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ABSTRACT: In the paper, a fully discrete Multistep characteristic finite volume element method

is introduced and analyzed for approximating the solution of a nonlinear-hyperbolic equation in

2-space variables. Piecewise quadratic trial functions and piecewise constant test functions are used

to finally obtain error estimate O(∆t2 + h2). A numerical experiment is given which showed the

method is practicable.
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1. INTRODUCTION

In this paper, we are concerned with numerical approximation to the following

two-dimensional generalized nerve conduction equation:

(1.1) utt + b(x, u, ut)∇ut −△ut −△u = f(u)ut − g(u), x ∈ Ω, t ∈ J

(1.2)
∂u

∂n
=
∂ut

∂n
= 0, x ∈ ∂Ω, t ∈ J

(1.3) u(x, 0) = u0(x), ut(x, 0) = w0(x), x ∈ Ω

where Ω = [0, 1]2, J = [0, T ], ∂Ω denotes the boundary of Ω, b(x, u, ut) = {b1(x, u, ut),

b2(x, u, ut)}, u0 and w0 are assumed to be enough smooth functions.

We make the following physical assumption (A):

(i) f(s), g(l) and bi(x, s, l) (i = 1, 2) are bounded, and ε-continuous with respect

to s and l respectively. We give the definition of ε-continuous function f(s): When

|s1−s2| ≤ ε, there exists a positive constant L, such that |f(s1)−f(s2)| ≤ L|s1−s2|.

(ii) u ∈ C2(Ω × J) ∩ L∞(W 3
∞)
⋂
L2(H3(Ω)), ut ∈ L2(H3(Ω))

⋂
L∞(W 3

∞), utt ∈

L2(H3(Ω))
⋂
L2(L∞(Ω)), uttt ∈ L2(L2(Ω))
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The finite volume elements, which can be termed as the generalized difference

methods, are viewed as a new approach of numerical discretization for partial dif-

ferential equation [1–2]. Since their constructions are similar to those of some finite

difference methods and their convergence can be analyzed in the framework of finite

element methods, the finite volume element methods enjoy not only the simplicity

of difference methods but also the accuracy of finite elements. Meanwhile, the finite

volume element methods maintain the (local) mass conservation law. Consequently

they have been widely used in many practical computations and extensively studied

in theory. On the other hand, in many case discrete scheme derived in terms of finite

volume element methods is asymmetric, it brings us many difficulties in both theoreti-

cal research and realistic computations. It is usually necessary for us to seek for some

suitable technique that can transform the asymmetric scheme into symmetric one.

There are many results about finite volume element methods for elliptic problems

and parabolic problems [3–5].

In the process of nerve conduction, nerve conduction signal u and its variability

with respect to time and space can be characterized the two-dimensional pseudohy-

perbolic equation [6] in Mathematics. It is a class of important nonlinear evolution

equation of much current interest. There are some results about the equations [7–

9]. Since generalized nerve conduction equations can describe lots of physical phe-

nomenons and possess strong physical background, thus it is important for us to

develop the studies across-the-board and deeply either from the theoretical point of

view or from the numerical analysis and practical point of view.

In the present paper, the generalized nerve conduction equation is regarded as

a model problem and characteristic direction method is applied to deal with one-

order hyperbolic part of the equation in the process of scheme construction. The

trial function space is chosen as the quadratic element space of lagrangian type. The

primary advantages of this scheme is that: First, it involves only three time levels

for the pseudohyperbolic equation. Second, the estimate of ut is obtained at the

same time. Since ut is also an important physical parameter in practice, this scheme

avoids arising two times error by using the common characteristic difference method

to approximate u at first, then to approximate ut. Finally, we obtain the desired

O(∆t2 +h2) error bound. It is important that the accuracy on the temporal direction

is improved O((∆t)2) for large scale science and engineering computing problem.

The rest of this paper is organized as follows: In section 2, we present a full-

discrete multistep characteristic finite volume element scheme while introducing some

notations. In section 3, we give some preliminaries. The error estimates are presented

in section 4. In section 5, we carry out numerical experiments to observe the perfor-

mance of the proposed scheme. The letter c and C will be generic positive constants

and may be different each time they are used, ε will be an arbitrarily small positive

constant.
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2. FULL-DISCRETE MULTISTEP CHARACTERISTIC FINITE

VOLUME ELEMENT SCHEME

Let v = ut in (1.1), in order to construct finite volume element scheme, added

ut = v to the both sides of (1.1). Then (1.1) can be written as

(2.1) vt + b(x, u, v)∇v −△v −△u+ ut = H(u, v), x ∈ Ω, t ∈ J

(2.2) ut = v, x ∈ Ω, t ∈ J

where H(u, v) = (f(u) + 1)v − g(u).

The initial and boundary condition are given by

(2.3)
∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t ∈ J

(2.4) u(x, 0) = u0(x), v(x, 0) = w0(x), x ∈ Ω

At first, in order to attain very high accuracy and use larger time step we apply

characteristic direction method to deal with the first two terms of (2.1):

Let Ψ(x, u, v) =
√

1 + |b(x, u, v)|2, here we make a convention that τ is defined

as the characteristic direct of Ψ ∂
∂τ

= ∂
∂t

+ b(x, u, v)∇. We have

Ψ
∂v

∂τ
=
∂v

∂t
+ b(x, u, v)∇v

Then (2.1) can be rewritten as Ψ∂v
∂τ

−△v −△u+ ut = H(u, v).

Now, let N denotes a positive integer such that N∆t = T , tn = n∆t and ∆t =

tj+1 − tj, and for a sequence ϕj(j = 1, 2, . . . , N), define ϕj = ϕ(tj), δϕj = ϕj − ϕj−1,

δ2ϕj = ϕj − 2ϕj−1 + ϕj−2, Eϕj+1 = ϕj+1 − δ2ϕj+1 and ∂tϕj = δϕj/∆t.

As far as Ψ∂v
∂τ

is concerned, we consider the standard multistep backward dif-

ference quotient error approximation in the parameter τ [10] along the characteristic

direction.

(2.5) ψ(x, un+1, vn+1)
∂v

∂τ
(x, tn+1)

.
=

3v(x, tn+1) − 4v(x̃, tn) + v(˜̃x, tn−1)

2∆t

where x̃ = x− b(x, un+1, vn+1)∆t, ˜̃x = x− 2b(x, un+1, vn+1)∆t

Subsequently, we need briefly explain some standard notation from this paper.

Setting Th be a quasi-uniform triangulation of Ω, Th consists of finite number of tri-

angular elements KQ. Q being the barycenter of triangle. Suppose that maximum

angle of each element of triangulation Th is not greater that π
2
, and that the ra-

tio γ of the lengths of two sides of the maximum angle satisfies γǫ[
√

2
3
,
√

3
2
]. The

corresponding dual decomposition of Th is denoted by T ∗
h , their detailed construc-

tion(see figure 1)is as follows: (i) Construction of K∗
P0

, suppose that p0ǫΩh(Ωh de-

notes the set of the vertexes of all the triangular elements), p0i is a point on p0pi such

that p0p0i = 1
3
p0pi, connect successively p0i to obtain a polygon K∗

p0 surrounding p0;



484 Z. ZHANG AND Z. WANG

(ii) Construction of K∗
m, let m be midpoint of a common side of two adjacent trian-

gular elements. A polygon K∗
m surrounding m is obtained by connecting successively

p20Q03Q2Q23p02Q12Q1Q01p20 where Q01 denotes the midpoint of p20p21, Other points

are also similar. All the dual elements constitute the dual decomposition T ∗
h .
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Figure 1. Left: Portion of triangulation sharing a common vertex

P0 and its control volume; Right: Portion of two adjacent triangular

elements sharing a midpoint of a common sidem and its control volume.

The trial function space
⊔

h is chosen as the lagrangian quadratic element space

related to Th, the corresponding basis function are the piecewise quadratic polynomi-

als. The test function space
∨

h is taken as the piecewise constant function space on

T ∗
h .

Let πh : H1 →
⊔

h, then by the interpolation theory of sobolev spaces [11], we

obtain

(2.6) ‖u− πhu‖j ≤ Ch3−j‖u‖3 j = 0, 1, 2, u ∈ H3(Ω)

We define the interpolation operator π∗
h :
⊔

h −→
∨

h by

(2.7) π∗
huh =

∑

p

uh(p)χp +
∑

m

uh(m)χm

where χp and χm are respectively taken as the characteristic function corresponding

to K∗
p and K∗

m.

Define aK(u, w), AK(u, v, w) as follows:

(2.8) aK(u, w) = −
∑

l=i,j,k

[w(pl)

∫

el

∇u · nds+ w(ml)

∫

El

∇u · nds]

(2.9) AK(u, v, w) = −
∑

l=i,j,k

[w(pl)

∫

el

∇(u+ v) · nds+ w(ml)

∫

El

∇(u+ v) · nds]

where w ∈
∨

h, (u, v) ∈ H1(K) ×H1(K)
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See figure 2, el = pl,l+1pll+2, El = pl+2l+1Ql+2QQl+1pl+1l+2 ∀KǫTh where i+1 = j,

j + 1 = k, k + 1 = i, n is the unit outer normal vector on the boundary. Note that

a(u.w) =
∑
K

aK(u, w), A(u, v, w) =
∑
K

AK(u, v, w).
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Figure 2. triangular element K

Before presenting three discrete norms [11], we introduce two vectors onK related

to uh ∈
⊔

h.

(2.10) (uh)0,K = (uh(pi), uh(pj), uh(pk), uh(mi), uh(mj), uh(mk))
⊤

(uh)1,K = (uh(pi) − uh(mi), uh(pj) − uh(mj), uh(pk) − uh(mk),

uh(mi) − uh(mj), uh(mi) − uh(mk))
⊤(2.11)

(2.12) ‖uh‖
2
0,h =

∑

K

‖uh‖
2
0,h,K =

∑

K

m(K)

1944
(uh)

⊤
0,KB(uh)0,K

(2.13) |uh|
2
1,h =

∑

K

|uh|
2
1,h,K =

∑

K

(uh)
⊤
1,K(uh)1,K

(2.14) ‖uh‖
2
1,h = ‖uh‖

2
0,h + |uh|

2
1,h

where B = (bij)6×6 is a given symmetric positive definite matrix in [12].

Finally, setting t = tn+1, then the corresponding variational problem for (2.1)

and (2.2) is:

((vt)n+1 + b(x, un+1, vn+1) · ∇vn+1 + (ut)n+1, χ)

+ A(un+1, vn+1, χ) = (H(un+1, vn+1), χ)(2.15)

(2.16) ((ut)n+1, χ) = (vn+1, χ)

where ∀χ ∈
∨

h.
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At the same time, one sees that the full discrete multistep characteristic finite

volume element schemes for (2.1) and (2.2) read as: find Un+1, Vn+1 ∈
⊔

h (1 ≤ n ≤

N − 1), such that
(
Vn+1 − V̂n

∆t
, χ

)
+

2

3

(
3Un+1 − 4Un + Un−1

2∆t
, χ

)
+

2

3
A(Un+1, Vn+1, χ)

=
2

3
(H(Un+1, EVn+1), χ) +

1

3


 V̂n −

̂̂
V n−1

∆t
, χ


(2.17)

(2.18)

(
3Un+1 − 4Un + Un−1

2∆t
, χ

)
= (Vn+1, χ)

where χ ∈
∨

h, V̂n = Vn(x̂) = Vn(x − b(x, Un+1, EVn+1)∆t),
̂̂
V n−1 = Vn−1(̂̂x) =

Vn−1(x− 2b(x, Un+1, EVn+1)∆t).

Assure that U0 and V0 respectively denote some approximation of u0 and v0 in⊔
h, satisfying:

(2.19) (U0 − u0, χ) = 0, (V0 − w0, χ) = 0

It should be pointed out that [7] if x̂ (or ̂̂x) stays out of Ω, then using mirror

reflection technique, we can find the symmetric point x∗ of x̂ (or ̂̂x) with respect to

∂Ω. At this time, we require V̂n (or
̂̂
V n) = Vn(x∗).

3. PRELIMINARIES

Lemma 3.1. ∀uh ∈
⊔

h, there exists positive constants c1 and c2 independent of h,

such that

(3.1) c1‖uh‖0,h ≤ ‖uh‖0 ≤ c2‖uh‖0,h

(3.2) c1|uh|1,h ≤ |uh|1 ≤ c2|uh|1,h

(3.3) c1‖uh‖0,h ≤ ‖π∗
huh‖0 ≤ c2‖uh‖0,h

Lemma 3.2. ∀uh ∈
⊔

h, there exists a positive constant α, such that,

(3.4) a(uh, π
∗
huh) ≥ α|uh|

2
1,h

(3.5) a(uh, π
∗
huh) ≥ α|uh|

2
1,h

where uh ∈
⊔

h, we introduce a one-to-one operator mapping uh to uh, such that for

any triangular element K, a relationship between uh and uh always holds: (uh)0,K =

D(uh)0,K, D = (dij)6×6 is a non-singular matrix defined in [10] and uh and vh satisfy

(vh, π
∗
huh) =

∑
K

m(K)
1944

(vh)
⊤
0,KB(uh)0,K.

For the proof of the above two lemma, we can refer to [12] [13].
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Theorem 3.3 (the trace theorem [14]). Suppose that Ω is a bounded region with a

lipschitz continuous boundary ∂Ω, then there exists a positive constant C such that,

(3.6) ‖u‖L2(∂Ω) ≤ C‖u‖
1

2

L2(Ω) · ‖u‖
1

2

H1(Ω), ∀u ∈ H1(Ω)

Lemma 3.4 ([15]). ∀uh ∈
⊔

h

(3.7) ‖uh‖0,h ≤ C‖uh‖0,h

(3.8) ‖π∗
huh‖0 ≤ C‖uh‖0

(3.9) |uh|1,h ≤ C|uh|1,h

Proof: Using the relation of uh and uh, the identity (2.12) and the positive

definite matrix B, finally we both obtain a positive definite quadratic form related

to the vector (uh)0,K . Thus ‖uh‖0,h is equivalent with ‖uh‖0,h, there exists a positive

constant C, such that ‖uh‖0,h ≤ C‖uh‖0,h. Then ‖π∗
huh‖0 ≤ C‖uh‖0,h, ‖uh‖0,h ≤

C‖uh‖0,h. The desired result follows from the two inequality, this completes the proof

of (3.8).

By the elliptic condition (3.4), there exists a positive constant M, such that

|uh|
2
1,h,K ≤ 1

α
aK(uh, π

∗
huh) = M

αm(K)
(uh)

⊤
1,KG(uh)1,K where G = (hij)5×5 and is a matrix

defined in [12], moreover |hij| ≤ b ·m(K). Let b be a fixed positive constant, m(K)

denotes area of triangular element K. Clearly we use holder inequality to obtain
M

αm(K)
(uh)

⊤
1,KG(uh)1,K ≤ C|uh|1,h,K |uh|1,h,K

By the above two estimate, it is an easy matter to deduce that |uh|1,h,K ≤

C|uh|1,h,K, this completes the proof of (3.9).

Lemma 3.5. ∀uh, wh, vh ∈
⊔

h

(3.10) |A(u, w, π∗
hvh) −A(uh, w, π

∗
hvh)| ≤ C(h2‖u‖3 + |πhu− uh|1)|vh|1,h

(3.11) |A(u, w, π∗
hvh) − A(u, wh, π

∗
hvh)| ≤ C(h2‖w‖3 + |πhw − wh|1)|vh|1,h

Proof: AK(u, w, π∗
hvh)−AK(uh, w, π

∗
hvh) = −

∑
l=i,j,k

[
(vh(ml+2)−vh(pl))

∫
Qlpll+1

∇(u−

uh)·nds+(vh(pl)−vh(ml+1))
∫

Qlpl,l+1
∇(u−uh)·nds+(vh(ml+2)−vh(ml+1))

∫
QQl

∇(u−

uh) · nds
]

Applying holder inequality, the trace theorem (3.6), together with interpolation

estimate and inverse property of finite element methods, we deduce that

|

∫

Qlpll+1

∇(u− uh) · nds|

≤

∫

Qlpll+1

|∇(u− πhu) · n|ds+

∫

Qlpll+1

|∇(πhu− uh) · n|ds

≤ h
1

2 (‖∇(u− πhu)‖L2(Qlpll+1)
+ ‖∇(πhu− uh)‖L2(Qlpll+1)

)
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≤ h
1

2 (‖u− πhu‖
1

2

H1(K) · ‖u− πhu‖
1

2

H2(K)

+‖∇(πhu− uh)‖
1

2

L2(K) · ‖∇(πhu− uh)‖
1

2

H1(K))

≤ C(h2‖u‖3,K + |πhu− uh|1,K)

It is obvious that |vh(ml+2) − vh(pl)| ≤ |vh|1,h,K ≤ C|vh|1,h,K . By the similar

technique, error estimate of other terms can easily establish, thus we further have the

following result: |A(u, w, π∗
hvh) − A(uh, w, π

∗
hvh)| ≤ C(h2‖u‖3 + |πhu − uh|1)|vh|1,h.

An argument similar to the one in the above case implies that |A(u, w, π∗
hvh) −

A(u, wh, π
∗
hvh)| ≤ C(h2‖w‖3 + |πhw − wh|1)|vh|1,h. This completes the proof.

Lemma 3.6. Suppose that positive integer R is not greater than N , ∀ u ∈
⊔

h, then

the following estimate [10] holds:

(3.12) ∆t

R−1∑

l=1

(∂tul, π
∗
hul+1) ≤

3

2

R−1∑

l=1

‖δul+1‖
2
0,h + ‖uR‖

2
0,h + C(‖u1‖

2
0,h + ‖u0‖

2
0,h)

4. ERROR ESTIMATES

Note that U − u = σ − η, V − v = ξ − θ, where σ = U − πhu, η = u − πhu,

ξ = V −πhv, θ = v−πhv. Subtracting (2.15) from (2.17) and using (2.16) and (2.18),

we have

2

3
a(ξn+1, χ) +

(
ξn+1 − ξn

∆t
, χ

)
=



4ξ̂n − 3ξn −
̂̂
ξn−1

3∆t
, χ



+



3θn+1 − 4θ̂n +
̂̂
θn−1

3∆t
, χ





(4.1)

−
2

3
(ξn+1 − θn+1, χ) +

(
2

3
((vt)n+1 + b(x, Un+1, EVn+1) · ∇vn+1) −

vn+1 − v̂n

∆t

+
1

3

v̂n − ̂̂vn−1

∆t
, χ

)
+

2

3
[A(Un+1, θn+1, χ) + (A(un+1, vn+1, χ) − A(Un+1, vn+1, χ))]

+
2

3
(H(Un+1, EVn+1) −H(un+1, vn+1), χ) +

2

3
((b(x, un+1, vn+1) − b(x, Un+1,

EVn+1)) · ∇vn+1, χ) =

7∑

i=1

T n+1
i (χ)

Subtracting (2.16) from (2.18) yields

3

2

(
σn+1 − σn

∆t
, χ

)
=

1

2

(
σn − σn−1

∆t
, χ

)
+

3

2

(
ηn+1 − ηn

∆t
, χ

)
−

1

2

(
ηn − ηn−1

∆t
, χ

)(4.2)

+ (ξn+1 − θn+1, χ) −

(
3un+1 − 4un + un−1

2∆t
− (ut)n+1, χ

)
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The following estimate result, which can be easily proved, will be used in our analysis.

(4.3) ‖
wn+1 − wn

∆t
‖2

0 ≤ ‖
1

∆t

∫ tn+1

tn

wtdt‖
2
0 ≤

1

∆t
‖wt‖

2
L2((tn,tn+1),L2)

Taking χ = ∆tπ∗
hσn+1 in (4.2) and summing from n = 1 to R − 1, then we will use

different technique to deal with every term in the right hand side of the equality (4.2).

For the first term, it follows from lemma(3.6) and initial value condition(B) that

1

2

R−1∑

n=1

(
σn − σn−1

∆t
,∆tπ∗

hσn+1) ≤
3

4

R−1∑

n=1

‖δσn+1‖
2
0,h +

1

2
‖σR‖

2
0,h(4.4)

+C(h4 + ∆t4)

By (4.3) and (2.6), we can obtain

3

2

R−1∑

n=1

(
ηn+1 − ηn

∆t
,∆tπ∗

hσn+1) ≤ C(h4 + ∆t
R−1∑

n=1

‖σn+1‖
2
0)(4.5)

1

2

R−1∑

n=1

(
ηn−1 − ηn

∆t
,∆tπ∗

hσn+1) ≤ C(h4 + ∆t
R−1∑

n=1

‖σn+1‖
2
0)(4.6)

Using (2.6), we see that

(4.7)
R−1∑

n=1

(ξn+1 − θn+1,∆tπ
∗
hσn+1) ≤ C(h4 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0 + ∆t

R−1∑

n=1

‖σn+1‖
2
0)

In terms of Taylor expansion with integral remainder, we can arrive at:

−
R−1∑

n=1

(
3un+1 − 4un + un−1

2∆t
− (ut)n+1,∆tπ

∗
hσn+1) =

3

2
∆t

R−1∑

n=1

((ut)n+1 −
un+1 − un

∆t
(4.8)

+
1

3
(
un − un−1

∆t
− (ut)n+1), π

∗
hσn+1) ≤ C(∆t4 + ∆t

R−1∑

n=1

‖σn+1‖
2
0)

In the following, the left hand side of (4.2) is easily shown that

3

2

R−1∑

n=1

(
σn+1 − σn

∆t
,∆tπ∗

hσn+1) =
3

2

R−1∑

n=1

(δσn+1, π
∗
hσn+1) =

3

4

R−1∑

n=1

[(δσn+1, π
∗
hσn+1)(4.9)

+(σn+1, π
∗
hδσn+1)] =

3

4

R−1∑

n=1

(‖δσn+1‖
2
0,h + ‖σn+1‖

2
0,h − ‖σn‖

2
0,h)

By virtue of (4.4)-(4.9), we have

(4.10) ‖σR‖
2
0 ≤ C(h4 + ∆t4 + ‖σ1‖

2
0 + ∆t

R−1∑

n=1

‖σn+1‖
2
0 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0)

At the same time, choosing χ = ∆tπ∗
hξn+1

in (4.1), we show the estimate of two-hand

sides of (4.1) and sum from n = 1 to R− 1.
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It can be easily verified [16] that ‖ ξk−
bξk

∆t
‖0 ≤ C‖ξk‖1, ‖

ξk−
bbξk

∆t
‖0 ≤ C‖ξk‖1, while

using lemma (3.6) and initial value condition (B), we obtain

R−1∑

n=1

T n+1
1 (∆tπ∗

hξn+1
) = ∆t

R−1∑

n=1


4ξ̂n − 3ξn −

̂̂
ξn−1

3∆t
, π∗

hξn+1




(4.11)

= ∆t

R−1∑

n=1



4

3

(
ξ̂n − ξn

∆t
, π∗

hξn+1

)
+

1

3

(
ξn − ξn−1

∆t
, π∗

hξn+1

)
+

1

3



ξn−1 −
̂̂
ξn−1

∆t
, π∗

hξn+1









≤ C∆t
R−1∑

n=1

(‖ξn‖1 + ‖ξn−1‖1) · ‖ξn+1‖0 +
1

2

R−1∑

n=1

‖δξn+1‖
2
0,h

+
1

3
‖ξR‖

2
0,h + C(‖ξ1‖

2
0,h + ‖ξ0‖

2
0,h)

≤ C

(
h4 + ∆t4 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0

)
+ ε∆t

R−1∑

n=1

‖ξn+1‖
2
1

+
1

2

R−1∑

n=1

‖δξn+1‖
2
0,h +

1

3
‖ξR‖

2
0,h

As for the second term, integrating (4.3), (2.6) with ‖
θk−1−

bbθk−1

∆t
‖0 ≤ C‖θk−1‖1, we

have the following results.

R−1∑

n=1

T n+1
2 (∆tπ∗

hξn+1
) = ∆t

R−1∑

n=1


3θn+1 − 4θ̂n +

̂̂
θn−1

3∆t
, π∗

hξn+1


(4.12)

= ∆t

R−1∑

n=1

(
θn+1 − θn

∆t
, π∗

hξn+1
) +

4

3
∆t

R−1∑

n=1

(
θn − θ̂n

∆t
, π∗

hξn+1

)

+
1

3
∆t

R−1∑

n=1

(
θn−1 − θn

∆t
, π∗

hξn+1

)
+

1

3
∆t

R−1∑

n=1



̂̂
θn−1 − θn−1

∆t
, π∗

hξn+1




≤ C

(
h4 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0

)

Deduce by an similar estimate in (4.7), we obtain

(4.13)
R−1∑

n=1

T n+1
3 (∆tπ∗

hξn+1
) = −

2

3
∆t

R−1∑

n=1

(ξn+1 − θn+1, π
∗
hξn+1

) ≤ C

(
h4 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0

)

Set ψ(x, Un+1, EVn+1) = (1 + |b(x, Un+1, EVn+1)|
2)

1

2 , the characteristic direction cor-

responding to ∂
∂t

+ b(x, Un+1, EVn+1) · ∇ is denoted by τ(x, Un+1, EVn+1), we can get

ψ
∂vn+1

∂τ
=
∂vn+1

∂t
+ b(x, Un+1, EVn+1) · ∇vn+1
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Analogous to (4.8), we consider Taylor expansion and have that

R−1∑

n=1

T n+1
4 (∆tπ∗

hξn+1
) = ∆t

R−1∑

n=1

(
ψ

(
∂vn+1

∂τ
−
vn+1 − v̂n

ψ∆t

)
−

1

3
ψ

(
∂vn+1

∂τ
−
v̂n − ̂̂vn−1

ψ∆t

)
,

(4.14)

π∗
hξn+1

)
≤ C∆t

R−1∑

n=1

(
‖

1

∆t

∫ (x,tn+1)

(bx,tn)

(|x(τ) − x̂|2 + (t(τ) − tn)2)
∂3v

∂τ 3
dτ‖0

+ ‖
1

∆t

∫ (x,tn+1)

(bbx,tn−1)

(|x(τ) − ̂̂x|2 + (t(τ) − tn−1)
2)
∂3v

∂τ 3
dτ‖0

)
· ‖ξn+1‖0

≤ C

(
∆t4 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0

)

We use lemma (3.5), ∆t = O(h3) and inverse property of finite element to con-

clude that

R−1∑

n=1

T n+1
5 (∆tπ∗

hξn+1
) =

2

3
∆t

R−1∑

n=1

[A(Un+1, θn+1, π
∗
hξn+1

) + (A(un+1, vn+1, π
∗
hξn+1

)

(4.15)

− A(Un+1, vn+1, π
∗
hξn+1

))] ≤ C

(
h4 + h

R−1∑

n=1

‖σn+1‖
2
0

)
+ ε∆t

R−1∑

n=1

‖ξn+1‖
2
1

In further analysis, we need two hypothesis (C) as follows:

(1) There exists a positive constant M, such that

sup
1≤n≤R−1

‖EVn+1‖0,∞ ≤M

(2) ε0 > 0, when ∆t and h are sufficiently small, we have

sup
1≤n≤R−1

‖vn+1 −EVn+1‖0,∞ ≤ ε0

We will employ mathematical induction to proof the above (1) and (2). For

n = 1, combing inverse property and interpolation estimate of finite element method,

together with initial value condition (B) and ∆t = O(h3), as a result, we can obtain

‖EV2‖0,∞ ≤ 2‖v1 −V1‖0,∞ + ‖v0 −V0‖0,∞ +2‖v1‖0,∞ + ‖v0‖0,∞ ≤M ‖v2 −EV2‖0,∞ ≤

C(‖v2 − 2v1 + v0‖0,∞ + 2‖v1 − V1‖0,∞ + ‖v0 − V0‖0,∞ ≤ C1∆t
2 + C2h+ C3h ≤ ε0

Assume that

sup
1≤n≤R−2

‖EVn+1‖0,∞ ≤M, sup
1≤n≤R−2

‖vn+1 − EVn+1‖0,∞ ≤ ε0

then we give the proof for

sup
1≤n≤R−1

‖EVn+1‖0,∞ ≤M, sup
1≤n≤R−1

‖vn+1 − EVn+1‖0,∞ ≤ ε0

while taking into account error estimates of the other terms.
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For sufficiently small ∆t and h, a combination of assumption (A) and (C) results

in |H(un+1, vn+1)−H(Un+1, EVn+1)| ≤ (1+ |f(un+1)|) · |vn+1−EVn+1|+(L1|EVn+1|+

L2) · |un+1−Un+1| ≤ C(|un+1−Un+1|+ |vn−Vn|+ |vn−1−Vn−1|+ |vn+1−2vn +vn−1|).

This together with initial value condition (B) yields

R−1∑

n=1

T n+1
6 (∆tπ∗

hξn+1
) = ∆t

R−1∑

n=1

(H(Un+1, EVn+1) −H(un+1, vn+1), π
∗
hξn+1

)(4.16)

≤ C(h4 + ∆t4 + ∆t

R−1∑

n=1

‖σn+1‖
2
0 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0)

Noticing that bi(x, l, s) is ε−continuous with respect to l and s respectively. It leads

to |b(x, un+1, vn+1) − b(x, Un+1, EVn+1)| ≤ L1|un+1 − Un+1| + L2|vn+1 − EVn+1| ≤

C(|un+1 −Un+1|+ |vn −Vn|+ |vn−1 −Vn−1|+ |vn+1 − 2vn + vn−1|) which together with

(2.6) and initial value condition (B) implies

R−1∑

n=1

T n+1
7 (∆tπ∗

hξn+1
) = ∆t

R−1∑

n=1

(b(x, un+1, vn+1) − b(x, Un+1, EVn+1), π
∗
hξn+1

)(4.17)

≤ C

(
h4 + ∆t4 + ∆t

R−1∑

n=1

‖σn+1‖
2
0 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0

)

Now we turn to the error estimate in the left-hand side terms of (4.1).

To estimate the first term, note that poincare inequality and (3.5), we obtain

(4.18)
2

3
∆t

R−1∑

n=1

a(ξn+1, π
∗
hξn+1

) ≥ C∆t
R−1∑

n=1

‖ξn+1‖
2
1

The proof of the second term parallels to that of (4.9), we have

(4.19)

R−1∑

n=1

(
ξn+1 − ξn

∆t
,∆tπ∗

hξn+1
) =

1

2
[

R−1∑

n=1

‖δξn+1‖
2
0,h + ‖ξR‖

2
0,h − ‖ξ1‖

2
0,h]

Collecting (4.11)-(4.19) and (4.10), let ∆t and h be sufficiently small, we can get

‖σR‖
2
0 + ‖ξR‖

2
0 + ∆t

R−1∑

n=1

‖ξn+1‖
2
1 ≤ C(h4 + ∆t4 + ‖ξ1‖

2
0 + ‖σ1‖

2
0(4.20)

+(h + ∆t)
R−1∑

n=1

‖σn+1‖
2
0 + ∆t

R−1∑

n=1

‖ξn+1‖
2
0)

Consequently, the discrete Gronwall inequality argument and initial value condition

(B) produce

(4.21) ‖σR‖
2
0 + ‖ξR‖

2
0 + ∆t

R∑

n=0

‖ξn‖
2
1 ≤ C(∆t4 + h4)
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Combining (4.21) with (2.6) leads to

(4.22) sup
0≤n≤R

(‖un − Un‖
2
0 + ‖vn − Vn‖

2
0) + ∆t

R∑

n=0

‖vn − Vn‖
2
1 ≤ C(h4 + ∆t4)

where the positive integer R is not greater that N. It remains to check the induction

hypothesis (1) and (2).

For n = R− 1, ‖EVR‖0,∞ ≤ 2‖vR−1 −VR−1‖0,∞ + ‖vR−2 −VR−2‖0,∞ +2‖vR−1‖0,∞

+‖vR−2‖0,∞ ≤ C1+C2h ≤M ‖vR−EVR‖0,∞ ≤ C(‖vR−2vR−1 +vR−2‖0,∞+2‖vR−1−

VR−1‖0,∞ + ‖vR−2 − VR−2‖0,∞ ≤ C1∆t
2 + C2h ≤ ε0

Theorem 4.1. Let u, v be the solutions to problem (2.1)–(2.4), {Uk}
N
k=0, {Vk}

N
k=0 to

the multistep finite volume element scheme (2.17)–(2.19). Suppose that initial value

Ui and Vi (i = 0, 1) satisfy the conditions (B), i.e.,

1∑

i=0

(‖Ui − πhui‖0 + ‖Vi − πhvi‖0 + ∆t
1

2‖Vi − πhvi‖1) ≤ C(∆t2 + h2)

if partition parameters satisfy ∆t = O(h3), provided initial assumption (A) is satis-

fied, then for sufficiently small ∆t and h, the following error estimate holds

(4.23) sup
0≤k≤N

(‖uk − Uk‖0 + ‖vk − Vk‖0) + (∆t
N∑

k=0

‖vk − Vk‖
2
1)

1

2 ≤ C(∆t2 + h2)

5. NUMERICAL EXPERIMENT

The multistep finite volume element method is used to approximate the following

nonlinear hyperbolic equation :

utt −△ut −△u = r(x, t), x ∈ Ω = (0, π) × (0, π), t ∈

(
0,

1

2

]

u(x, 0) = sin 2x1 sin x2, ut(x, 0) = − sin 2x1 sin x2, x ∈ Ω

u = 0, ut = 0, x ∈ ∂Ω, t ∈

(
0,

1

2

]

where the true solution u = e−t sin 2x1 sin x2, r(x, t) = u = e−t sin 2x1 sin x2.

To obtain numerical solution of this problem, we place over Ω = [0, π] × [0, π]

10 × 10 = 100 uniform squares, ending up with a square mesh; then we further

decompose it into right triangulation by drawing the dragonal of each small square.
π
10

and 0.1 respectively denote space mesh size h and time step size ∆t.

Three methods are used to solve that problem.

(1) The multistep characteristic finite volume element method on triangular

meshes denoted by CMTFVM.

(2) The one-step characteristic finite volume element method on triangular meshes

denoted by COTFVM
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(3) The multistep bilinear finite volume element method along characteristics on

quadrilateral networks denoted by CQFVM.

The numerical results are presented in the following tables.

Table 1. The comparison among CMTFVM, COTFVM and CQFVM about u,

T = 0.3

CMTFVM COTFVM CQFVM TS

Uh Uh Uh u

(4
5
π, 1

5
π) -0. 4131718 -0. 4178679 -0. 3753615 -0. 4141300

(4
5
π, 2

5
π) -0. 6691440 -0. 6774786 -0. 6073465 -0. 6700764

(4
5
π, 3

5
π) -0. 6692150 -0. 6776754 -0. 6073467 -0. 6700764

(4
5
π, 4

5
π) -0. 4136360 -0. 4188983 -0. 3753621 -0. 4141301

(2
5
π, 1

10
π) 0. 1337142 0. 1346008 0. 1219627 0. 1345590

(2
5
π, 3

10
π) 0. 3516002 0. 3555177 0. 3193021 0. 3522801

(2
5
π, 1

2
π) 0. 4348727 0. 4403433 0. 3946794 0. 4354421

(2
5
π, 7

10
π) 0. 3519777 0. 3567838 0. 3193008 0. 3522801

Table 2. The comparison among CMTFVM, COTFVM and CQFVM about v,

T = 0.3

CMTFVM COTFVM CQFVM TS

Vh Vh Vh v

(4
5
π, 1

5
π) 0. 4208816 0. 4297562 0. 3682060 0. 4141300

(4
5
π, 2

5
π) 0. 6750816 0. 6894825 0. 5957708 0. 6700764

(4
5
π, 3

5
π) 0. 6743754 0. 6886085 0. 5957703 0. 6700764

(4
5
π, 4

5
π) 0. 4165091 0. 4253623 0. 3682060 0. 4141301

(2
5
π, 1

10
π) -0. 1413925 -0. 1442637 -0. 1196371 -0. 1345590

(2
5
π, 3

10
π) -0. 3566366 -0. 3654419 -0. 3132144 -0. 3522801

(2
5
π, 1

2
π) -0. 4383393 -0. 4476261 -0. 3871548 -0. 4354421

(2
5
π, 7

10
π) -0. 3532283 -0. 3597593 -0. 3132153 -0. 3522801

Table 3. The comparison e of maximum absolute error and average absolute error

maximum absolute error average absolute error

CMTFVM(u) 6. 5546110E-03 8. 9920021E-04

COTFVM(u) 9. 6043348E-03 3. 1863260E-03

CQFVM(u) 8. 1847012E-02 4. 1811626E-02

CMTFVM(v) 1. 9632958E-02 4. 0403814E-03

COTFVM(v) 2. 9337764E-02 9. 8494338E-03

CQFVM(v) 8. 5374057E-02 4. 9320929E-02

Tables 1 and 2 give the numerical results and their corresponding true solution

(TS) about u and ut, respectively. The maximum absolute error and the average

absolute error is also provided in Table 3. From the Table 1, it is easy to see that

the finite volume element method on the triangular mesh behaves better than the
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one on the quadrilateral mesh, but the algorithm on triangulation is slightly more

complicated than the case that the mesh is quadrilateral. One can also find that the

accuracy of multistep on triangular grid is much better than that of one-step. For the

case of Vh, we have the similar results in terms of Table 2. From Table 3, for either

Uh or Vh, we can see that the maximum absolute error and the average absolute error

of CMTFVM is the smallest among CMTFVM, COTFVM and CQFVM.
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