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1 INTRODUCTION

For any metric spaceX” andY we denote byC'(X,Y) the class of all continuous func-
tions from X to Y. We denote by, the space of reat x n matrices. We will use
vectorial inequalities with the understanding that the samequalities hold between their
corresponding components.

For eachr = (xq,...,x,) € R" we writex = (2/,2") wherez' = (xq,...,x,), 2" =
(Tpt1,---,2n), WhereOd < k < nisfixed. If k = n we haver’ = z, if kK = 0 thenz” = z.
We define the sets

E =10,a] x [-b,b) x (=b", V"], D =|[—dy,0] x[0,d] x [—d",0]
wherea > 0, dy € Ry, b= (by,...,b,) € R} andd = (dy,...,d,) € R are given. Let
c=(c1,...,¢,) =b+dand
Ey = [—dyp, 0] x [V, ] x [, V],
E = ((0,a] x [V, ] x [-" V') \ E, E*=EyUFEUOQ}FE.
Forz : E* — RF, 2 = (21,...,2), and(t,z) € [0,a] x [—b, b] we define the function
Z(tx) : D — R as follows
22y (T, y) = 2(t + T, 0 +y), (1,y) € D.
The functionz, ,) is the restriction ot to the seft — dy, t| x [2/, 2" + d'] x [2" — d", 2"
and this restriction is shifted to the sbt PutQ) = E x C(D, R¥) x R™ and suppose that

f: Q=R f=(f,.. fo)

Received March 10, 2009 1061-5369(© Dynamic Publishers, Inc.



18 Szafranska

p:EUE — R*, o= (p1,...,0k)
are given functions. We consider the system of differeffitiattional equations
Orzi(t,x) = [i(t, 2, 240y, Opzi(t, ), 1 <1 <K, (1.1)
with the initial boundary condition
2(t,z) = ¢(t,z) on EyUOyE, (1.2)

whered, z;(t,x) = (0,,2i(t,x),...,0,,2(t, 7)), 1 <i < k. Afunctionv : E* — RFis
called a classical solution of problem (1.1), (1.2) if

(i) v € C(E*, R¥) andv is of classC! on E,
(i) v = (vy,...,v;) satisfies system of equations (1.1) Brand condition (1.2) holds.

Systems of differential equations with deviated varialaled differential integral prob-
lems can be derived from (1.1) by specializing the opergtor

2 DIFFERENCE FUNCTIONAL PROBLEMS

We are interested in the construction of a method for the@ppration of classical solu-
tions to problem (1.1), (1.2) with solutions of associatédfitence scheme and in the error
estimate for the constructed method.

Let us denote by"'( X, Y') the class of all functions defined dfiand taking values if’,
whereX andY are arbitrary sets. L&N andZ be the sets of natural numbers and integers,
respectively. For = (z1,...,2,) € R*,p= (p1,...,pr) € R* and for the matrix

Ue Myyn, U= [uij]izl ..... kj=1,...n

.....

we write

n

lzl =" laesl and [|plloc = max {|pi| : 1 < i <k},

i=1
1U|| = max{z uy| 1< < k:}
7j=1

For a functionw € C(D, R*) we put
[w||p = max {[|w(t, z)||« : (t,z) € D}.

We define a mesh on the g6t and D in the following way. Let(hg, h'), b’ = (hy, ..., hy),
stand for steps of the mesh. Foe= (ho, 1) and(r, m) € Z'*", wherem = (my, ..., m,),
we define nodal points as follows

t) = rhy, 2™ = (xgml), o xm)Y = (myhy, L mghy).
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Let us denote by the set of allh = (hg, #’) such that there ar&, € Z and N =
(Ny,...,N,) € N™ with the propertieskohy = do and (Nihq, ..., N,h,) = d. Let
K € N be defined by the relationshy < a < (K + 1)hy. Write

Ryt = {@D, 2™ (r,m) € Z"*"}
and
E,=ENR™™, Eno=FENR"™, D,=DnNR"™

oE, =00ENRY", Ef = EygUE,UdE).

For functions: : E; — RF andw : D;, — RF we write
Zm) — 2t 2m)) on Ef and w™™ = w(t™,2™) on Dj.

For the above and for a poim(t("), :c(m)) € £y, we define the functiony,. ., : D;, — R*
by the formula

2] (T, Y) = z(t(’") + 7, 2™ 4 y), (1,y) € Dy.
The functionz,,, is the restriction of: to the set

([t = dg] x [z, 20 4 d') x [z — d", ™)) 0 R

and the restriction is shifted to the g8f. For a functionw : D;, — R* we write

[wllp, = max {lw"™ | : (117, 20) € Dy}

Lete; = (0,...,0,1,0,...,0) € R*, 1 < j < n, wherel is the j-th coordinate. We

consider difference operatofg ands = (44, ..., d,) defined in the following way
602(7”,771) — i (Z(T'i‘lﬂn) _ Z(r,m)) (21)
ho
and 1
5jz(r,m) — h_<z(7‘,m+ej) _ Z(T7m)>’ 1< j <K, (22)
j
5jZ(T7m) _ %(z(nm) i Z(r,m—ej)>’ k+1<j<n. (2.3)

J

Note thats ("™ is given by (2.3) ifs = 0 anddz("™ is defined by (2.2) for = n.
Right-hand sides of equations (1.1) contain the functimaaiable z( ,y which is the

element of the spac€(D, R*). Therefore we need an interpolating operafQr :

F(Dy, R*) — F(D, R*) and the following assumptions on the operatpr

Assumption H|[T},]. Suppose that the operatty : F'(D;, RF) — F(D, R¥) satisfies the

conditions

1) if w, w € F(Dy, R*) thenT,[w], T,,[w] € C(D, R*) and

175 [w] = Th[wlllp < lw = @]lp,, (2.4)
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2) if w: D — RFis of classC! then there isy : H — R such that
| Thlwn] —w |[p< v(h) and }Lif(lﬂ(h) =0, (2.5)
wherew;, is the restriction ofv to the setD,,.

Remark 2.1 The condition 1) of Assumptio/ [T},] states that the operat®), satisfies the
Lipschitz condition with the coefficient equal to

Assumption (2.5) implies that the functianis approximated by, [w;] and the error of
this approximation is estimated byh).

We formulate a difference problem corresponding to (1ILR). Write
doz = (boz1, - - -, 002k),

Fl)™™ = (Fy[2]™™, .. Fi[2]™™)

and
Fi[z](’”’m) = fi(t(’”), x(m),Thz[r,m}, siézi(r’m) +(1— si)ézyﬂ’m)), 1 <i<k,
where
siézi(r’m) = (silélzi(r’m), o sménzi(r’m)),
(1= 5620 = (1= s1)6027 ™™ (1= 83) 02 TH™)
and where) < s;; < 1,¢=1,...,k,j =1,...,n, are given constants. We consider the
difference functional system
502"™ = F[z]m) (2.6)

with initial boundary condition

20 = o™ on Ejo U 8By, 2.7)
whereyy, : Ej,oU0yEy — RE, ¢, = (on1,- .., pnk), are given function.

Classical difference methods for partial differential antional differential equations
consist in replacing partial derivatives by difference egsions. Then the original problem
is transformed into difference or difference functionaliatjons.

In recent years, a number of papers concerning numericddodstfor functional partial
differential equations have been published.

Difference methods for nonlinear first order partial functal equations were studied
in [1], [2], [3], [4], [6]. The main question in this investgions is to construct a differ-
ence functional equation which satisfies consistency ¢mmdi with respect to the original
problem and to find sufficient conditions for the stabilitytbé difference schemes.

Our difference functional problems have the following pedy: each equation in system
(2.6) contains the parameters= (si1,...,8m), 1 <i < k. If s, = (0,...,0) € R" for



Numerical Methods for Systems of Nonlinear Differentiahtional Equations 21

1 <i < k then (2.6), (2.7) reduces to the explicit difference schelhis clear that there
exists exactly one solution of problem (2.6), (2.7) in trase. Sufficient conditions for the
convergence of the explicit difference methods for firstesrdartial differential equations
can be found in the monograph [5] (Chapter V).

Note that ift = 1 ands = (s1,...,$,) = (1,...,1) € R then (2.6), (2.7) reduces to
the implicit difference scheme considered in [7].

Numerical methods for nonlinear parabolic problems wevestigated in [8]-[10]. Dif-
ference schemes considered in the above papers depend gatarmeters, s € [0, 1].
Right hand sides of difference equations correspondin@tahlmlic equations contain the
expressions

502 4 (1 — 8)6z" ™ and  36@ ) 4 (1 - 5)@ lrrtm),
where§ = (6y,...,4,) and6® = [6;];=1.... are difference operators corresponding

to the partial derivatives, = (0,,,...,0,,) anddy, = [Or4,)ij=1..n @aNdz is a scalar

n

unknown function. Our results are motivated by papers 18]

In the paper we start the investigations of difference sawefar nonlinear mixed prob-
lems. We prove that under natural assumptions on givenifuretind on the mesh there is
a class of difference schemes for a mixed problem which iseqgent.

The paper is organized as follows. In Sectiome construct a class of difference schemes
for (1.1), (1.2). The convergence theorem and an error eséifor considering difference
methods are presented in Sectibn

3 SOLVABILITY AND CONVERGENCE OF DIFFERENCE METHODS

We first prove that there exists exactly one solutign E; — R* of problem (2.6), (2.7).
For eachz(™ € B, we put

A = fgmte) 1 < j < gIU{a)  k+1<j<n}.

Assumption H[f]. Suppose that the functiof : Q@ — RF, f = (f1,..., fx), of the
variables(t, z, w, ¢) is such that

1) for eachP = (¢, z,w, q) € {2 there exist partial derivatives

3qf(P) = [8qui(P)]i:1 ..... kj=1,..n
ando, f(t,z,w, ) € C(R", Mgxn),

2) foreachP € Qandfori = 1,..., k the estimates
Oy, [i(P) >0 for 1<j <k, O, [i(P) <0 for k+1<j<n

are satisfied.



22 Szafranska

Lemma 3.1 If Assumptiont [f] is satisfied andy,, : Ej, o U 0y E;, — R* then there exists
exactly one solution;, : E; — RF of (2.6), (2.7)

Proof. Is follows from (2.7) thatu,, is defined on&}, . Suppose thail < r < K is fixed
and that, ; is defined on&; N ([—do, t"] x R™) for 1 < ¢ < k. Assume now thatis fixed,
1 <i < k. Consider the problem

) — ) (80, 20 () g, s:0u™ (1= 5)520T0)(3.0)
ug T = i for 2™ € 9y By (3.2)
Suppose now that the numbers; (t"+Y, 3) wherey € A™ are known. Write

i) = a T+ Do fra (87, 2 () s QU (1)),

where
r,m 1 r,m-re r,m T m-re
Q™ (r) = (h—(sﬂwz; ) (L= s g =)
1
]_ rm-+tex r,m T l,m €x
(el =) + (1= s () = 7)),
1 r,m T, m—eg T m—eg
L (s = a7 = (1 = s 7)) L
K+1

1 r,m rm—e T m—e
(sl =) = 1= s = a7 )

Theny = (¢1,...,¢,) : R — R*is of classC* and

/ 1 r m r,m
Wi(r) = —ho ) (1= 5310, it 2, () g, Q" (7))] < 0
J

j=1
for - € R. Then equation = «;(7) has exactly one solution and consequently the number
u\" "™ can be calculated. Sinag’""™ is given forz™ e 9,B, it follows that there
exists exactly one solutiomﬁff;”l’m) of (3.3), (3.4) forz(™ € B,,. Thenu,,; is defined on
E}.-+1. Then by induction the solution exists and it is uniqueijn O
We proof now the convergence of the difference method (2267).

Assumption H|[f, o]. Suppose that

N

1) the functiorv : [0,a| x Ry — R satisfies the following conditions:
() o(t,-) : Ry — R, is continuous and nondecreasing for eaeh|0, a],

(i) the maximal solution of the Cauchy problem
w'(t) =o(t,w(t)), w(0)=0, (3.3)

isw(t) =0fort € [0,a],
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2) the estimate
1f(tz,w,q) = f(t,2,,q)|| < o(t, |w— D) (3.4)
is satisfied on?.
Theorem 3.2 Suppose that AssumptiofS f], H|[f, o] are satisfied and

1) the functiorv : E* — R* is a solution of(1.1), (1.2)and is of clasg",

2) h € H and the function;, : E; — R* is a solution of(2.6), (2.7)and there isy, : H —
R, such that

le"™ = i ™ loe < a(h) ON EnoUdpE, and limao(h) =0,

3) the operatofl}, : F(Dy, R*) — C(D, R*) satisfies the Assumptidi[73,],
4) for P € ) we have

"1
L= ho Y =sul0y, f(P)| 20, 1<i<h, (3.5)
j=1""

Then there exists a functien: H — R, such that

0™ —u{"™|| o < a(h) on E, and lima(h) = 0. (3.6)

—0

Proof. Let the functionl';, : E] — R* be defined by
Sov"™ = Flup)™ + 7™ on  EJ. (3.7)

It follows from the assumptions of theorem that there exastisnctiony : H — R, such
that

||F§lr,m>||oo§§(h) on FE; and }Lmﬁ(h):o'

We write
e = max {||(vh — )™ || : (¢, 2™ € Ef N (|—do, t™)] x B™)}.

It follows from the definitions of difference operatdyandé that

“ 1
(ons = )7 [14 00 3 0 = )0, 1P|

j=1""

n

1
= (o= ) [ L= 0 3 1l ()|
j=1
+hg i 0, f;(Py) [S.,i(vh . .)(nm+ej) +(1 - S..)i(vh N ,)(r+1,m+ej)}
P q;J ) 17 hj N -2 17 hj K K
o 3 By i) [ s — ) 4 (1 ) (s — ) )]
q; J Jh] . . ] h . .

j=Kr+1 J
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— ), (T 5i00817 + (1= 5007 + T, 1< <k,

where P;; € 2 are intermediate points. According to Assumptifi7;,] we have the

estimate
(r)

[ (vn) ¢ 2y = (Thtin)prm) I < v(R) + &5,
Thensﬁf) satisfies the difference inequality
e < e 4 oo (87 v (h) + ) + heF(R), 0<r<K-—1. (3.8)
Let us consider the Cauchy problem
w'(t) = o(t,v(h) +w(t) +7(h), (3.9)
w(0) = ap(h). (3.10)
It follows from condition 1)-(ii) of Assumptiorf/[f, o] that there exists the maximal solu-
tion w,, of the problem (3.9), (3.10) and, is defined o0, a|. Moreover

flllil’(l] wp(t) =0 uniformly on [0, a].
It is easily seen thab,, satisfies the recurrent inequality
O > @ 4+ hoo (87 y(h) + @) + hoF(h), 0<r <K —1
and it follows from (3.10) that the inequality
@y < ag(h), —Ko<r<0
holds. By the above relations and (3.8) we have
(T)<w(r) 0<r<K.

Thus we get (3.6) fotv(h) = wy(a). This completes the proof. O
Now we give an example of the operatby satisfying Assumptiorf [7},] and the error
estimate for the difference method (2.6), (2.7).
Put

Sy =A{(j,s):j€{0,1},s=(s1,...,8,),8 € {0,1} for 1<i<mn}.
Letw € F(Dy, R¥) and(t,z) € D. There exist$t"), 2(™) € D, such that
t(?”) S t S t(?“'f‘l)’ x(m) S €T S x(m-ﬁ-l)’ (t(T"‘rl) (m+1)) c Dh
We define
(jvs) 1_(j7s)
Yy —yrm Yy —ymm)
(r+jm+s)| =~ - -
(Thw)(t, x) Z w' ( - ) (1 -

(4,5)€S«
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where

(Y — Y(nm>> b B (t — t(r)>J ﬁ (xk _ xlgmk)>8k
h ho Py I
1=(5,9) -7 5 (my) \ L5k
] Yy — ym) _ (4 t —t™ H 1 T T
h B ho P hy,

and we také)® = 1 in the above formulas.

and

Lemma 3.3 Suppose that
1) the solutionv : E* — R* of differential problem(1.1), (1.2)is of classC? and the
assumptions of Theore®nl are satisfied wittv (¢, p) = Lp, L > 0,

2) there exist\/ € R, andC € R, such that
H&gf(hl’,Z,(])H §M7
[02,0(t, @) [0 (00t 2)l[0c,  [|0n2;0(t, @) |00 < C

wherej = 1,...,n.

Then
™ = o ™ oo <7, (3.11)
where
i = a1+ hol) + () I ]
and

Y(h) = Ly(h) +7(h), 7(h) = %5%0 + Ly(h) + C(2 + |W[)M.
Proof. From the assumptions of Lemma we conclude that the oper&fpdssatisfy the
following conditions
[60v™ ™ — g™ ||, < %6%07

1~
18,07 = 0 v lo < SCIRY, G =1, .
It follows from above estimates and from Assumpti@fil},] that

) = gl — ™
(D, 2 00 v o, D)
— fi(#0) 20 ™) T si00T™ 4 (1= s;)60l ™).
Then
1T oo < ().
The functionn,, is a solution of the problem
N = (1 4 hoL) + ho[Ly(h) +7(h)], 1<i<k.

Then from Theorem 3.1 we get the assertion (3.11). U
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4 NUMERICAL EXAMPLES
Example4.1 Forn = 2, kK = 1 we put

E={(tz,y):te€[0,a], zel[-1,1], yel[-1,1]}. (4.1)
Consider the differential integral equation

hz(t, x,y) = Opz(t, z,y) — Oy2(t, 2, y) (4.2)
1
— sin [0xz(t,x) — Oyz(t,x,y) + tz/ 2(t, 7, y)dr

y
+t? / 2(t,z, 7)dT — tett7Y) — tet(”l)} — (2t — x + )T,
-1

with the initial boundary condition
2(0,z,y) =1, xze€[-1,1], ye[-1,1], (4.3)
2(t,1,y) =Y, tel0,a], yel-1,1],
2tz —1) = te0,a], xe[-1,1].

The exact solution of this problem is known. Iti§t, z) = !®=%). Puth = (hg, hy, ho)
stand for the steps of the mesh on E.
Difference method for the problem (4.2), (4.3) has the form

Z(r—l—l,ml,mg) _ Z(r,ml,mg) + ho 8(512(T’m1’m2) + (1 _ 8)512(T+1,m1,m2) (44)

— 80z mmm2) _ (1-— 5)522'(”1’"“””2) — sin (551z(r’m1’m2) +(1- 8)512(’"“’""”1’”"”2)

1
_552Z(T7m1,m2) _ (1 _ 8)522(T+17m1,m2) + (t(T))Q/ Z(t(r),T, y(m2))d7-

z(m1)

(m2)
O [ 0,00 )i — ) explu(1 = ) — () exp(u ) + 1))
-1

_(Qt(r) — plm1) + y(m2))z(7‘,m1,m2)] _

We puts = s; = s,. Let us denote by, : E;, — R the solution of the explicit difference
problem corresponding to (4.2), (4.3) which we get from&vith s = 1. Byuy, : £, — R
we denote the solution of the implicit difference probleroaiwed form (4.4) withs = 0. If
we putin (4.4)s = 0.5 we get the implicit difference method and by its solution veaote
uy, - B, — R.
Write
n = 2N 11)? Z Z 2y ) — gl (4.5)

mi=—N mo=—N
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*(7") (7” mi,mz2) | (r;mi,me)

nh 2N _I_ 1 Z_ Z_; v ! 2 |7 (46)
N N

*’(7') — ~ (r,;m1,m2) _ (r,m1,m2) 4 7

nh 2N + 1 ZN Z | v |7 ( " )
mi=—N ma=—N

The numbers;”, 7", 77,(:‘) are the arithmetical mean of the errors with fixét. The
values of the functions”, 7", 7\ are listed in the tables. We write “x” fof;, > 100.

Table of errors forh, = (0.01,0.01,0.01)
un Th
t=0.5 0.001554 0.001664
t=1.0 0.002772 0.003799
t=1.5 0.004161 0.009324
t=20 X 0.011336
t =25 X 0.189344

Table of errors forh, = (0.05,0.005, 0.005)
T

t=0.1 0.001631

t=0.2 0.003236

t=0.3 0.004798

t=0.4 0.006284

t=0.5 0.006986
Our experiments have the following property. The expliciethod for stepsh =
(0.01,0.01,0.01) which are not satisfy the condition (CFL)

1=ty > 251y, £(P)] > 0, (4.8)

with parameters = 1, is not stable. The difference method with= 0.5 for the same
steps gives better results. For the stéps (0.05,0.005,0.005) which are not satisfy the
condition (4.8) withs = 0.5, the difference method is not stable. The implicit diffesen
method, which we received with= 0, is stable aside from steps of the mesh.

Example 4.2 Forn = 2, kK = 1 we put
E= {(tvl'vy) te [O,CL], S [_17 1]7 /S [_17 1]} (49)
Consider the differential integral equation

Opz(t,x,y) = 02(t, x,y) + cos |0.2(t, x,y) — tyz(t, x,y) (4.10)
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—0yz(t, x,y) — sin [%z(t, x,y) —tez(t, z, 2)] + 2(t, < ; y) L ; y)
1
+(xy =ty + tx)2(t, @, y) — exp (FH(@* = y%)) — 1.
with the initial boundary condition
Z(O,Jf,y) = 17 YRS [_17 1]7 ) € [_17 1]7 (411)

2t Ly)=¢€Y, tel0,a, yel-1,1],
2(t,x,—1) =€e", te0,a], xe[-11].

The exact solution of this problem is known. Iti&, ) = Y. Puth = (hg, hy, hy) Stand
for the steps of the mesh on E.
Difference method for the problem (4.2), (4.3) has the form

Lrtlmime) — o(rmimz) 4 g o) g8, Z(rmame) (1-— 3)51z(’"+1’m1’m2) (4.12)

+ cos (séw“’mhm?) + (1= 5)8zrLmums) t(r>y<m1)z<r,ml,m2>>
—50521Mm2) _ (] — §)§,z(rHLmima)
—sin <852Z(T’m1’m2) -+ (1 — 3)52Z(T+17m1,m2) _ t(")x(m2)z(7‘,m1,m2)>

+Z(t(r), 0.5(1'(7”1) — y(mQ))’ 0'5(x(m1) +y(m2))) _|_ (x(ml)y(m2)t(r)y(m2) +t(r)x(m1))z(r7m17m2)

—exp Gt(r)((x(mz)y _ (y(mz))2)> _ 1]

We puts = s; = s. Let us denote by, : E;, — R the solution of the explicit difference
problem corresponding to (4.10), (4.11) which we get fromi?3 withs = 1. By uy, :
E, — R we denote the solution of the implicit difference problemeaied form (4.12)
with s = 0. If we putin (4.12)s = 0.5 we get the implicit difference method and by its
solution we denote@,, : £, — R.

The numbers;,(f), ﬁ}(f), ﬁ,(f), given by (4.5)-(4.7) respectively, are the arithmeticalam
of the errors with fixedt). The values of the functions,”, 7., 7\ are listed in the
tables. We write “x” forn;, > 100.

Table of errors forh = (0.01,0.01, 0.01)

Tlh Mh
t=0.1 0.032645 0.000487
t=0.2 X 0.000890
t=0.3 X 0.001229
t=04 X 0.001525
t=20.5 X 0.001769
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Table of errors forh = (0.05,0.005, 0.005)

h
t=0.1 0.005775

t=0.2 0.010111
t=20.3 0.013670
t=04 0.016837
t=20.5 0.018405

Conclusion from above experiment is that implicit diffecermethod received from (4.12)
with s = 0, is stable for any choose of steps= (hg, k1, ho). For stability of the explicit
difference method and implicit difference method receifredn (4.12) withs = 0.5, we
need satisfying the condition (CFL) given by (4.8).
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