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Abstract 

Herein, a fault-tolerant parallel pattern matching algorithm with load balancing support is 

presented, targeting at both homogeneous and heterogeneous clusters of workstations 

from the perspective of computational power. The algorithm is capable of handling up to 

(n-1) faults, introduced at any time, with n being the total number of cluster nodes. It is 

capable of handling either permanent faults or transient failure situations, temporarily 

handled as permanent, due to network delay, and thus, nodes may be returned at any 

time. The experimental results exhibit that the algorithm is capable of returning reliable 

results in acceptable time limits. 

Keywords - Parallel pattern matching, application level fault-tolerance, heterogeneous 

cluster 

 

1. INTRODUCTION 

 

Clusters of workstations are becoming more and more the current trend for distributed 

scientific computing, as they are a cost effective solution compared to high-end parallel 

supercomputers. However, the drawback of this trend is the increasing probability for 

node or link failures, as the number of nodes increases, due to the relatively cheap 

components that clusters consist of. If a single failure occurs, it can halt the tasks 

execution and tasks have to be re-executed, losing all computation carried out so far; 

hence, hardware failures must be tolerated to save all computation carried out so far. In 

order to increase the reliability of the system, fault tolerance is indispensable. Moreover, 

due to the rapid advance in performance commodity computers, when such clusters are 

upgraded by adding new nodes or even by substituting the failed ones, they become 

heterogeneous; thus, necessitating the implementation of applications that take into 

account the different characteristics of the cluster components, in order to achieve 

optimum results as far as execution time is concerned. 

The most natural way to achieve reliable results, in case of failures, is by saving 

information concerning the state and progress of an application during the computation 

phase. When components fail, the application can be returned or rolled back to its last 

saved state and computation can proceed from that stage onwards. Checkpointing and 

rollback recovery are very useful techniques to implement fault-tolerant applications. 

There are two general approaches for checkpointing, one in the system level and the other   
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in the application level. System level checkpointing, in parallel and distributed computing 

settings, issuing coordinating checkpoints to define a consistent recovery line, has 

received the attention of various researchers, as summarized in (Elnozahy et al., 2002). 

This approach integrated in the message passing library, requires no action from the 

programmer, but induces a high overhead and is generally difficult to handle in a 

heterogeneous environment. On the contrary, application level fault-tolerance is a low 

cost fault-tolerance scheme for detecting and recovering permanent or transient failures, 

it is application specific and the main considered cost is the effort of the programmer to 

incorporate this scheme into an application. Manually inserting code to save and recover 

an application state is a very error prone process (Camargo et al., 2004). 

This work concentrates on exact string matching, a subcategory of the pattern 

matching problem, whose purpose is to find all strict occurrences of a pattern string in a 

large text file [Charras & Thierry, 2004]. Using application level checkpointing, fault-

tolerance support has been added on a relaxed parallel implementation of the exact brute 

force pattern matching algorithm. Moreover, a load balancing algorithm is also applied in 

order for the application to scale up efficiently in heterogeneous cluster environments. 

The experimental results show that the application can handle various failure situations 

and scales efficiently as the number of processors increases.  

The structure of the paper is organized as follows. Section 2, begins with the 

description of the relaxed parallel brute force pattern matching algorithm. Section 3, 

describes the steps that are required to incorporate fault-tolerance support into the parallel 

pattern matching application, described in Section 2, and the issues that one must keep in 

mind in order to implement similar applications. Section 4, describes the load balancing 

algorithm used for application’s execution in heterogeneous workstations of clusters. The 

experimental results for the proposed algorithms are presented in Section 5. Finally, 

Section 6 concludes the investigation. 

 

2. PARALLEL BRUTE FORCE PATTERN MATCHING ALGORITHM 

 

The implementation of the parallel pattern matching application is based on the 

sequential version of the brute force algorithm and is relaxed; namely, no communication 

is needed between nodes during the searching phase. The brute force algorithm is not an 

optimal pattern matching algorithm, but it has been chosen, due to its simplicity and its 

computing power demands, since the purpose of this investigation is not to compare 

parallel pattern matching approaches, but to demonstrate the methodology used to 

incorporate fault-tolerance and load balancing support in such an application as well as to 

evaluate the performance of the application in a heterogeneous cluster environment. 

Before executing the application, a search file of usually huge size is transferred to 

all participating nodes. The search file being local to all nodes leads to a lower execution 

time, as no network traffic is necessary during runtime. The same approach may be 

adopted for the pattern file without having any substantial effect on the results, due to the 

small size of the pattern, as shown from the experimental results. Afterwards, each node 

is set to execute the same instructions over a different data stream, according to the 

identification    number   assigned   by   MPI,   corresponding  with  the   SPMD   parallel  
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programming model. After having all nodes finished the searching phase, i.e., the part of 

the search file corresponding to each one of them, the results of occurrences are 

accumulated to one node using an MPI reduction operation.  

Workload for the nodes is based on the total number of the cluster nodes. The search 

file size is divided with the number of nodes and each node is assigned with the same 

amount of work, ignoring specific node characteristics. This partitioning gives good 

performance gains in homogeneous clusters. However, in heterogeneous clusters the 

performance is decreased since the total execution time depends on the processing 

capacity of the slowest nodes. A load balancing algorithm for heterogeneous clusters is 

presented in Section 4.    

 

3. FAULT-TOLERANCE ALGORITHM 

 

In case one or more of the cluster nodes fail, the previous application has to be re-

executed from the beginning, losing all the results obtained up to then. In order to handle 

this situation, checkpointing and rollback recovery are necessary. So, to do this, the 

master-slave programming paradigm has been used. Fault-tolerance algorithm includes 

checkpoint critical values during runtime, failure detection and recovery of the failed 

nodes. Master node is the one who keeps all the critical values for the workers’ 

computational progress state and is responsible for the detection of possible failures and 

the reassigning of the remaining work to the remaining workers. In order for the 

application to be able to handle upon (n-1) fails, where n is the total number of nodes, 

master is always arranged to recover the first failed node. 

The critical information that has to be checkpointed at regular intervals for the 

pattern matching application is the file pointer, indicating the work progress and the 

number of occurrences found till then, for each worker node. Master node collects this 

information and stores it in a checkpoint table, which will be used later on either for fault 

detection and recovering or, in case of no occurred faults, for occurrences summation and 

application termination. Every time a node finishes its work, it is marked in a finish table, 

also created in master. The communication between the master and the worker nodes is 

performed through message passing with appropriate MPI routines. This communication 

takes place using threads that interact with the main thread of the program for each node. 

Thus, the overhead of the fault-tolerance mechanism is small and minimally affects the 

total execution time of the application (Efremides & Ivanov, 2006).   

Detection of failures is done by checking the finish table after all communication has 

stopped. At this point it is essential to refer to the kind of failures that may occur. There 

are failure situations in which the master node permanently stops receiving messages 

from one or more nodes - category of permanent faults - and failure situations where 

master node stops receiving messages for a period of time due to network delay, but 

eventually messages arrive - category of transient faults. The application is capable of 

handling both types of faults, behaving accordingly for each one of them. 

In case permanent faults have occurred, the recovery of the detected as failed nodes, 

takes place, retrieving information from the checkpoint table about their last saved 

progress  and  assigning  their  remaining  work  to the working nodes. Both working and  
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failed nodes are detected through the finish table. The application’s execution time 

depends on the number of the failed nodes, the amount of work which has been 

completed and the number of the remaining nodes which will do the recovery. In case 

transient faults have occurred, then, if the recovery of the failed nodes has already started 

and the failed nodes finally communicate with the master, the results must be taken into 

consideration, forcing the recovery process to stop, summing the results and terminating 

the application. In order to achieve this goal in a minimum time, three different 

checkpoint threads for the master have been created (MThread, MThread-Single, 

MThread-Multiple). Each one of these threads is activated according to the conditions 

taking place and only one can be active at any time. Moreover, a continuous checking 

takes place for possible messages that may be received from nodes that were considered 

as failed, till the end of the recovery.   

The fault-tolerant parallel algorithm goes as follows: 

1. The search file is divided according to the total nodes of the cluster. 

2. Worker nodes seek to the designated part of the search file according to their ID 

taken from MPI, while master always takes on the last part of the search file. 

3. Workers start the checkpoint thread in order to send their critical values to master, 

while master starts the checkpoint thread (MThread) in order to receive workers’ values 

and create the checkpoint and the finish tables. 

4. If (rank==MASTER) search for pattern occurrences into the last part of the search 

file. 

4.1. After search phase completes, wait until checkpoint thread completes as well. 

4.2. Check the finish table for possible node failures. 

4.2.1. If no fails have been detected, then sum the occurrences that each node found 

using information from the checkpoint table and send finish messages to workers. 

4.2.2. If failures are detected then,  

  4.2.2.1. If only one failure has been detected, utilize checkpoint table’s information 

for the progress of the failed node; set file pointer to the last known position; start 

MThread-Single in order to check whether or not the failed node finally returns; and if 

not, then complete the recovery and finalize the application.  

  4.2.2.2. If more than one failures have been detected, then select from the finish table 

the available nodes; send them recovering messages concerning the last known progress 

of the failed nodes, by utilizing information from the checkpoint table; start MThread-

Multiple in order to check whether or not the failed nodes finally return; renew the 

checkpoint table; start recovering the first failed node and go to step 4.1. 

5. If (rank!=MASTER) search for pattern occurrences into the corresponding part of the 

search file. 

5.1. After search phase comes to an end, wait for a message from the master node. 

5.1.1. If a finish message arrives, then exit.  

5.1.2. If a recovering message arrives, then change your ID with the one of the node to 

be recovered, set the file pointer to the last known position of the failed node, start the 

checkpoint thread for sending key values to master, finish the remaining work and go to 

step 5.1. 
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3.1. Implementation of the MThread 

After setting the file pointer to the start of its corresponding part, in order to begin the 

searching procedure, master creates the checkpoint table by starting the checkpoint 

thread. This thread is responsible for receiving workers’ messages containing the key 

values of the file pointer, which indicates the searching progress, as well as the pattern 

occurrences already found; it runs concurrently with the main thread which implements 

the searching phase. The message receiving is accomplished with the non blocking 

routine MPI_Irecv of MPI, so as to overlap communication with computation. Thread 

receives workers’ messages, one at a time and ignores repeated data that may be sent 

from a worker node, whose searching phase may advance slower than the checkpoint 

threshold. The thread ends in two cases. The first one is the case where all workers 

successfully finish their work indicating that no faults have occurred and this is done by 

checking the finish table every time a message arrives. The second one is when some (or 

even all) workers stop sending messages to the master node prior to finishing their work, 

thus indicating the presence of failures either permanent or transient due to network 

delay. When no more messages are received, master thread waits for a certain period of 

time Twait for workers’ return and after that the thread ends: 

do { 

wait for message from workers 

i. if a message arrives and the values for the particular worker are updated compared 

to those in the checkpoint table then renew values. Mark the finish table for workers 

which completed their work 

ii. else, wait for time equal to Twait and if still no messages arrive then end the thread 

} while (all workers have not yet finished) 

 

3.2. Single failure detection - MThread-Single 

In case a single failure is detected, its recovery will be made by master, as it was 

previously described. In such a case master starts the MThread-Single in order to wait for 

the failed node’s possible return before the termination of the recovery procedure. It is a 

variation of the MThread with the main difference being that this thread does not end 

after time Τwait, in case no messages are received, but it is active until the completion of 

the recovery. Thus, maximum time is given to the failed worker for possible return. As 

previously mentioned, this is a transient failure situation during which a worker node 

stops communicating with the master for a period of time. Even though the searching 

phase may proceed normally for the worker node, messages are not sent to the master 

node and thus the worker node is considered as failed. So, if at any time before the 

termination of the recovery the node sends its critical values to the master, then the 

master should be able to receive these values, terminate the recovery, set the occurrences 

found during the recovery procedure, to zero, in order to avoid wrong results, and then 

finalize the thread. 

 

3.3. Multiple failures detection - MThread-Multiple 

In case multiple failures are detected, the first failed node will be recovered by the master 

and the others by the available nodes of the cluster. After the allocation of the work that 

each node has to  perform,  the master  begins the MThread-Multiple  in  order to wait for  
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the failed nodes’ possible return before the termination of the recovery procedure. This 

thread is also a variation of the MThread and has been created in order to wait for 

possible messages from the failed nodes. In case all recovering nodes except the master 

have finished their work, the finish table would be complete and the MThread would end, 

eliminating the case of the return of the node being recovered by the master. So, if nodes 

that are recovered finally return, before the one which the master tries to recover, the 

thread does not end, but it remains active until the end of the recovery that master 

performs. If the failed node finally returns, then its values are registered to the checkpoint 

table, the recovery stops, the occurrences found during the recovery procedure in the 

master are set to zero, in order to avoid wrong results, and then the thread is finalized. 

 

3.4. Implementation of the Worker_Thread 

Worker_Thread is responsible for sending key values at regular intervals to the master, 

concerning the searching phase until it completes. If master thread stops receiving these 

messages, either due to permanent node fault, or due to network delay, the particular node 

is considered as failed. Again, note that, in the case of network delay, although master 

may have stopped receiving messages, the workers’ searching phase continues to proceed 

into their main thread.  

 

3.5. Generation of faults 

Although our application supports failures at any point in the execution, having constant 

failure points proves to be the most practical and reproducible approach for performance 

measurements. Thus, failures are performed manually by introducing a piece of code with 

a SLEEP statement into the Worker_Thread, which emulates the presence of faults, by 

stopping the message passing to master node. Through this piece of code, it is possible to 

select which nodes will be considered as failed and the exact time these fails will occur. 

Also, it is possible to select if nodes that are considered as failed will finally return, 

emulating any possible network delays that may exist and, thus, generating permanent or 

transient failure situations. 

 

4. A LOAD BALANCING ALGORITHM FOR HETEROGENEOUS CLUSTER 

ENVIRONMENTS 

 

Herein, a load balancing algorithm is presented for the previous application to achieve 

exceptional performance when executed in heterogeneous clusters. Taking into account 

that the same work is assigned to all nodes, the previous algorithm is effective only when 

executed in homogeneous clusters. In case of heterogeneous clusters, from the 

perspective of computational power, the load balancing algorithm that is presented 

assigns work to nodes in proportion to their processing capacity. Therefore, the same 

working time is achieved for all nodes, instead of the same working load that was applied 

with the previous workload distribution. The goal of the algorithm is the effective 

utilization of all cluster nodes according to their processing power. For the 

implementation of the algorithm the first step that one has to do, is to evaluate the 

processing power of each node regarding the total cluster’s processing power; this is done 

by calculating weights for each node of the cluster.      
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The total algorithm can be analyzed as follows: 

1. Calculation of weights for each node of the cluster. 

In order to calculate the weights for each node, one way is to evaluate the total time 

that each node needs to execute the sequential version of the particular application. 

Another way is to count the checkpoints needed for each node to complete the part of 

work that corresponds to it, by executing the parallel version of the algorithm using all 

nodes of the cluster. Both ways have been experimentally evaluated and the weights that 

computed came up to be alike. By using the previous methods the weights wi for each 

node are computed regarding the fastest node as follows: 

�� =
��

��
 , where tj is the minimum time evaluated and belongs to the fastest node, while 

ti is the time that each node needs to execute the sequential application, or the time that 
each node needs to execute the part of its work in the parallel application derived from 
the number of checkpoints.  

2. Normalization of weights in the unit in order to readjust the weights in a percentage 

scale.   

The normalization of the previous weights in the unit is conducted using two steps. 

The first step is to sum up all the previous weights and the second step is to divide each 

weight with the previous calculated sum for each node: 
α. ���	 = ∑ ��

�
�  , where n is the total number of cluster’s nodes 

b. �′� =
��

����
 , for each node of the cluster, where �′� represents the weights 

normalized in the unit.  

3. Calculation of the partial size of the search file’s total size that each node will process 

according to its weight. 

The partial size of the search file’s total size, that each node will process, is 

calculated from the product of the corresponding to each node normalized weight with 

the total search file size:  

for i=1 : (mysize-1) 

 fszi = �′� * search_file_size 

where mysize is the total number of processes, fsz is the part of the search file size that 

each node will process and search_file_size is the total search file size in which the 

pattern matching will take place. 

4. Calculation of the limits between which the searching phase will take place for each 

node whose partial size has been calculated in step 3, starting from the beginning for the 

first node and assigning the last part of the search file to master node according to its 

weight.  

Each node searches for patterns starting from the beginning of the part that 

corresponds to it and proceeding accordingly to its particular partial size. Calculation of 

the limits in which the searching phase will take place for each node according to its 

partial size is done as follows: 

for i=1:(mysize-1) 

 limitsi=limitsi-1+fszi 

beginning from zero point, meaning the start of the file, for the first node and assigning 

the last part to master node. 
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The platform where all the experiments were 

commodity workstations. The nodes are interconnected with a Gigabit network Ethernet. 

Many of the nodes have different hardware characteristics, thus, forming a heterogeneous 

environment. The operating system installed on 

message passing implementation used

applications were implemented in the C++ programming language. 
The hardware characteristics of each node of the cluster are presented in t
 

NODE ID

node1 

node2-4

node5 

node6 

node7-8

node9 

node10-16
Table 1: 

 

The normalized weights in the unit that were calculated for each node of the cluster are 

presented in the histogram of Figure 1.

from the DNA sequencing area. DNA sequencing is an active and very important field of 

research, with databases constantly evolving, containing an increasing amount of data. 

The search files were downloaded from the site of GenBank, a genetic sequ

that belongs to the National Institute of Health (cf. 6)

the importance of pattern matching in DNA sequencing and the large size they have. 

 

 

Figure 1: 

The application versions, whose performance were

in this section, will be referred from now on as:

BF: it is the parallel pattern matching version without fault

support, targeting at homogeneous clusters
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5. EXPERIMENTAL RESULTS 

The platform where all the experiments were performed is a 16-node cluster of 

commodity workstations. The nodes are interconnected with a Gigabit network Ethernet. 

Many of the nodes have different hardware characteristics, thus, forming a heterogeneous 

environment. The operating system installed on each node is MS Windows XP and the 

implementation used is MPICH-NT. In order to utilize threads, the 

applications were implemented in the C++ programming language.  
The hardware characteristics of each node of the cluster are presented in t

NODE ID CPU RAM 

 Intel Pentium 4 - 2.8 GHz 1GB 

4 AMD Athlon - 1.7 GHz 1GB 

 Intel Pentium 4 - 2.4 GHz 1GB 

 Intel Pentium 4 - 1.8 GHz 1GB 

8 Intel Pentium 4 - 2.8 GHz 1GB 

 Intel Pentium 4 - 3 GHz 1GB 

16 Intel Pentium 4 - 2.8 GHz 1GB 
Table 1: Hardware characteristics of the cluster 

The normalized weights in the unit that were calculated for each node of the cluster are 

ted in the histogram of Figure 1. The test files that were used as the search 

from the DNA sequencing area. DNA sequencing is an active and very important field of 

research, with databases constantly evolving, containing an increasing amount of data. 

The search files were downloaded from the site of GenBank, a genetic sequence database 

that belongs to the National Institute of Health (cf. 6). These files were chosen because of 

the importance of pattern matching in DNA sequencing and the large size they have. 

Figure 1: Normalized weights for cluster nodes 
 

versions, whose performance were evaluated and will be compared 

in this section, will be referred from now on as: 

it is the parallel pattern matching version without fault-tolerance or load balancing 

support, targeting at homogeneous clusters. 

node cluster of 

commodity workstations. The nodes are interconnected with a Gigabit network Ethernet. 

Many of the nodes have different hardware characteristics, thus, forming a heterogeneous 

each node is MS Windows XP and the 

In order to utilize threads, the 

The hardware characteristics of each node of the cluster are presented in table 1: 

The normalized weights in the unit that were calculated for each node of the cluster are 

The test files that were used as the search files are 

from the DNA sequencing area. DNA sequencing is an active and very important field of 

research, with databases constantly evolving, containing an increasing amount of data. 

ence database 

files were chosen because of 

the importance of pattern matching in DNA sequencing and the large size they have.  

 

evaluated and will be compared 

tolerance or load balancing 
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BF-LB: it is the BF version with load balancing support targeting at heterogeneous 

clusters. 

BF-FT: it is the BF version with fault-tolerance support for homogeneous clusters. 

BF-FT-LB: it is the BF-FT version with load balancing support for heterogeneous 

clusters. 

The initial time Twait that master thread (MThread) waits, for versions BF-FT and 

BF-FT-LB, - if no worker messages arrive – has been chosen to be 10 seconds in order to 

compensate with any network delays. After this period of time, if still no messages arrive, 

the thread terminates. On the other side, workers are arranged to send their critical values 

to master every one second. Thus, there is enough information for recovering failed 

nodes, without causing network congestion.  

The cases that we will examine are separated into two major categories. The first one 

is the execution of the parallel pattern matching application with the absence of faults and 

the second one is the parallel pattern matching application where faults are introduced. In 

the first category, experimental results will be presented from the execution of the 

versions BF, BF-LB, BF-FT, BF-FT-LB for two different search files and for different 

number of processors used for solving the problem, in order to evaluate the performance 

of each version and the overhead that is introduced. In the second category, experimental 

results will be presented from the execution of BF-FT and BF-FT-LB versions with an 

increasing number of faults introduced. Several different scenarios will be presented 

concerning various numbers of permanent or transient faults, as well as the exact time 

faults occur. The results concern the large search file and the total number of cluster’s 

nodes.  

Herein, speedup diagrams for all versions without faults are presented, in order to 

evaluate each version’s performance. The experimental results presented, in figure 2 and 

figure 3, include searching for occurrences of a 5Bytes pattern into two search files, one 

of size 286MB and another one of size 3,16GB. Patterns of size up to 20 Bytes have been 

tested without noting any substantial differences in the execution time. Thus, at least for 

small patterns, their size is immaterial to the performance achieved.    

  Task mapping to processors can be configured through machinefile of MPI 

implementation and herein it is done from node16 -which has the role of the master node-

to node1. Thus, all nodes except node16 are worker nodes. The execution time is the 

average time of several executions. For the versions without load balancing support, the 

speedup is almost linear only when up to 8 nodes are utilized. For more than 8 nodes the 

environment becomes heterogeneous, for the particular task mapping; thus, the utilization 

of the added nodes does not increase the speedup, due to the fact that the total execution 

time depends upon the processing capacity of the slowest nodes. 
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Figure 2: Speedup diagrams for all versions in the case of a small search file

 

Figure 3: Speedup diagrams for all versions in the case of a large search file

 

According to the experimental results shown in figure 2 and r

algorithm, it can be observed

file, due to the fact that communication overlaps computation. In case of the large search 

file, in figure 3, it can be observe

from the added fault-tolerance support. The average overhead for the BF

FT-LB versions without any faults introduced, was evaluated to 3.6745 seconds 

compared to the versions without fault

search file, with all nodes of the cluster being utilized.

From the experimental results and regarding the load balancing algorithm, it can be 

observed that, when all nodes are utilized, there is a significant decrease in the execution 

time. Thus, speedup is increased from 

compared to the BF version, achieving a 37,99% gain in the total execution time, and 

from 8,336 to 13,076 for the BF

achieving a 36,25% gain in the total execution time. 

The execution time for all versions and for the case of the large search file, utilizing 

all nodes of the cluster is presented in the histogram of figure 4
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Speedup diagrams for all versions in the case of a small search file

Speedup diagrams for all versions in the case of a large search file

According to the experimental results shown in figure 2 and regarding the fault

d that the overhead is bigger in the case of the small search 

due to the fact that communication overlaps computation. In case of the large search 

observed that the overhead decreases, indicating on

tolerance support. The average overhead for the BF-FT and the BF

LB versions without any faults introduced, was evaluated to 3.6745 seconds 

compared to the versions without fault-tolerance support and for the case of the

search file, with all nodes of the cluster being utilized. 

From the experimental results and regarding the load balancing algorithm, it can be 

that, when all nodes are utilized, there is a significant decrease in the execution 

peedup is increased from 8,890 to 14,336 for the BF-LB version 

compared to the BF version, achieving a 37,99% gain in the total execution time, and 

for the BF-FT-LB version as compared to the BF

n the total execution time.  

The execution time for all versions and for the case of the large search file, utilizing 

all nodes of the cluster is presented in the histogram of figure 4. 
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Speedup diagrams for all versions in the case of a large search file 

egarding the fault-tolerant 

that the overhead is bigger in the case of the small search 

due to the fact that communication overlaps computation. In case of the large search 

that the overhead decreases, indicating only benefits 

FT and the BF-

LB versions without any faults introduced, was evaluated to 3.6745 seconds 

tolerance support and for the case of the large 

From the experimental results and regarding the load balancing algorithm, it can be 

that, when all nodes are utilized, there is a significant decrease in the execution 

LB version as 

compared to the BF version, achieving a 37,99% gain in the total execution time, and 

compared to the BF-FT version, 

The execution time for all versions and for the case of the large search file, utilizing 
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Figure 4: Execution time for all versions in the case of the large search file utilizing all nodes of the cluster

 

The execution time of the serial brute force pattern matching algorithm has been 

evaluated to 517,708 seconds

 

5.1. Experimental results for

Herein, experimental results 

using the large search file, when permanent faults occur.

examined. The first is the case where faults a

application’s execution, while the second is the case where faults are introduced 20 

seconds after the beginning of the application’s execution, when a part of the work has 

already been performed by all nodes. In the h

execution time that each application needed to complete for the two cases and for an 

increasing number of faults introduced. 

grouped. Faults of 1, 2, 8, 9, 15 nodes ar

recovery of all failed nodes is performed by the master node, the only one that is 

considered as a working node. In case master node fails, then the whole application will 

also fail. In order to deal with th

adopted in order to replicate the master node, offering high availability 

5).  

Figure 5: Execution time for BF_FT and BF_FT_LB versions for an increasing number of permanent 
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Execution time for all versions in the case of the large search file utilizing all nodes of the cluster

The execution time of the serial brute force pattern matching algorithm has been 

seconds. 

Experimental results for the case of permanent node faults 

Herein, experimental results will be presented for the BF-FT and BF-FT-

le, when permanent faults occur. Two characteristic cases will be 

examined. The first is the case where faults are introduced at the beginning of the 

application’s execution, while the second is the case where faults are introduced 20 

seconds after the beginning of the application’s execution, when a part of the work has 

already been performed by all nodes. In the histogram of figure 5 is presented

execution time that each application needed to complete for the two cases and for an 

increasing number of faults introduced. It follows table 2, in which all these results are 

grouped. Faults of 1, 2, 8, 9, 15 nodes are introduced, where in the case of 15 faults the 

recovery of all failed nodes is performed by the master node, the only one that is 

considered as a working node. In case master node fails, then the whole application will 

also fail. In order to deal with this, additional hardware and software approaches must be 

adopted in order to replicate the master node, offering high availability functionality (

Execution time for BF_FT and BF_FT_LB versions for an increasing number of permanent 
faults 
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Execution time for all versions in the case of the large search file utilizing all nodes of the cluster 

The execution time of the serial brute force pattern matching algorithm has been 

-LB versions, 

Two characteristic cases will be 

re introduced at the beginning of the 

application’s execution, while the second is the case where faults are introduced 20 

seconds after the beginning of the application’s execution, when a part of the work has 

is presented the 

execution time that each application needed to complete for the two cases and for an 

able 2, in which all these results are 

e introduced, where in the case of 15 faults the 

recovery of all failed nodes is performed by the master node, the only one that is 

considered as a working node. In case master node fails, then the whole application will 

is, additional hardware and software approaches must be 

functionality (cf. 
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Without Load 

Balancing  

(BF-FT ) 

Time in 

seconds 

With Load 

Balancing 

(BF-FT-LB) 

Time 

in 

seconds 

No FAULTS 62,106 No FAULTS 39,593 

# of FAULTS # of FAULTS 

From the 

beginning (time:0) 

From the 

beginning (time:0) 

1F(1) 112,091 1F(1) 86,304 

2F(1,8) 113,035 2F(1,8) 86,721 

    2F(1,2) 104,627 

8F(1,2,3,4,5,6,7,8) 94,516 8F(1,2,3,4,5,6,7,8) 102,942 

9F(1,2,3,4,5,6,7,8,9) 145,796 9F(1,2,3,4,5,6,7,8,9) 168,026 

15F(All except 16) 637,716 15F(All except 16) 649,328 

After having 

performed 20 

seconds of work 

After having 

performed 20 

seconds of work 

1F(1) 91,925 1F(1) 65,889 

2F(1,8) 92,972 2F(1,8) 66,086 

    2F(1,2) 72,736 

8F(1,2,3,4,5,6,7,8) 78,809 8F(1,2,3,4,5,6,7,8) 72,720 

9F(1,2,3,4,5,6,7,8,9) 110,844 9F(1,2,3,4,5,6,7,8,9) 104,346 

15F(All except 16) 313,412 15F(All except 16) 309,449 

Table 2: Analytical and grouped results of figure 5 

 

Due to the heterogeneity of the nodes, the execution time for each scenario depends on 

which nodes fail and which nodes are available in order to make the recovery of the 

failed ones. For our scenarios, the nodes which fail are marked into brackets in the above 

table. The nodes that recover the failed ones are selectively chosen, beginning from the 

master node, for the recovery of the first failed node, and finding the available ones in 

order to assign them the task of recovering the rest of the failed nodes.    

The main objective of the applications is to return correct pattern occurrences, for 

each of the above mentioned scenarios and this must be done in acceptable time limits. 

The experimental results confirm the above goal, showing that the application can 

effectively handle up to (n-1) faults. 

The total execution time depends upon the time that each application requires to 

complete without any faults occurrence, plus the time defined for the master node to wait 

for any message being received, when communication between workers and master node 

stops; plus the time that the slowest recovery node needs for completing the remaining 

work of the failed node recovering: 
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where  is the total execution time, T./  is the execution time when no faults occur, T0123  

is the waiting time, which has been selected to be 10 seconds for all the experiments, �4� 

is the weight of the recovery node, �5� is the weight of the failed node that is recovered 

by the node whose weight is �4� and 67�48	9�� is the remaining time that the failed node 

would need to complete its work if it had not failed. The index i refers to the ID of the 

failed nodes and to the ID of the nodes that make the recovery, accordingly.  
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When up to 50% of nodes present a failure, then their recovery takes place 

concurrently from the other 50% of nodes; consequently the worst total execution time 

increases similarly to the case where only one node fails. In case more than 50% of nodes 

fail, then due to the fact that there are not enough remaining nodes to recover the failed 

ones concurrently, the total execution time increases, depending on how many of the 

nodes are available to be utilized for the recovery. 

 

5.2. Experimental results for the case of transient node faults 

Herein, experimental results will be presented for the BF-FT and BF-FT-LB versions, 

using the large search file, when one and two transient faults occur. Transient faults, are 

faults detected due to network delay. Although the recovery process starts, worker nodes 

finally communicate with the master node sending their key values. Similar to the 

previous section, two typical cases will be examined. The first is the case where faults are 

introduced at the beginning of the application’s execution, while the second is the case 

where faults are introduced 20 seconds after the beginning of the application’s execution, 

when a portion of the work has already been performed by all nodes.  

       The nodes that are detected as failed, but finally return, are marked in brackets in 

table 3. Moreover, the exact time the nodes return is also referred. As it can be observed, 

while the recovery of the considered as failed nodes (due to large network delay) may has 

started, if nodes finally return then the application is terminated with a total execution 

time depending upon the return time of the last node. The total number of pattern 

occurrences is correctly computed in every case.   

 

 

 
Without Load Balancing 

(BF-FT ) 

Time in 

seconds 

With Load Balancing 

(BF-FT-LB ) 

Time in 

seconds 

# of FAULTS # of FAULTS 

From the beginning 

(time:0) 

From the beginning 

(time:0) 

1F(1) : returns at the 75th  
second 76,779 

1F(1) : returns at the 55th  
second 57,141 

2F(1,8) : return at the 75th  
second 76,215 

2F(1,8) : return at the 55th  
second 56,769 

After having performed 

20 seconds of work 

After having performed 

20 seconds of work 

1F(1) : returns at the 75th  
second 76,719 

1F(1) : returns at the 55th  
second 57,376 

2F(1,8) : return at the 75th 
second 76,939 

2F(1,8) : return at the 55th  
second 56,814 

Table 3: Experimental results for the case of transient node faults 

 

5.3. Experimental results for the case that a recovering node also fails 

In the following table the experimental results for a case a node that recovers a failed 

node also fails, are presented. More specifically, the case where two nodes are detected as 

failed and the recovery process starts is considered. The first failed node is recovered by 

the master node, while the second failed node is recovered by a worker node. While the 

worker node performs the recovery, it also fails and thus the remaining work is finally 

performed  by  the  master node. The execution time that is marked concerns both BF-FT  
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and BF-FT-LB versions, when the initial faults occur a) at the beginning of the execution, 

and b) after having performed 10 seconds of work. The second fault, the one for the 

recovering node, also occurs after having performed 10 seconds of the remaining work.  

 Thus, from the experimental results of table 4, it can be observed that even when a 

recovering node also fails, the application is capable of completing the remaining work in 

acceptable time limits. 

6. CONCLUSIONS 

 

Herein, a fault-tolerant parallel pattern matching algorithm with load balancing support 

for homogeneous/heterogeneous clusters has been presented. The main intention was the 

return of reliable results in any case of faults, either permanent or transient, in acceptable 

time limits. In case of occurring faults, transparently to the user, the application can 

recover from any number of faults, provided that the master node is still up. As seen from 

the experimental results, the overhead of the fault-tolerant mechanism is relatively small 

when compared to the overhead the re-execution of the application would cause. 

Consequently, such an approach is highly recommended for long hour applications 

executed on commodity clusters, where faults are most likely to occur. Moreover, the 

load balancing algorithm for heterogeneous cluster environments presented herein, 

exhibited a significant increase in applications’ speedup. 

 

Without Load 

Balancing (BF-FT ) 

Time in 

seconds 

With Load Balancing 

(BF-FT-LB ) 

Time in 

seconds 

2 (+1) Faults(1,8,15) : 
Initial faults occur at the 
beginning of the 
application’s execution 
Second fault occurs 
after having performed 
10 seconds of work 

141,913 

2 (+1) Faults(1,8,15) : 
Initial faults occur at 
the beginning of the 
application’s execution 
Second fault occurs 
after having performed 
10 seconds of work 

113,700 

2 (+1) Faults(1,8,15) : 
Inital faults occur after 
10 seconds of the 
application’s execution 
Second fault occurs 
after having performed 
10 seconds of the 
remaining work 

121,501 

2 (+1) Faults(1,8,15) : 
Initial faults occur after 
10 seconds of the 
application’s execution 
Second fault occurs 
after having performed 
10 seconds of the 
remaining work 

92,837 

Table 4: Experimental results for the case a recovering node also fails 
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