficiency. In the area of finite differences, the asndamiliar schemes are the central
differences and upwind differences. It hasnbeemonstrated that lower order
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approximations suffer from computational instability. Thepwind difference
approximations are computationally stable, although on$g brder accurate (Roache,
1976; Segal, 1982; Brandt and Yavneh, 1991). In many cases therdies upwind and
the second order central difference approximations mdg wiereliable computational
results. In the context of higher-order approximati@oesnpact finite difference schemes
have good numerical stability and efficiency, and offeo wattractive features: higher-
order accuracy and small stencil (Boisvert, 1981; Jain, ;198dith, 1996; Morton,
1996). In recent years high-order numerical methods haverafed renewed interest and
a variety of specialized techniques have been developed.ai4o2005 & 2006) has
presented a class of three point variable mesh methedd ba Numerov and arithmetic
average discretizations for the solution of nonlinear peint boundary value problems.
Recently, (Mohanty and Singh, 2005; Mohanty, 2007) havend&tkthe technique and
developed two-level implicit high accuracy variable miasike difference methods based
on the same Numerov and arithmetic average discretizafor the solution of quasi-
linear parabolic equations. These discretizations reauritg three spatial grid points.
Using a cubic spline approach (Jain and Aziz, 1983; Mohargl,&005) have discussed
third order three point cubic spline methods for the smutif the nonlinear differential
equation y" = f(x,y,y') on a non-uniform mesh. First, (Papamichael andt&ktan,
1973) have used a cubic spline technique to sdleeltD heat conduction equation.
Further, (Rubin and Graves, 1975) have solved usdow problems using a second
order cubic spline approximation. (Jain and Lol#&79) have also used a second order
cubic spline method for the solution of coupled Im@mar parabolic equations. A higher
order cubic spline collocation method on a unifomash for parabolic equations has
been studied by (Archer, 1977). Recently, usingehspatial grid points on a uniform
mesh, (Mohanty and Jain, 2009) have derived a meovIével implicit cubic spline
method of second order accuracy in time and foartter accuracy in space for the
solution of one space dimensional nonlinear parabEdquations. But to the author’s
knowledge no highly accurate variable mesh cublmepmethods for the solution of
nonlinear parabolic equations have been discuss#ukiliterature so far. In the present
paper, we discuss a new two-level implicit highbcarate cubic spline method for the
solution of nonlinear parabolic equations on a nolerm mesh. However, in the case of
a constant mesh, the proposed method reduces todti®d derived by (Mohanty and
Jain, 2009). Difficulties were experienced in thestpfor the cubic spline solution of
parabolic equations in polar coordinates, espgciafl a variable mesh. The solution
usually deteriorates in the vicinity of its singutip. We modify our method in such a way
that the solutions retain their order and accuesrywhere in the solution region even
in the vicinity of its singularity.
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This paper is arranged as follows. In the next sectienpresent the variable mesh cubic
spline method for a 1-D nonlinear parabolic equation wignificant first derivative
terms. In section 3, we discuss the mathematicallsietithe derivation of the method.
In section 4, we study the application of the proposdaiccspline method to a diffusion
equation in polar coordinates and perform a stability aisalifermation of grid points is
discussed briefly and comparative numerical resultspaseided in section 5. Finally,
concluding remarks are given in section 6.
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Fig. 1 ( Non-uniform Grid Points)

2. VARIABLE MESH CUBIC SPLINE METHOD FOR THE PARABOLIC
EQUATION

Consider the nonlinear parabolic differential equatiothefform

0%u ou du
E—=@g(X,t,u—,—), Ox<1t>0 1
ox? A 1) at) (1)

where £>0 is a small real constant.
The initial condition is prescribed by

u(x,0) =f(x), Osx<1 (2)
and the Dirichlet boundary conditions are prescribg

u(0t) =g, (1), u(lt) = (), t=0. (3)
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We assume that the functiogéx,t,u,u,,u, , f{x), g,(t) andg.(t) are sufficiently smooth
and their required high-order derivatives exist .

Let Q = {(x,)0<x<1, t>0} be the solution domain. We discretize the solutiomain
Q such that G xo < X1 <...< Xy <Xn+1 = 1. Leth,, =x,, —%,[=0,1,...N be the mesh

sizes in thew-direction andk =t,,, —t; >0, j=0,1,2,..be the time step size frdirection.
The mesh ratio is given by, =(h,,/h >0, I=1(1)N. Let U/ =u(x, ,t;) be the exact
solution values ofi(x,t) and u/ be a discrete approximation t(x,t) at the grid point
(x,t;) .

We let S;(x) denote the cubic spline polynomial interpolating thiueval/ at thejth

time level, and is given by

Y- _ 3 _ 2 _
s_(x):uMlJ_ﬁliur U.’-l‘h'—M|’_1 X X
: 6h, 6h 6 h
;oh? ) x=x _ _
+| Uy, —?M, o , Xy SX<X, | =11)N+1 >0 (4)
|

which satisfies ajth-level the following properties:

() S;(x) coincides with a polynomial of degree three orhelag;,x ], 1 =12,...,N +1,
>0,

(i) S;(x)0C?[01], and

(i) S;(x)=u/,1=0L...N+1 j>0,

where

m' =U,/ andM/ :Sj"(x|):UXX|j :%ﬂxwtj’ulj’m|j’ut|j)a I=01...N+1 j>0.
At the grid point(x;,t;) , we denote
R=0"+0,-1Q =(+0)(1+30,+0%), R =0,(+0,-0°), § =0,(+0,), (5

and
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@ =@x.t U U] u)=eu, ) | (6a)
R = AX0,t Ul U U ) = U (6b)
@=@xat UL U U ) =au ) (6c)
Now we need the following approximations
tj =t +06k, (7)
Ul =au/"+@a-6VU,/, (8a)
Ula=aUu/t+@-9)U,.,, (8b)
UL=au/t+@-6Uu/,. (8c)
Uy =™ -U/l)/k, (9a)
Uiy = (U5 -U L), (9b)
Ui, =U 5 -U) Kk, (9c)
m =U, =Ula-0-03)U! -0.2Ul1)I(hS), (10a)
M =UJ, = ((+20)U 1 - A+ 0,)20] +0,2U14)I(hS), (10b)
ma=U, =(Ula+0+0)Ul -0,2+0,)U14)/I(hS), (10c)
@ =dx t,0l,m Uy, (11a)
A= dxo Ul mia, Uy (11b)
a = dx b0, mia, UL, (11¢)
iy =0, =m! +ah (Ml -Ml) =0, + 317“ @ -a), (12a)
o ~ Ulj+1 —U.j h [y U|j+1 —U.j h i
M, =U,, = e + |6+l M| +2M |+1] = - + 6': b + 2¢I+1], (12b)
iy, =0, = - 'J ;IU e —% M| + NL] =UiUis ;IU & —%bj - 2&3_1], (12¢)

Mlj :&Ij /‘9’ Mljﬂ :&Ijﬂ/g, Mﬂ—l :&Ij_l/é‘ etc.
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Further, we define

éfj :¢(X|1Eiig'jam|jagt|j)s (13a)
éfil = ﬂxlﬂifj ’U|j+1’ mjﬂ!Utljﬂ) ) (13b)
éfj—l = ¢(X|—11EJ' 1Ulj-la mj—laUtlj—l) . (13c)

Then at each grid pointx,t;), a variable mesh cubic spline method with accuwatcy

O(k*h ™ +kh +h?) for the differential equation (1) may be writtes a

. . . 2 . N N o
g@ﬂﬂ—(lml)u | +U|U|J-1):T—2[R44L1+Q,qq’ +Rg.L|+T), 1=12,..N,j>0 (14)

where
9:5, a = —9 _ and T, =0(k2h, +kh®>+h®), provided o, # 1
2 6(L+0,)
Note that, the coefficient®, Q, R in (14) are positive fif, \/52_1< o, < V5 +1

2
(Mohanty, 2005). Foio, = ZXconstant mesh case), that is, fo, =h =h, the method

(14) reduces to the cubic spline method with aanuraf O(k* +kh? +h*) for the
solution of the differential equation (1) ( Moharatyd Jain, 2009).

Further note that the initial and boundary condgioare given by (2) and (3),
respectively. Incorporating the initial and boundeonditions, we can easily express the
cubic spline method (14) in tri-diagonal matrixrfor If the differential equation is linear,
we can solve the linear system using a tri-diagsoéler; in the non-linear case we can
use the generalized Newton-Raphson method to sbvenonlinear system (Hageman
and Young, 2004; Kelly, 1987; Evans, 1999).

3. MATHEMATICAL DETAILS AND DERIVATION PROCEDURE

For the derivation of the cubic spline method (1% simply follow the approaches
given by (Jain and Aziz, 1983; Mohanty and JaiQ9.

At the grid poin(x;,t;) , we denote
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Py i _0 0 i_ 0 i_ 0
Pa = oop 11 o al = _40, Al = 401 W= §0j W= §0j '
oxPat ot; oy, ou oy,

(15)

Differentiating the differential equation (1) partiallith respect tot' at the grid point
(%,t;), we obtain the relation

—l.|JIjU02 :alj +:3|jU01+y|jU11_‘9U21- (16)
By the help of a Taylor expansion, we first obtain

eul, -+o ) +a.U’_1]- ' [P¢f+1+Q|¢f R+ T (17)
where

T :O(h,s), providedo, # 1

Using equations (7)- (11c) and (15), we obtain

U, =U; +&U,, +0(k?), (18a)
U}y =/, +6kUg, +kayhu ]+ OfK?), (18b)
LT|J—1: |—1+H[kU01_khU11]+O( )’ (18c)
U’ =u/ +gu02 +olk?), (19a)
— ik ko h
Ul =U s+ 5 U +-22U, +0[K?), (19b)
_ k. k
U, =U, s+ 50 =21U, +0f?), (190)
2

m =m +02 u30+ekun+o(k2h,‘l+kn+h,3), (20a)
M =m, - %um +0kU, +O(k2h T +kh +h?), (20b)
mb =y, - @Usﬁekulﬁo(k h™+kh +h°), (20¢)

_ , , 1.k -
:WJ +a([a'|J +U01:8|J +U11ylj:|'+_§U02wlJ

UI hI2
+

o/ +O(Kh +h?), (21a)
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—i _ _ _ 1k _
§0|J+1 = ¢fj+1 '*’a([a]J +U01:8|J +U11yIJ]+EU02LPIJ

2
_@UWW +O(k*h " +kh +h?), (21b)

—i _ _ _ 1ok _
qolj—l = qu—l + a([alj +U01:8|J +Ullylj]+§U02LPIJ
2
_@UWVH +0(k*h Tt kh + h|3)- (21c)
Using equations (12a), (20a) and (21b) - (21c),obtain

2

iy =m +ekun+%[a. +68,(1+0, Uy +O(K*N " +kh +h7),0, 21, (22)

Equating the coefficient oﬂw,2 to zero in equation (22), we obtairg, = —9 and
6(1+0;)
the equation (22) reduces to
M =m’ +8kU,, +O(k?h, ™" +kh +h?). (23a)

Similarly, simplifying (12b) and (12c) by the hedh the approximations (18a)-(18c) and
(21a)-(21c), we obtain

My, =m, +6kU,, +O(k*h ™ +kh +h?), (23b)
ML, =mL, +6kU,, -O(k*h ™ +kh +h°). (23c)

Finally, from equations (7), (18a)-(19c), (23ap¢Rand (13a)-(13c), we obtain

él = WJ + a([alj +U01ﬁ|j +LJ111/|j]-*-gLJOZLIJIj +O(k2hl N + kh + h|3) ! (24a)
@l = G+ &) +Ug ) +U [+ SULW) +OKT ™ 40 +17), (240)
@y = @+ Olal + U] +Uy [+ U -0 ™+ +h7). (240)

Using equations (18a)-(18c), (24a)-(24c) and (i) obtain
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2
3 U|j+1_(1+0-|)J|j +U|U|j-1+951 %Uﬂ:l

_ _ _ _ _ _ _ K _ N
An P|¢TJ+1+Q|¢TJ + RIWJ—1+(I:)| +Q| + RI){Hk(aIJ +U01:8|J +U11ylj)+§U02LPIJ}}+TIJ

(25)
F+Q +R =63.

Now, with the help of equations (16), (17) and)(2® get the following expression for
the local truncation error:

T =5 kg [e_%juozl/ﬁj‘*‘o(kzh +kh’+h?), o, 1. (26)

In order for the proposed cubic spline method td4pe of O(k?h ™ +kh +h?), the

coefficient ofkh2 in (26) must be zero.

Thus we obtain the value of the paramete® =2 and the local truncation errd’
reduces to

T =0(k?h +kh*+h®), o #1. (27)

4. APPLICATION TO PARABOLIC EQUATIONS WITH SINGULAR
COEFFICIENTS

Consider the linear parabolic equation

W X 0X ot

subject to appropriate initial and Dirichlet boundaonditions given by (2) and (3),
respectively, wher® <y << 1 is called diffusivity, a is a real constant and 1 (01) or

2
V(a u +£6_UJ =L (k) 0<x<1, 150 (28)

it may take values 0,1 or 2. Far=0, the equation above represents a time dependent
diffusion equation. If we replac by r in equation (28) then we obtain an unsteady
diffusion equation either in cylindrical coordingtef a = 1, or in spherical coordinates,

if a =2.
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Applying the difference method (14) to the differential &epn (28), and neglecting the
local truncation error, we obtain the scheme

) . . h2 o o o
I/hjﬂ -(d+0 )U|J +0, U|J—1] = t[PI Uty +Q Uy + R Uy

- =i
aP | uw-u oh (- _—; av—- ; 2av-—
- I{ b + L1 ut|J +2ut|J+l__UX|J - UX|+l+f +2f|+l
X

XI+1 UI hI v { 1+1
. h . . _
_an Ux; -2 Uy — Ut/ — kd Uxjyy + kd u><|J + f|+1 - fl =
X 6(1+a) X
—i =i
—aVR| th ~Uia _i(at: +Zat|j_l_ava>(|j _ZavaX|-l+ f +2f| lj
X h 6v X X4
AT, +Q T, +RT |, 1=12..N,j=012,.. (29)

where

=f (X,,1;), Fla=f (X1 ) etc.
Note that the linear cubic spline variable mesteswh (29) is of O(k?h ™+ kh + h?)

accuracy for the solution of the parabolic diffdi@requation (28), however, the scheme
fails to compute when the solution is to be deteediat | = 1 due to zero division. We
overcome this difficulty by using the following apimations.

Let

! (30a)
XI

: +0(h%) =X, (30D)

25 +0(h) =X, (30¢)

f1=f(x,t;)=F, (31a)

fal +O(h%) = F 81

g°h’

f_|j+1:f_|j '*'0'|h|f_xlJ +

. . . 2
fria=fi —hfxi +h'2 fwi +O(h%)=F, (31¢)
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where

o (xl,f,-)’ o0t (% ) ot

f C.
0X ox?

Now substituting the approximations (30a)-(31cjdf) and neglecting high order terms,
we obtain

) . . h2 o o _
I/hjﬂ -(d+0 )U|J +0, U|J—1] = ﬁ[PI Uy +Q Uy + Ry

=i —j
- oh
Ui+ — W + A
oh 6V

-awP xl{ (th" +2U),, —avX, Uy —2avX,uxl, + Fy + 2F1)}

— g h [ . — . — — .
—avQ, XO(UXIJ _%(Uﬂjﬂ — Uty — aVX Uy, +aVX,ux, +F - F, )j

- i
U4 h . = - -
-auR X{u' hUI : —6—|'/(ut,‘ +2Ui), —avX Uy —2auX,ux, +F, +2F2)}
|
®xF)+(QxF)+(R xF)], 1=1,2,..N, j=0,1,2,... (32)

Note that the cubic spline method (32) is@(k*h ™ +kh +h°) accuracy and free from

the term 1(x:1), hence very easily solved f6+1,2,...N in the solution region 0«1,
t>0. This technique shows that the proposed cullisesmethod is applicable to singular
problems and we do not require the presence ofiatilyous points outside the solution
region to handle the numerical scheme near thedaoyn

For stability we consider the variable mesh schéméhe diffusion equation

2
Va_l::a_u , 0x<1,t>0. (33)
0X ot

SubstitutingD = 0 andf = 0in the numerical method (32), we obtain the follogviinear
cubic spline scheme for the solution of the abafferéntial equation

j+l

j+l
a—lul -1

+a,u’™ +au/ =bul, +bou! +bul, (34)

where

A =(/n?)
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a,=-6ulo +R, a,=6vA(l+0,)+Q, a =-6v) +R, (35a)
b,= 6vAo, +R, by=-6vA(1+0,)+Q, b = 6uA +R. (35b)

To study the stability of the linear cubic spline scheB%®),(we use the Von Neumann
linear stability analysis. Assume that there existeraor at each grid pointx(,t;) of the

form g =&e”, where i=+/-1, ¢ is the amplitude, which may be complex and the
phase anglg is real. The amplification factor is found to be

_1+6v4L(B)
e o
where
L(B) = §1+ U,)(cos,[a’—lz+i(1—a,)_ sing _ (37)
(1+U|)[(1+3U| +0 )_(1_3U| +0 )COSﬁ]—I(l—O])(l'*'O] +0 )Smlg
We may re-write equation (36) as
= (C, +6vA A)+i(D, +6VA B) (38)

(C —6vA A) +i(D, —6VAB)
where

A= (1+0))(cosB-1),

B =@-0,)sing,

C, = (@1+0)[1+30, +0,°) - (1-30, + 7,%)cosf],
D,= (0, -1)(1+ 0, +0,*)sinf.

For stability, it is required thajk‘]2 <1 for all values off in [-z, z]. Imposing this
condition on the characteristic equation (38) \seid, (AC, + B D,) < 0. Sincev >0

+B D
s%s 0 as a necessary and
C~+D,

sufficient condition for linear stability. This cdion is satisfied for all choices efr </
<. Thus we conclude that the scheme (34) is uncamditly stable.

and A, > 0, hence from (37), we obtain R¢p)]
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5. COMPARATIVE RESULTS

We have solved three benchmark problems using the methatbdesly equation (14)
and compared our results with those obtained by the wvariai@sh method of
O(k?h ™ +kh +h?®) accuracy based on finite difference discretizatidiscussed by
(Mohanty, 2007) for the solution of 1D nonlinear parabdmguations. The exact
solutions are provided in each case. The right hand sid®deneous function, initial
and boundary conditions may be obtained using the erpadion as a test procedure.
The linear difference equation has been solved usingdagonal solver, whereas non-
linear difference equations have been solved using theddeRdaphson method. While
using the Newton-Raphson method, the iterations wengpstb when absolute error
tolerance< 10*° was achieved. All computations were carried out using dqureleision
arithmetic.

The unit interval [0,1] in the space-direction is dividetbi(N+1) points with

B Xo < X1 <...< XN < Xn+1 =1,
where
h=x -%,and g =(h,./h }>0,1=1,2,...N.

We may write

= hy,, +hy +...+h

= (o1t aoot....... +0| 0. .... on) . (39)

For simplicity, we consideo, = ¢ (a constant)l=1,2,...N, then from (39) we have

=9 21 (40)

1_0.N+l !

By prescribing the total number of mesh points toNbe2), we can compute the value of
h; from (40). This is the first mesh spacing on the Iéthe boundary and the remaining
mesh is determined blg,, =oh, [=1,2,...N. Throughout our computation we choose
the values ofo [ (% (\/5—1), %(\/§+1)), which have already been reported in the section
2. We have considered+1 =8, 16, 32, 64 as the total number of grid points in
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direction. In order to obtain numerical solutiort at1.0, it is required to choose the time
stepk = 02/(N+1)?, 04/(N+1)*, 08/(N+1)?, 1L6/(N+1)*, 32/(N+1)?,...etc.
Throughout our computation we use the large time #epl.6/(N +1)*. For N+1 = 8,
16, 32, and 64, the valueslof L6/(N +1)* become, &5, 5, and & respectively,

that is, we require 40, 160, 640 and 2560 time steps respectivedyptain numerical
solution att = 1.0.

0°u adu)_du
or? r or ot

Problem 1: v( +=—|=—+f(r,t), 0<r< 1, t>0. (41),

with f (r,t) chosen appropriately so that the exact solutiogivien by u=e™ coskhr.
The root mean square (RMS) errors foratt = 1.0 are tabulated in Tablel for a fixed
c=1.20 (% (5-1),1(\/5 +1)) ando =1, 2 and various values of

Table 1: The RMS errors

OK°h "+kh+h?)-Cubic Spline Method O(K°hy*+kh+h)-Finite Difference Method
(N+1)
a=1 a=2 a=1 a=2

v=0.01 v=0.001 +v=0.01 v=0.001 v=0.01 v=0.001 +v=0.01 v=0.001
8 2905(-03) .6624(-04) .5898(-03) .1724(-03) .3344(-03) .8602(-04) .6998(-03) .2329(-03)
16 3314(-04) .1162(-04) .5676(-04) .2384(-04) .3370(-04) .1276(-04) .6012(-04) .2440(-04)
32 .6282(-05) .7744(-06) .1576(-04) .1812(-05) .6333(-05) .7859(-06) .1634(-04) .1848(-05)
64 4989(-05) .5299(-06)  .1439(-04) .1443(-05) .5054(-05) .5364(-06) .1518(-04) .1521(-05)

0°u _0u  0du .
Problem 2: VF :E + ua— , 0x<1,t>0. (Burgers’ Equation) (42)
X X

v sin(rx) e
2+ COoS(K) eVt
the Reynolds number. The RMS errors for att = 1.0 are tabulated in Tahk for a
fixed o = 0.750 (% (5-1,1(/5 +1)) and various values OR..

where R, =v™* >0 is called

The exact solution is given byu(x,t) =
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Table 2: The RMS errors

OK°h "+kh+h?)-Cubic Spline Method

O(K°hy*+kh+h)-Finite Difference Method

(N+1)
R=1.0 R=10 R=10 R=10° R=1.0 R=10 R=10 R=10°

8  .3344(-05) .1513(-03) .1699(-04) .2261(-06) .2952(-28)0(-03) .1720(-04) .2310(-06)

16  .8463(-06) .4479(-04) .5762(-05) .7468(-07) .1060(-0B99(-03) .5783(-05) .7523(-07)

32  .7439(-06) .2859(-04) .3663(-05) .4800(-07) .8897(-6895(-04) .3726(-05) .4831(-07)

64  .5421(-06) .2001(-04) .2583(-05) .3306(-07) 7822(48)5(-04) .2612(-05) .3386(-07)
2

Problem 3: %:g—l:+au%+ f(xt), Oxx<1,t>0. (Non-linear Equatioh (43),
X

with f(x,t) chosen appropriately so that the exact soluagivien by u(x,t) = €'sin(7x).
The RMS errors foru att = 1.0 are tabulated in Tab for a fixedo = 1.35

0 (% (5-1,1(/5 +1)) and various values of.

Table 3: The RMS errors
OK°h"+kh+h?)-Cubic Spline Method

OK°h"+kh+h?)-Finite Difference Method

(N+1)

a=10 a =50 a =100 a=10 a =50 a =100
8 0.4118(-03) 0.1366(-03) 0.1883(-02) 0.4277(-03) 0.1397(-03) 0.1870(-02)
16 0.2252(-03) 0.4400(-04) 0.1002(-02) 0.2372(-03) 0.4405(-04) 0.1005(-02)
32 0.1577(-03) 0.3021(-04) 0.6800(-03) 0.1617(-03) 0.3071(-04) 0.6820(-03)
64 0.1002(-03) 0.2012(-04) 0.4705(-03) 0.1134(-03) 0.2155(-04) 0.4783(-03)

6. CONCLUDING REMARKS

Using three spatial variable mesh points (see Bigwe have developed a new two level
implicit method of O(k?h, T kh + h|3) based on cubic spline polynomial approximation

for the solution of the non-linear parabolic pdrtidferential equation (1). Although the
proposed variable mesh cubic spline method invaivere algebra, we do not require
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fictitious points near the boundaries to solve simgp&rabolic equations. The

proposed method when applied to a linear equation is stmt@ unconditionally stable
with respect to initial values. The numerical resuiidicate that the proposed variable
mesh cubic spline method is computationally slightlytdsethan the corresponding

variable mesh finite difference method ©tk*h ™ +kh +h°), but numerical oscillation

do not appear for large values Bf or a.
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