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Abstract: The paper deals with initial boundary value problems for nonlinear differential

functional systems. We are interested in approximation of solutions of considered differen-

tial problems by solutions of suitable difference schemes.A complete convergence analysis
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1 INTRODUCTION

For any metric spacesX andY we denote byC(X, Y ) the class of all continuous func-

tions fromX to Y . We denote byMk×n the space of realk × n matrices. We will use

vectorial inequalities with the understanding that the same inequalities hold between their

corresponding components.

For eachx = (x1, . . . , xn) ∈ Rn we writex = (x′, x′′) wherex′ = (x1, . . . , xκ), x′′ =

(xκ+1, . . . , xn), where0 ≤ κ ≤ n is fixed. If κ = n we havex′ = x, if κ = 0 thenx′′ = x.

We define the sets

E = [0, a] × [−b′, b′) × (−b′′, b′′], D = [−d0, 0] × [0, d′] × [−d′′, 0]

wherea > 0, d0 ∈ R+, b = (b1, . . . , bn) ∈ Rn
+ andd = (d1, . . . , dn) ∈ Rn

+ are given. Let

c = (c1, . . . , cn) = b+ d and

E0 = [−d0, 0] × [−b′, c′] × [−c′′, b′′],

∂0E = ((0, a] × [−b′, c′] × [−c′′, b′′]) \ E, E∗ = E0 ∪E ∪ ∂0E.

For z : E∗ → Rk, z = (z1, . . . , zk), and(t, x) ∈ [0, a] × [−b, b] we define the function

z(t,x) : D → Rk as follows

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D.

The functionz(t,x) is the restriction ofz to the set[t − d0, t] × [x′, x′ + d′] × [x′′ − d′′, x′′]

and this restriction is shifted to the setD. PutΩ = E × C(D,Rk) × Rn and suppose that

f : Ω → Rk, f = (f1, . . . , fk),
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ϕ : E0 ∪ ∂0E → Rk, ϕ = (ϕ1, . . . , ϕk)

are given functions. We consider the system of differentialfunctional equations

∂tzi(t, x) = fi(t, x, z(t,x), ∂xzi(t, x)), 1 ≤ i ≤ k, (1.1)

with the initial boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E, (1.2)

where∂xzi(t, x) = (∂x1zi(t, x), . . . , ∂xn
zi(t, x)), 1 ≤ i ≤ k. A functionv : E∗ → Rk is

called a classical solution of problem (1.1), (1.2) if

(i) v ∈ C(E∗, Rk) andv is of classC1 onE,

(ii) v = (v1, . . . , vk) satisfies system of equations (1.1) onE and condition (1.2) holds.

Systems of differential equations with deviated variablesand differential integral prob-

lems can be derived from (1.1) by specializing the operatorf .

2 DIFFERENCE FUNCTIONAL PROBLEMS

We are interested in the construction of a method for the approximation of classical solu-

tions to problem (1.1), (1.2) with solutions of associated difference scheme and in the error

estimate for the constructed method.

Let us denote byF (X, Y ) the class of all functions defined onX and taking values inY ,

whereX andY are arbitrary sets. LetN andZ be the sets of natural numbers and integers,

respectively. Forx = (x1, . . . , xn) ∈ Rn, p = (p1, . . . , pk) ∈ Rk and for the matrix

U ∈Mk×n, U = [uij]i=1,...,k,j=1,...,n

we write

‖x‖ =
n∑

i=1

|xi| and ‖p‖∞ = max {|pi| : 1 ≤ i ≤ k},

‖U‖ = max
{ n∑

j=1

|uij| : 1 ≤ i ≤ k
}
.

For a functionw ∈ C(D,Rk) we put

‖w‖D = max {‖w(t, x)‖∞ : (t, x) ∈ D}.

We define a mesh on the setE∗ andD in the following way. Let(h0, h
′), h′ = (h1, . . . , hn),

stand for steps of the mesh. Forh = (h0, h
′) and(r,m) ∈ Z

1+r, wherem = (m1, . . . , mn),

we define nodal points as follows

t(r) = rh0, x(m) = (x
(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . , mnhn).
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Let us denote byH the set of allh = (h0, h
′) such that there areK0 ∈ Z andN =

(N1, . . . , Nn) ∈ N
n with the propertiesK0h0 = d0 and (N1h1, . . . , Nnhn) = d. Let

K ∈ N be defined by the relationsKh0 ≤ a < (K + 1)h0. Write

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z

1+n}

and

Eh = E ∩R1+n
h , Eh.0 = E0 ∩ R

1+n
h , Dh = D ∩ R1+n

h ,

∂0Eh = ∂0E ∩ R1+n
h , E∗

h = Eh.0 ∪Eh ∪ ∂0Eh.

For functionsz : E∗

h → Rk andw : Dh → Rk we write

z(r,m) = z(t(r), x(m)) on E∗

h and w(r,m) = w(t(r), x(m)) on Dh.

For the abovez and for a point(t(r), x(m)) ∈ Eh we define the functionz[r,m] : Dh → Rk

by the formula

z[r,m](τ, y) = z(t(r) + τ, x(m) + y), (τ, y) ∈ Dh.

The functionz[r,m] is the restriction ofz to the set

([t(r) − d0] × [x(m′), x(m′) + d′] × [x(m′′) − d′′, x(m′′)]) ∩R1+n
h

and the restriction is shifted to the setDh. For a functionw : Dh → Rk we write

‖w‖Dh
= max {‖w(r,m)‖∞ : (t(r), x(m)) ∈ Dh}.

Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 ≤ j ≤ n, where1 is thej-th coordinate. We

consider difference operatorsδ0 andδ = (δ1, . . . , δn) defined in the following way

δ0z
(r,m) =

1

h0

(
z(r+1,m) − z(r,m)

)
(2.1)

and

δjz
(r,m) =

1

hj

(
z(r,m+ej) − z(r,m)

)
, 1 ≤ j ≤ κ, (2.2)

δjz
(r,m) =

1

hj

(
z(r,m) − z(r,m−ej )

)
, κ+ 1 ≤ j ≤ n. (2.3)

Note thatδz(r,m) is given by (2.3) ifκ = 0 andδz(r,m) is defined by (2.2) forκ = n.

Right-hand sides of equations (1.1) contain the functionalvariablez(t,x) which is the

element of the spaceC(D,Rk). Therefore we need an interpolating operatorTh :

F (Dh, R
k) → F (D,Rk) and the following assumptions on the operatorTh.

Assumption H [Th]. Suppose that the operatorTh : F (Dh, R
k) → F (D,Rk) satisfies the

conditions

1) if w, w̃ ∈ F (Dh, R
k) thenTh[w], Th[w̃] ∈ C(D,Rk) and

‖Th[w] − Th[w̃]‖D ≤ ‖w − w̃‖Dh
, (2.4)
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2) if w : D → Rk is of classC1 then there isγ : H → R+ such that

‖ Th[wh] − w ‖D≤ γ(h) and lim
h→0

γ(h) = 0, (2.5)

wherewh is the restriction ofw to the setDh.

Remark 2.1 The condition 1) of AssumptionH [Th] states that the operatorTh satisfies the

Lipschitz condition with the coefficient equal to1.

Assumption (2.5) implies that the functionw is approximated byTh[wh] and the error of

this approximation is estimated byγ(h).

We formulate a difference problem corresponding to (1.1), (1.2). Write

δ0z = (δ0z1, . . . , δ0zk),

F [z](r,m) = (F1[z]
(r,m), . . . , Fk[z]

(r,m))

and

Fi[z]
(r,m) = fi(t

(r), x(m), Thz[r,m], siδz
(r,m)
i + (1 − si)δz

(r+1,m)
i ), 1 ≤ i ≤ k,

where

siδz
(r,m)
i = (si1δ1z

(r,m)
i , . . . , sinδnz

(r,m)
i ),

(1 − si)δz
(r+1,m)
i = ((1 − si1)δ1z

(r+1,m)
i , . . . , (1 − sin)δnz

(r+1,m)
i )

and where0 ≤ sij ≤ 1, i = 1, . . . , k, j = 1, . . . , n, are given constants. We consider the

difference functional system

δ0z
(r,m) = F [z](r,m) (2.6)

with initial boundary condition

z(r,m) = ϕ
(r,m)
h on Eh.0 ∪ ∂0Eh (2.7)

whereϕh : Eh.0 ∪ ∂0Eh → Rk, ϕh = (ϕh.1, . . . , ϕh.k), are given function.

Classical difference methods for partial differential or functional differential equations

consist in replacing partial derivatives by difference expressions. Then the original problem

is transformed into difference or difference functional equations.

In recent years, a number of papers concerning numerical methods for functional partial

differential equations have been published.

Difference methods for nonlinear first order partial functional equations were studied

in [1], [2], [3], [4], [6]. The main question in this investigations is to construct a differ-

ence functional equation which satisfies consistency conditions with respect to the original

problem and to find sufficient conditions for the stability ofthe difference schemes.

Our difference functional problems have the following property: each equation in system

(2.6) contains the parameterssi = (si1, . . . , sin), 1 ≤ i ≤ k. If si = (0, . . . , 0) ∈ Rn for
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1 ≤ i ≤ k then (2.6), (2.7) reduces to the explicit difference scheme. It is clear that there

exists exactly one solution of problem (2.6), (2.7) in this case. Sufficient conditions for the

convergence of the explicit difference methods for first order partial differential equations

can be found in the monograph [5] (Chapter V).

Note that ifk = 1 ands = (s1, . . . , sn) = (1, . . . , 1) ∈ Rn then (2.6), (2.7) reduces to

the implicit difference scheme considered in [7].

Numerical methods for nonlinear parabolic problems were investigated in [8]-[10]. Dif-

ference schemes considered in the above papers depend on twoparameterss, s̃ ∈ [0, 1].

Right hand sides of difference equations corresponding to parabolic equations contain the

expressions

sδz(r,m) + (1 − s)δz(r+1,m) and s̃δ(2)z(r,m) + (1 − s̃)δ(2)z(r+1,m),

whereδ = (δ1, . . . , δn) and δ(2) = [δij]i,j=1,...,n are difference operators corresponding

to the partial derivatives∂x = (∂x1 , . . . , ∂xn
) and∂xx = [∂xixj

]i,j=1...,n andz is a scalar

unknown function. Our results are motivated by papers [8]-[10].

In the paper we start the investigations of difference schemes for nonlinear mixed prob-

lems. We prove that under natural assumptions on given functions and on the mesh there is

a class of difference schemes for a mixed problem which is convergent.

The paper is organized as follows. In Section2 we construct a class of difference schemes

for (1.1), (1.2). The convergence theorem and an error estimate for considering difference

methods are presented in Section3.

3 SOLVABILITY AND CONVERGENCE OF DIFFERENCE METHODS

We first prove that there exists exactly one solutionuh : E∗

h → Rk of problem (2.6), (2.7).

For eachx(m) ∈ Bh we put

∆(m) = {x(m+ej) : 1 ≤ j ≤ κ} ∪ {x(m−ej) : κ+ 1 ≤ j ≤ n}.

Assumption H [f ]. Suppose that the functionf : Ω → Rk, f = (f1, . . . , fk), of the

variables(t, x, w, q) is such that

1) for eachP = (t, x, w, q) ∈ Ω there exist partial derivatives

∂qf(P ) = [∂qj
fi(P )]i=1,...,k,j=1,...,n

and∂qfh(t, x, w, ·) ∈ C(Rn,Mk×n),

2) for eachP ∈ Ω and fori = 1, . . . , k the estimates

∂qj
fi(P ) ≥ 0 for 1 ≤ j ≤ κ, ∂qj

fi(P ) ≤ 0 for κ+ 1 ≤ j ≤ n

are satisfied.
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Lemma 3.1 If AssumptionH [f ] is satisfied andϕh : Eh.0 ∪ ∂0Eh → Rk then there exists

exactly one solutionuh : E∗

h → Rk of (2.6), (2.7).

Proof. Is follows from (2.7) thatuh is defined onEh.0. Suppose that0 ≤ r < K is fixed

and thatuh.i is defined onE∗

h ∩ ([−d0, t
r]×Rn) for 1 ≤ i ≤ k. Assume now thati is fixed,

1 ≤ i ≤ k. Consider the problem

z
(r+1,m)
i = u

(r,m)
h.i + h0fh.i(t

(r), x(m), (uh)[r,m], siδu
(r,m)
i + (1 − si)δz

(r+1,m)
i ) (3.1)

u
(r+1,m)
h.i = ϕ

(r+1,m)
h.i for x(m) ∈ ∂0Bh. (3.2)

Suppose now that the numbersuh.i(t
(r+1), y) wherey ∈ ∆(m) are known. Write

ψi(τ) = u
(r,m)
h.i + h0fh.i(t

(r), x(m), (uh)[r,m], Q
(r,m)
i (τ)),

where

Q
(r,m)
i (τ) =

(
1

h1

(
si1(u

(r,m+e1)
h.i − u

(r,m)
h.i ) + (1 − si1)(u

(r+1,m+e1)
h.i − τ)

)
, . . . ,

1

hκ

(
siκ(u

(r,m+eκ)
h.i − u

(r,m)
h.i ) + (1 − siκ)(u

(r+1,m+eκ)
h.i − τ)

)
,

1

hκ+1

(
siκ+1(u

(r,m)
h.i − u

(r,m−eκ+1)
h.i ) − (1 − siκ+1)(τ − u

(r+1,m−eκ+1)
h.i )

)
, . . . ,

1

hn

(
sin(u

(r,m)
h.i − u

(r,m−en)
h.i ) − (1 − sin)(τ − u

(r+1,m−en)
h.i )

))
,

Thenψ = (ψ1, . . . , ψk) : R→ Rk is of classC1 and

ψ′

i(τ) = −h0

n∑

j=1

1

hj

(1 − sij)|∂qj
fh.i(t

(r), x(m), (uh)[r,m], Q
(r,m)
i (τ))| ≤ 0

for τ ∈ R. Then equationτ = ψi(τ) has exactly one solution and consequently the number

u
(r+1,m)
h.i can be calculated. Sinceu(r+1,m)

h.i is given forx(m) ∈ ∂0Bh it follows that there

exists exactly one solutionu(r+1,m)
h.i of (3.3), (3.4) forx(m) ∈ Bh. Thenuh.i is defined on

Eh.r+1. Then by induction the solution exists and it is unique onE∗

h. �

We proof now the convergence of the difference method (2.6),(2.7).

Assumption H [f, σ]. Suppose that

1) the functionσ : [0, a] × R+ → R+ satisfies the following conditions:

(i) σ(t, ·) : R+ → R+ is continuous and nondecreasing for eacht ∈ [0, a],

(ii) the maximal solution of the Cauchy problem

w′(t) = σ(t, w(t)), w(0) = 0, (3.3)

is w̃(t) = 0 for t ∈ [0, a],
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2) the estimate

‖f(t, x, w, q) − f(t, x, w̄, q)‖∞ ≤ σ(t, ‖w − w̄‖D) (3.4)

is satisfied onΩ.

Theorem 3.2 Suppose that AssumptionsH [f ],H [f, σ] are satisfied and

1) the functionv : E∗ → Rk is a solution of(1.1), (1.2)and is of classC1,

2) h ∈ H and the functionuh : E∗

h → Rk is a solution of(2.6), (2.7)and there isα0 : H →

R+ such that

‖ϕ(r,m) − ϕ
(r,m)
h ‖∞ ≤ α0(h) on Eh.0 ∪ ∂0Eh and lim

h→0
α0(h) = 0,

3) the operatorTh : F (Dh, R
k) → C(D,Rk) satisfies the AssumptionH [Th],

4) forP ∈ Ω we have

1 − h0

n∑

j=1

1

hj

sij |∂qj
fi(P )| ≥ 0, 1 ≤ i ≤ k. (3.5)

Then there exists a functionα : H → R+ such that

‖v
(r,m)
h − u

(r,m)
h ‖∞ ≤ α(h) on Eh and lim

h→0
α(h) = 0. (3.6)

Proof. Let the functionΓh : E ′

h → Rk be defined by

δ0v
(r,m)
h = F [vh]

(r,m) + Γ
(r,m)
h on E ′

h. (3.7)

It follows from the assumptions of theorem that there existsa functionγ̃ : H → R+ such

that

‖Γ
(r,m)
h ‖∞ ≤ γ̃(h) on E ′

h and lim
h→0

γ̃(h) = 0.

We write

ε
(r)
h = max {‖(vh − uh)

(i,m)‖∞ : (t(i), x(m)) ∈ E∗

h ∩ ([−d0, t
(r)] ×Rn)}.

It follows from the definitions of difference operatorδ0 andδ that

(vh.i − uh.i)
(r+1,m)

[
1 + h0

n∑

j=1

1

hj

(1 − sij)|∂qj
fi(Pij)|

]

= (vh.i − uh.i)
(r,m)

[
1 − h0

n∑

j=1

1

hj

sij |∂qj
fi(Pij)|

]

+h0

κ∑

j=1

∂qj
fi(Pij)

[
sij

1

hj

(vh.i − uh.i)
(r,m+ej) + (1 − sij)

1

hj

(vh.i − uh.i)
(r+1,m+ej)

]

−h0

n∑

j=κ+1

∂qj
fi(Pij)

[
sij

1

hj

(vh.i − uh.i)
(r,m−ej) + (1 − sij)

1

hj

(vh.i − uh.i)
(r+1,m−ej)

]
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+h0

[
fi(t

(r), x(m), (vh)(t(r),x(m)), siδv
(r,m)
h.i + (1 − si)δv

(r+1,m)
h.i )

−fi(t
(r), x(m), (Thuh)[r,m], siδv

(r,m)
h.i + (1 − si)δv

(r+1,m)
h.i )

]
+ h0Γ

(r,m)
h.i , 1 ≤ i ≤ k,

wherePij ∈ Ω are intermediate points. According to AssumptionH [Th] we have the

estimate

‖(vh)(t(r),x(m)) − (Thuh)[r,m]‖D ≤ γ(h) + ε
(r)
h .

Thenε(r)
h satisfies the difference inequality

ε
(r+1)
h ≤ ε

(r)
h + h0σ(t(r), γ(h) + ε

(r)
h ) + h0γ̃(h), 0 ≤ r ≤ K − 1. (3.8)

Let us consider the Cauchy problem

w′(t) = σ(t, γ(h) + w(t)) + γ̃(h), (3.9)

w(0) = α0(h). (3.10)

It follows from condition 1)-(ii) of AssumptionH [f, σ] that there exists the maximal solu-

tion w̃h of the problem (3.9), (3.10) and̃wh is defined on[0, a]. Moreover

lim
h→0

w̃h(t) = 0 uniformly on [0, a].

It is easily seen that̃wh satisfies the recurrent inequality

w̃
(r+1)
h ≥ w̃

(r)
h + h0σ(t(r), γ(h) + w̃

(r)
h ) + h0γ̃(h), 0 ≤ r ≤ K − 1

and it follows from (3.10) that the inequality

w̃
(r)
h ≤ α0(h), −K0 ≤ r ≤ 0

holds. By the above relations and (3.8) we have

ε
(r)
h ≤ w̃

(r)
h , 0 ≤ r ≤ K.

Thus we get (3.6) forα(h) = w̃h(a). This completes the proof. �

Now we give an example of the operatorTh satisfying AssumptionH [Th] and the error

estimate for the difference method (2.6), (2.7).

Put

S∗ = {(j, s) : j ∈ {0, 1}, s = (s1, . . . , sn), si ∈ {0, 1} for 1 ≤ i ≤ n}.

Letw ∈ F (Dh, R
k) and(t, x) ∈ D. There exists(t(r), x(m)) ∈ Dh such that

t(r) ≤ t ≤ t(r+1), x(m) ≤ x ≤ x(m+1), (t(r+1), x(m+1)) ∈ Dh.

We define

(Thw)(t, x) =
∑

(j,s)∈S∗

w(r+j,m+s)

(
Y − Y (r,m)

h

)(j,s)(
1 −

Y − Y (r,m)

h

)1−(j,s)
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where (
Y − Y (r,m)

h

)(j,s)

=

(
t− t(r)

h0

)j n∏

k=1

(
xk − x

(mk)
k

hk

)sk

and (
1 −

Y − Y (r,m)

h

)1−(j,s)

=

(
1 −

t− t(r)

h0

)1−j n∏

k=1

(
1 −

xk − x
(mk)
k

hk

)1−sk

and we take00 = 1 in the above formulas.

Lemma 3.3 Suppose that

1) the solutionv : E∗ → Rk of differential problem(1.1), (1.2)is of classC2 and the

assumptions of Theorem3.1are satisfied withσ(t, p) = Lp, L > 0,

2) there exist̃M ∈ R+ andC̃ ∈ R+ such that

‖∂qf(t, x, z, q)‖ ≤ M̃,

‖∂xj
v(t, x)‖∞, ‖∂ttv(t, x)‖∞, ‖∂xjxj

v(t, x)‖∞ ≤ C̃

wherej = 1, . . . , n.

Then

‖u
(r,m)
h − v

(r,m)
h ‖∞ ≤ η̃

(r)
h , (3.11)

where

η̃
(r)
h = α0(h)(1 + h0L)r + γ̄(h)

(1 + h0L)r − 1

L
and

γ̄(h) = Lγ(h) + γ̃(h), γ̃(h) =
1

2
C̃h0 + Lγ(h) + C̃(2 + ‖h′‖)M̃.

Proof. From the assumptions of Lemma we conclude that the operatorsδ0, δ satisfy the

following conditions

‖δ0v
(r,m) − ∂tv

(r,m)‖∞ ≤
1

2
C̃h0,

‖δjv
(r,m) − ∂xj

v(r,m)‖∞ ≤
1

2
C̃‖h′‖, j = 1, . . . , n.

It follows from above estimates and from AssumptionH [Th] that

Γ
(r,m)
h.i = δ0v

(r,m)
i − ∂tv

(r,m)
i

+fi(t
(r), x(m), v(r,m), v(t(r),x(m)), ∂xv

(r,m)
i )

−fi(t
(r), x(m), v(r,m), Thv[r,m], siδv

(r,m)
i + (1 − si)δv

(r+1,m)
i ).

Then

‖Γ
(r,m)
h ‖∞ ≤ γ̃(h).

The functionη̃h is a solution of the problem

η(r+1) = η(r)(1 + h0L) + h0[Lγ(h) + γ̃(h)], 1 ≤ i ≤ k.

Then from Theorem 3.1 we get the assertion (3.11). �
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4 NUMERICAL EXAMPLES

Example 4.1 Forn = 2, k = 1 we put

E = {(t, x, y) : t ∈ [0, a], x ∈ [−1, 1], y ∈ [−1, 1]}. (4.1)

Consider the differential integral equation

∂tz(t, x, y) = ∂xz(t, x, y) − ∂yz(t, x, y) (4.2)

− sin
[
∂xz(t, x) − ∂yz(t, x, y) + t2

∫ 1

x

z(t, τ, y)dτ

+t2
∫ y

−1

z(t, x, τ)dτ − tet(1−y) − tet(x+1)
]
− (2t− x+ y)et(x−y).

with the initial boundary condition

z(0, x, y) = 1, x ∈ [−1, 1], y ∈ [−1, 1], (4.3)

z(t, 1, y) = et(1−y), t ∈ [0, a], y ∈ [−1, 1],

z(t, x,−1) = et(x+1), t ∈ [0, a], x ∈ [−1, 1].

The exact solution of this problem is known. It isv(t, x) = et(x−y). Puth = (h0, h1, h2)

stand for the steps of the mesh on E.

Difference method for the problem (4.2), (4.3) has the form

z(r+1,m1,m2) = z(r,m1,m2) + h0

[
sδ1z

(r,m1,m2) + (1 − s)δ1z
(r+1,m1,m2) (4.4)

−sδ2z
(r,m1,m2) − (1 − s)δ2z

(r+1,m1,m2) − sin
(
sδ1z

(r,m1,m2) + (1 − s)δ1z
(r+1,m1,m2)

−sδ2z
(r,m1,m2) − (1 − s)δ2z

(r+1,m1,m2) + (t(r))2

∫ 1

x(m1)

z(t(r), τ, y(m2))dτ

+(t(r))2

∫ y(m2)

−1

z(t(r), x(m1), τ)dτ − t(r) exp(t(r)(1 − y(m2))) − t(r) exp(t(r)(x(m1) + 1))
)

−(2t(r) − x(m1) + y(m2))z(r,m1,m2)

]
.

We puts = s1 = s2. Let us denote byzh : Eh → R the solution of the explicit difference

problem corresponding to (4.2), (4.3) which we get from (4.4) with s = 1. By uh : Eh → R

we denote the solution of the implicit difference problem received form (4.4) withs = 0. If

we put in (4.4)s = 0.5 we get the implicit difference method and by its solution we denote

ũh : Eh → R.

Write

η
(r)
h =

1

(2N + 1)2

N∑

m1=−N

N∑

m2=−N

|z
(r,m1,m2)
h − v(r,m1,m2)|, (4.5)
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η̄
(r)
h =

1

(2N + 1)2

N∑

m1=−N

N∑

m2=−N

|u
(r,m1,m2)
h − v(r,m1,m2)|, (4.6)

η̃
(r)
h =

1

(2N + 1)2

N∑

m1=−N

N∑

m2=−N

|ũ
(r,m1,m2)
h − v(r,m1,m2)|, (4.7)

The numbersη(r)
h , η̄(r)

h , η̃(r)
h are the arithmetical mean of the errors with fixedt(r). The

values of the functionsη(r)
h , η̄(r)

h , η̃(r)
h are listed in the tables. We write “x” forηh > 100.

Table of errors forh = (0.01, 0.01, 0.01)

ηh η̃h

t = 0.5 0.001554 0.001664

t = 1.0 0.002772 0.003799

t = 1.5 0.004161 0.009324

t = 2.0 x 0.011336

t = 2.5 x 0.189344

Table of errors forh = (0.05, 0.005, 0.005)

η̄h

t = 0.1 0.001631

t = 0.2 0.003236

t = 0.3 0.004798

t = 0.4 0.006284

t = 0.5 0.006986

Our experiments have the following property. The explicit method for stepsh =

(0.01, 0.01, 0.01) which are not satisfy the condition (CFL)

1 − h0

2∑

j=1

1

hj

s|∂qj
f(P )| ≥ 0, (4.8)

with parameters = 1, is not stable. The difference method withs = 0.5 for the same

steps gives better results. For the stepsh = (0.05, 0.005, 0.005) which are not satisfy the

condition (4.8) withs = 0.5, the difference method is not stable. The implicit difference

method, which we received withs = 0, is stable aside from steps of the mesh.

Example 4.2 Forn = 2, k = 1 we put

E = {(t, x, y) : t ∈ [0, a], x ∈ [−1, 1], y ∈ [−1, 1]}. (4.9)

Consider the differential integral equation

∂tz(t, x, y) = ∂xz(t, x, y) + cos
[
∂xz(t, x, y) − tyz(t, x, y)

]
(4.10)
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−∂yz(t, x, y) − sin
[
∂yz(t, x, y) − txz(t, x, z)] + z(t,

x− y

2
,
x+ y

2
)

+(xy − ty + tx)z(t, x, y) − exp (
1

4
t(x2 − y2)) − 1.

with the initial boundary condition

z(0, x, y) = 1, x ∈ [−1, 1], y ∈ [−1, 1], (4.11)

z(t, 1, y) = ety, t ∈ [0, a], y ∈ [−1, 1],

z(t, x,−1) = e−tx, t ∈ [0, a], x ∈ [−1, 1].

The exact solution of this problem is known. It isv(t, x) = etxy. Puth = (h0, h1, h2) stand

for the steps of the mesh on E.

Difference method for the problem (4.2), (4.3) has the form

z(r+1,m1,m2) = z(r,m1,m2) + h0

[
sδ1z

(r,m1,m2) + (1 − s)δ1z
(r+1,m1,m2) (4.12)

+ cos
(
sδ1z

(r,m1,m2) + (1 − s)δ1z
(r+1,m1,m2) − t(r)y(m1)z(r,m1,m2)

)

−sδ2z
(r,m1,m2) − (1 − s)δ2z

(r+1,m1,m2)

− sin
(
sδ2z

(r,m1,m2) + (1 − s)δ2z
(r+1,m1,m2) − t(r)x(m2)z(r,m1,m2)

)

+z(t(r), 0.5(x(m1)−y(m2)), 0.5(x(m1) +y(m2)))+(x(m1)y(m2)t(r)y(m2) + t(r)x(m1))z(r,m1,m2)

− exp
(1

4
t(r)((x(m2))2 − (y(m2))2)

)
− 1

]

We puts = s1 = s2. Let us denote byzh : Eh → R the solution of the explicit difference

problem corresponding to (4.10), (4.11) which we get from (4.12) with s = 1. By uh :

Eh → R we denote the solution of the implicit difference problem received form (4.12)

with s = 0. If we put in (4.12)s = 0.5 we get the implicit difference method and by its

solution we denotẽuh : Eh → R.

The numbersη(r)
h , η̄(r)

h , η̃(r)
h , given by (4.5)-(4.7) respectively, are the arithmetical mean

of the errors with fixedt(r). The values of the functionsη(r)
h , η̄(r)

h , η̃(r)
h are listed in the

tables. We write “x” forηh > 100.

Table of errors forh = (0.01, 0.01, 0.01)

ηh η̃h

t = 0.1 0.032645 0.000487

t = 0.2 x 0.000890

t = 0.3 x 0.001229

t = 0.4 x 0.001525

t = 0.5 x 0.001769
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Table of errors forh = (0.05, 0.005, 0.005)

η̄h

t = 0.1 0.005775

t = 0.2 0.010111

t = 0.3 0.013670

t = 0.4 0.016837

t = 0.5 0.018405

Conclusion from above experiment is that implicit difference method received from (4.12)

with s = 0, is stable for any choose of stepsh = (h0,, h1, h2). For stability of the explicit

difference method and implicit difference method receivedfrom (4.12) withs = 0.5, we

need satisfying the condition (CFL) given by (4.8).
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