Neural, Parallel, and Scientific Computations 16 (2008) 563-578

The Finite Volume Element Method for the Pollution

In Groundwater Flow"

Xueke Wu'? and Zhiyue Zhang'
'School of Mathematics and Computer Science, Nanjing Normal University,
Nanjing 210097
? Business school of Hohai University, Changzhou, 213022

Abstract

In this paper, we use the finite volume element method to solve the mathematic model
of one kind of ion reactions for the problem of groundwater in 2-space variables.
Piecewise quadratic trial functions and piecewise constant test functions are used to
finally obtain error estimate in L> norms and H' norms. Numerical results that
confirm the efficiency of our methods are presented.
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1. INTRODUCTION

The finite volume element method (FVEM) [1]1[21[31[4]1[51[6]1[71[8][9]1[10][11] is a discretization
technique for partial differential equations. FVEM uses a volume integral formulation of the
differential equation with a finite partitioning set of volume to discretize the equation. As far as the
method is concerned, it is identical to the special case of the generalized difference method
(GDM)[12][13][14] proposed by professor Ronghua Li that is, linear or bilinear finite element
space is used as trial or admissible finite element space and piecewise constant space is used as test
function space. The advantages of FVEM are as follows: first, the grid is flexible and the natural
boundary conditions are easy to deal with; second, the computational effort is greater than in finite
difference method (FDM) and less than finite element method (FEM) [15] while the accuracy is
higher than with FDM and nearly the same as with FEM. Because the method keep conservation
law of mass or energy, they are widely used in fluid and underground fluid computations. There are
many results about finite volume element methods for elliptic problems and parabolic problems
(see [4][6][7][8] and their references). It is a class of important numerical method of much current
interest.

Groundwater [16][17] is one of the most important sources of drinking, irrigation and
industrial process water. However, groundwater supplies are threatened by organic, inorganic and

radioactive contaminant' introduced by improper disposal or accidental release. Therefore,
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protection of the quality groundwater supplies and their remediation is a problem with both
economical and social significant. It is desirable that the discrete model inherits the conservation of
mass in both a local and global sense.

The main goal of the paper is that we develop the finite volume element scheme for a class of
groundwater problems which is characterized by nonlinear evolution systems, so that apply it to
the real groundwater fluid flow problems in the future. In this paper we present the finite volume
element method to solve a class of groundwater problem. Our approach is based on the piecewise
quadratic trial functions and piecewise constant test functions and to obtain error estimate in L 2

andH'.
The model of one kind of positive ion reactions for the problem of groundwater is:

mN, +rN2<—>kkz‘ rN, +mN,

We consider the following model of groundwater [18][19] in 2-space variables:

%—dAsl =f, (xyeQtel (1.1
95
5 dAs, = f,, (x,y)e Q,te J (1.2)
%+p%—DAq=O, (x,y)e Q,re J (1.3)
ot ot
% 4 592 pac, =0, (x,y)€ Qe J (1.4)
ot ot

where Q c R? is a bounded domain with smoothly boundary. J=(0,T]. s;and c, denote by the

concentration of ﬁ, and N, (i=1,2), respectively. D>d>0 is the diffusion coefficients, p >0 is

the density of the solid, which are all constants.

fi=c55=2c3s, . (1.5)

1 2 2
5 :ECZSI -5, (1.6)
5,(x,9,0) =57 (x, ), ¢;(x,9,0)=c’(x,y), (xyeQ (1.7)
Silsa =0, cfsq =0, teJ (1.8)

The rest of this paper is organized as follows: In section 2, we give some preliminaries. In

section 3, we present a full-discrete finite volume element scheme. The error estimates in L * and

H' are presented in section 4 and 5, respectively. In section 6, we carry out numerical experiments
to observe the performance of the proposed scheme.
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2. PRELIMINARIES

In this paper, we use the standard notation as that in [20], for instance H ”0 andH' ”1 which

represent L > andH' norm, respectively.

Let T, be a quasi-uniform triangulation of Q. T, consists of finite number of triangular

elements K ,, Q being the barycenter of the triangle, where h is the maximum length of all the

sides.. The vertices of the triangles and the midpoints of the sides are taken as the nodes. €,
denotes the set of the vertices of all the triangular elements, M_hthe set of the midpoints of the
sides of all the element, and Qh = Q_h \o0Q, Mh = M_h \ Q.

The dual decomposition of T , is denoted by T; , consisting of the polygons K ;0 surrounding
the nodes P, € Q_h and K*M surrounding M€ M_h Their detailed construction is as follows:

1) Construction of K ;0. Suppose that P, € Q_h , that P.(i =1,2,---,7) are its adjacent vertices,

] ——
and that F,, is a point on FP,P. such that FF, =§P0Pi . Connect successively
F,,(i=1,---,7) to obtain a polygon K:,O surrounding P (see Figurel).

2) Construction of K;. Let M e M_h be a midpoint of a common side of two adjacent

triangular elements K, =AFRFP,and K, =AF PP;. Denote byQ,,,0;, Oy, Qy; the

midpoint of P P,,, PP, ,P,P,, P P, respectively. A polygon K, surrounding M is
obtain by connecting successively Py, Q. Oy, O3, Fy. 01y, Oy, Qp. B (see Figure 2).
Select the trial function space U, € H (1, (Q) as the quadratic element space of Lagrangian

type with respect to7),. The test function space V, cV C [*(Q) corresponding to Th* is
taken as the piecewise constant function space.

First define an interpolation projectorIl, : H (1) () > U, . Next, define an interpolation
projector I1,: U, =V, as

u, = D u, (P, (x)+ Zuh(M)WM (x) 2.1)

PeQ, MeM,
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where ¥, (W, € Q,)andy,, (¥, € M), the corresponding basis functions ofV, are the

characteristic functions of K ;0 and K,, respectively.

Define a(u,v) as follows:

(1) when (u,v)e H,(Q)x H}(Q)

a(u,v) = LVu -Vvdx 2.2)

Figore 2
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(2) when (u,v)e H,(Q)XV,

a(u,v)= D v, (Pa.y, )+ Y v(M)a(.y,,) (2.3)
PeQ, MeM,
where
ou ou
atwyy)==[,. Gy =5 d0) @4
ou ou
a(u,y,,) = —LKL (gdy = gdx) (2.5)

Forany u, € U,, we introduce the following discrete norms

1

5 1
”uh”o,h =( Z|uh| )? (2.6)
KeTy,  onk
) 1
|uh|l,h =( Z|uh| )? 2.7
KeTy,  1hk
where
1
(2 2 2 2 2 2 7
|uh|0,h,K _[(”13 tup tup Fuy Fiy +uMk)SQ /6]? (2.8)
1
2 2 2 2 2
|uh|1,h,K =y —uy )" +p —uy ) +p —uy, )+, —uy )"+, —uy,) I? (2.9)

where S, is the areas of the triangular element K ,. P, and M, (l=i, j, k) are the vertices

and midpoints of the triangular element K, .

The following lemmas, which can be found in[12], will be used in our analysis.

Lemma2.1 Within U, , the norms |||| on and || L are equivalent to”-” o and || iy namely, there

exist positive constants M, M ,independent of U, , such that

M1|”h|1,h S|uh|1 SM2|uh| Yu,eU, (2.10)

L
My, <]y < Mol Vu,eU, (2.11)
Lemma2.2 There hold the following statements

(D) G T u,) = (u,, TTyu,) Yu,,u, €U,

1
2) setmuh mo =(u,, H;uh )E , then”H”O is equivalent to”-”0 onU, , thatis, there exist positive
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constant M ,, M, such that

M3||“h||o < H

[, <M, Ju, Yu,eU, 2.12)

Lemma2.3 For anyu, € U, , there exists positive constant M such that

a(uh,IT;uh)ZM”uh”l2

3. FULLY-DISCRETE FINITE VOLUME ELEMENT SCHEME

The variational problem related to {1.1}~ {1.4} is: Finding s,,s,,¢,,c, € H () such that

(%,v)+da(si,v)=(fl.,v) VveV,te J 3.1)
ac; ds,
(E,z)+p(§,z)+Da(q,z)=O VzeV,te J (3.2)

where s, (%, y,0) = 57 (x, ), ¢, (x, ,0) = ¢ (x, ), (i = 1,2), (x, y) € Q.
Denote the partition of time interval (0,T] by O=1,<t <---<f, =T and

T
suppose At = —.
N
The fully-discrete finite volume element scheme is:

Finding S/ e U,,C"" € U, (i =1,2), such that

S.n-%—l _Sn

( ; i ,vh)+da(Sin+l,Vh):(En,vh) \v/vh th (33)
cr - S -8;

() P )+ Da(Cl 7)< 05, €Y, G5

where initial data S,(0) and C,(0) are given approximation of s, and ¢, inU, ,
respectively, (i=1,2). And where
F'=C/(8;)" =2C))* S (3.5)
F, =%S;’ (C))*—(S3)°Cy (3.6)
Next we turn to some error estimates for (3.3)~(3.4). For convenience, we denote by

& =S8 -I,s,, n,=s-I,s,, A =C -I,c,, 6 =c,—I,c,,(=12). By the
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interpolation theory in Sobolev space [15], we have

[0 + Al < ¢ (=12) G.7)

6], +Aled, < dahe.], (=12) G3)

4. ESTIMATES IN L’ NORMS

From (3.1) ~(3.4), we have the error equations as follows: (v,,z, € V,)

& =& N n" =n! s s =] "
=, v,)tda(s" ,v,)=(——v,)+(————— ’v+da"
( Ar W daG ) =( Ar )T ( Ey AL p)+da(™,v,)
+(F" = f""v,) (4.1)
ﬂ’:H—l B 2’:1 n+l eirH—1 — 01'” acirH—l Cin+l B Cin n+l
(T’Zh)_l_Da(ﬂ'i ,Zh):(T’Zh)+( at - Al ’Zh)+Da(0,' ’Zh)
-p(F = [ z,) + pda(§!™  z,) — pda(n]™ . z,) 4.2)
First, we estimate &, . Take i=1,v, = IT,: 1"“ in (4.1) to get
n+1
é:l n+1)>_(H n+l ‘ (43)
d (§n+l’ n+1)>MdH n+l (44)
Using £ inequality, we obtain
n+l _ 2
(771 At 771 n+1) < Mhé +€Hé':n+l ) (45)
s st —s" 1t
alz - At 1 :Xr[ (1=t )5yt
n+l n+l n
”as ST ST as
H ot At
a n+l ntl
( Salt -2 v Sl L& S M (Ar)? +g\ &t (4.6)
Using the conclusion in [12], we have
‘a(?]”+1 vh)‘ M‘ ! |vh|| < Mh ||vh|| v, eV,

So, we have
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" 2
a(?]{l+1,nh§1n+1) S Mh4 + & §In+1 l (47)
Assume that the space step size and time step size satisfying the following condition:
At = o(h) (4.8)
It follows from the assumption (4.8) that, we introduce another assumption by introduction:
sup Hfl”uom <K, (4.9)
0<n<N-1 ’
sup HAHO <K, (4.10)
0<n<N-1 -

where K, and K, are constants.

Notice that

Cl' (877 =" (s3™)7 = =" [(5;™)* = (53)° 1= (1) (¢ =) = A[(s7)* = (85)"]

—I1,¢'[(s3)* = (S;)7] (4.11)
So we obtain

‘(CI"(S;)Z —Cf+1(S;+1)2,HZé:1”+I)

<ue], +[a], o - r+de] @.12)
Similarly, we have
(G-t e <myg] +a] i @1+ e (4.13)
Combining (4.3)~(4.7) and (4.12},(4.13} lead to
1 | | n+1]|?
e, =l |+ maler;
<me] el el ot e (419

Choose € properly and sum from n=0 to N-1. Then we multiply Af from both sides.
Using Lemma 2.2 we have

2 Nl 2 2
fei'l, = pa ]l
n= 1
<3 e] g il | o+ @) @.15)
Similarly, we obtain
2 Nl 2 2
fex 1, = ma ] ~lezll
n= 1

<ty (e[ & 2l ) ) @16)
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Next, we estimate 4, . Take i=1,z, = H;/i'fﬂ in (4.2). Using the same methods employed

for proving (4.3)~(4.7) and (4.12), (4.13).

Notice that
pda(E T, A < % et 12 +eat! 12 (4.17)
pda(n™ I1, A < Mh* + |47 12 (4.18)
So, we have
) z
0 O+ M|A
2At 1
swlar gl AL o v Sl rdg fada

Choose & properly and sum from n=0 to N-1. Then we multiply Az from both sides.
Using Lemma 2.2 we have

_ 2 _ 2
i, + 2 ax | -] -2 S s
n=0 1 n=0 1
STy (T e 20
n=0
Similarly, we obtain
s+ S| - -2 S e
n=0 1 n=0 1
o |2 n)|? % n)|? 4 2
<3 (& +he |l +|f) '+ @21

From (4.15),(4.20), we have

oL, + I+ e e+ -leel -l
n=0
N 2 2 2 2
i@y (&), e, A, + ) +nt+ @y 422
=0

Similarly, combining (4.16),(4.21), we have

e+ + ars e+l - sl -1l
n=0
Nl 2 2 2 2
<mi@en (&, +& ], +&], )+t + @) 423)
n=0

So, we obtain
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2
+

2

2 2 2 2 N-l 2 2
Il e s + 1l 22, + el e, + 1A, + A"
n=0

1 1

ssttanZ )+l Jal o + @y fe el AL ol e

Initial data S;(0) and C,(0) are chosen the interpolation projector II,s;(0) and
IT,c,(0)of s’ andc; ,

respectively. So, we get 5[0 =0 and /1? =0,3i=1,2).

Using Gronwall inequality yields

CHE ] D = Mt ) @os)

§n+l
1

N N2 | |2 “
I, +el, +HAT, +aT, +ar
Ulo 2 lo 0 0 g

ds, O,
where M depends on s, ,—,¢,,—.
ot ot

Next,we turn to proof (4.9), (4.10). When n=0, conclusion holds. If the condition(4.8) holds,
using inverse

properly, we have

sup &7 HW <Mh™ (h* + At <M (h+ %) <K,

0<n<N-1
Similarly, we have

sup 4],

0<n<N-1
Then (4.9), (4.10) hold.
Combining (3.7),(3.8), (4.25), we have the following theorem.

Theorem 4.1 Let {S|',S.,C/",C, } be the solutions to the fully-discrete scheme. If the condition

(4.8) holds, then the following error estimate holds

sup i{HSi" =S! +er ey s Mt + an?) (4.26)
nAI<T ‘i

5. ESTIMATESIN H' NORMS

Also, we have the error equations as follows: (v,,z, € V,)

(

é:'n+l _é:'n » 77.}1-%—1 _77" as.n-%—l S'n+l _S'n "
: v )+da(ET v, )= (= Ly, )t (———— —,v,)+da(n'" v
Ar W) +da(G ™ v,) = ( )T ( Ey A ) +da(n’,v,)

+(F" = f""v,) (5.1)
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A -2 " A o M =c! i
= ,2)+DaA™ 7)== 22+ ( a} - A ’,Zh)—p(é:’ At(’t’ .2;)
e Da@) )+ o e p® S s
i < » < - » < .
P At ! ot AT
H* n+1_H* n
First, weestimatefi.Takeizl,vhz hfl A hfl in (5.1) to get
1
§1n+1_§1 hé:l
. 53
( AL (5.3)
ntl _ gn
where denote by d &' = ﬁ
At
H*é:nH _H*é':n 2
ntl 21451 hS1 nt||© |l gn
da(§", == )22 el -l (5.4)
ntl
(771 771 , hél hfl )<Mh4 iy (55)
At
ot At
Using inverse properly, we have
da(n™ ,M)<M}l2”d & (5.7)
n_ pm f ¢
(=g e e il el 68

We combine (5.3)~(5.8), choose € properly and sum from n=0 to N-1. Using Lemma 2.2 we

obtain

&, ) <m {W)NZ:(Hé”Hi Hel +al e @y s

Similarly, we have

2 ]
&, -Ja <mnt@n3 e el +al; i+ si0
0 n=0

A" -1

A in (5.2). Using the same methods
t

Next, we estimate ll. Take i=1, z, =

employed for proving (5.3)~(5.7).
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Notice that

p(é:lnHA; fln ’ HZlfJflA;HZl? )< % drfln ‘(2) +e drﬂ,? ‘(2) (5.11)
,O(UI’HIA; ut ,HZW;HZ% )< Mh* + €|d A (2) (5.12)
,o(af,jt+1 - SIMA; S HWHA; A < M(ar +e .| (5.13)
So, we have
W+ aS | <m S fag] o+ any ] 514
n=0 0 n=0 0
Similarly, we obtain
|2 +%A1N2_1 dx < M(%NZl d& o +@an?)+ A (5.15)
n=0 0 n=0 0
From (5.9), (5.14), we have
e+ + ars el el -l -1l

<man3 e el Al )+ (5.16)
n=0
From (5.10), (5.15), we obtain

VI VI N-1 2 oll2 oll12
21 B Y N J-lel 12

2
|+
0

d, A

d,g;

1

<mt 3} e 2] sl v 617

So, we have

2

2 2 2
o +lasil, ezl ezl
0 0 0 0

dg'|, +|d.s: |, +|d.A|, +|dA

=4 W P %y o
B T 2 1l 1 2 i prt

S0 o o e R R R R AT

Initial data S,(0) and C,;(0) are chosen the interpolation projector II,s;(0) and

IT,c,(0)of s’andc; , respectively. So, we get & =0 and A =0 ,(i=1,2).
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Using Gronwall inequality yields

3 N A N P 0y of O T N L
n=0
< M[h* + (A1)?] (5.19)
where M depends on s, ,—i,Ci ,%.
ot ot

Combining (3.7),(3.8), (5.19), we have the following theorem.
Theorem 5.1 Let {S|',S.,C/,C, } be the solutions to the fully-discrete scheme. If the condition

(4.8) holds, then the following error estimate holds

2 2
t O}SM(h2+(At)2) (5.20)

s; =S/

¢ =C;

sup Z{

nAt<T ;—1

6. NUMERICAL EXPERIMENT

In this section, we provide a numerical example to illustrate the effectiveness of scheme (3.3),
(3.4).
Consider the following problem:

95 Sae-1o g (6,y)eQ i1eJ 6.1)
or 2
E+§_12AC:O (x,y)eQ telJ (6.2)
ot ot
sl,, =0 teJ (6.3)
d,, =0 teJ (6.4)

where Q = (0,27)% (0,27), J=(0,1]. Let space step size be h and time step size be7T . We

2

YR S
consider the case of the exact solution c(x,y,f)=e tsmaxsma y and

VR S |
s(x,y,t)=2e™ smaxsma y , respectively.

A A | 11
The initial function s(x,y,O)zZsmExsmEy and c(x,y,O)zsmExsmEy ,

respectively. In our numerical experiment, we place a right triangular decomposition on € as

shown in Figure 3.

T 1
We choose i =— and7 =— . The numerical results are shown in Table 1. The error line of

the finite volume element solution is shown in Figure 4.
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Table 1. Comparison of approximation errors of s and ¢

Point Variable True Solution Finite Volume Element Solution
T s 0.006624 0.007218
010 C 0.003312 0.004364
T s 0.025847 0.028251
53 C 0.012923 0.017063
27 27 s 0.093514 0.102388
55 C 0.046757 0.061736
37 37 S 0.177156 0.194122
55 C 0.088578 0.116964
Az 47 S 0.244824 0.268371
575 c 0.122412 0.161648

We specially evaluate the maximum absolute errors (MAE) and the average absolute errors

(ABE) of finite volume element method of quadratic element (FVEM?2) and linear element

(FVEM1) with different space and time step, when?, = 1, which is shown in Table 2.

It is observed from Table 2 that the accuracy of FVEM2 is higher than FVEMI, and the

numerical results support our theory.

Table 2. Comparison of FVEM with different space and time step

Space step and time step Method MAE ABE
= 2_7Z’t _ l FVEM1 0.071687 0.012683
5 5 FVEM2 0.043237 0.010988
= z,t _ i FVEM1 0.043215 0.008806
5 10 FVEM2 0.020377 0.005970
= z,t _ i FVEM1 0.036654 0.007739
6 12 FVEM2 0.016772 0.005024
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Figure 3
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