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Abstract: In this paper a neural network based method of local rainfall prediction is proposed. This 
method is developed based on past observations on various atmospheric parameters such as 
temperature, relative humidity, vapor presser, etc. We propose a neural network model whose 
architecture combines several multilayer perceptron networks  (MLPs) to realize better performance 
after capturing the seasonality effect in the atmospheric data. We also demonstrate that the use of 
appropriate features can further improve the performance in prediction accuracy. These observations 
inspired us to use a feature selection MLP, FSMLP, (instead of MLP) which can select good features 
on-line while learning the prediction task. The FSMLP is used as a preprocessor to select good features. 
The combined use of FSMLP and SOFM-MLP results in a network system that uses only very few 
inputs but can produce good prediction. 
 
Keywords – Rainfall, feature selection, multi-layer perceptron, neural networks, backpropagation, 
atmospheric science. 
 

1. INTRODUCTION 
 
There are many real life problems in which future events need to be predicted on the basis of past 
history. In such cases, knowledge of underlying laws governing the process can be very useful. The 
discovery of strong empirical regularities in observations on a given system can also help prediction. 
However, the laws underlying the behavior of a system are not easily discovered and the empirical 
regularities or periodicities are not always evident and can often be masked by noises. 
 
Lower atmospheric parameters are used in various applications such as avionics, pollution dispersal, 
communication, etc.  Therefore the accurate measurement or prediction of these parameters is 
necessary. Though perfect prediction of these parameters is hardly ever possible, neural networks can 
be used to obtain a reasonably good prediction in many cases (Tsintikidis, 1997; Salehfar, 1998; Pal et 
al., 2003; Sarma et al., 2005).  Weather forecasting needs to estimate or predict atmospheric parameters 
(e.g., temperature, rainfall, relative humidity, wind speed, wind direction, atmospheric pressure, etc.)  
well in advance.   Often it is very difficult to obtain an accurate prediction because of many other 
factors like topography of a place, surrounding structures and environmental pollution.  The lower 
atmosphere is continuously changing. The accuracy of a forecasting system may be improved if the 
system considers these factors. 
 
Rainfall is not a regular phenomena in all places. It has some seasonality effects. So the rainfall 
prediction problem is not similar as other regular atmospheric parameters like temperature, humidity, 
etc. Rainfall is also a time series data like atmospheric pressure, temperature, vapor pressure, relative 
humidity, radiation, etc. The rainfall pattern of Calcutta is shown in Figure 1. Some of the traditional 
time series analysis of the rainfall is shown in Table 2.  
 
Here we focus on prediction of rainfall based on past measurements of various atmospheric parameters. 

Our assumption is that short-term changes in the dynamics of the atmosphere will be captured in the 

data available for forecasting.  Normally, rainfalls are measured once in a day at different places using 
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rain gauge by the department of meteorology. Other parameters such as wind direction and its velocity, 
temperature, relative humidity, vapor pressure, radiation, etc. are also measured by the meteorologists. 
 

 
Figure 1. Actual rainfall at Dum Dum, Calcutta Station over consecutive 7 years (1989-95). 

 
We have collected the following information for a day from the meteorology department: (1) mean sea 
level pressure at 1730 Hrs. and 0630 Hrs., (2) vapor pressure at 1730 Hrs. and 0630 Hrs., (3) relative 

humidity at 1730 Hrs. and 0630 Hrs., (4) maximum temperature at 1730 Hrs., (5) minimum temperature 
at 0630 Hrs., (6) maximum radiation, (7) minimum radiation and (8) rainfall.  We have daily 
observation on these variables for the period 1989-95. Figure 1 shows the variation of the rainfall over 
the said period of 7 years. 
 
In this paper first we study the effectiveness of multiplayer perceptron networks for prediction of 
rainfall. Next we design a hybrid network which uses both self-organizing feature map (SOFM) and 
MLP to realize a much better prediction system. Then we demonstrate that use of appropriate features 
cannot only reduce the number of features but also can improve the prediction accuracy. We then use a 
feature selection MLP, which can select good features on-line while learning the prediction task. This 
finally results in a network system that uses only very few inputs and can produce good prediction. 

 

2. SOME POPULAR PREDICTION METHODS TO RAINFALL 

FORECASTING 
 
In this section we consider two prediction model based on neural networks and statistical methods, and 
investigate their effectiveness in predicting the rainfall. We use the multi-layer perceptron (MLP) 
network and the auto-regressive (AR) model. 
 
We make a brief, but comprehensive discussion of the MLP network because this is used later to design 
a more effective neural network for rainfall prediction. 
 
The MLP network consists of several layers of neurons of which the first layer is known as the input 

layer and the last one is known as the output layer, remaining layers are called hidden layers. A typical 
MLP network is shown in Fig. 2.  The nodes in successive layers are fully connected but there is no 
connection within a layer.  Every node, in the hidden layers and the output layer computes the weighted 
sum of its inputs and apply a sigmoidal activation function to compute its output, which is then 
transmitted to the nodes of the next layer as input (Haykin, 2001).  The main objective of the MLP 
learning is to set the connection weights in such a way that the error between the network output and 
the target  output  is minimized.    During   learning the  network weights may  be updated  by several  
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methods of which the backpropagation technique is the most popular one. In this work we use the 
backpropagation learning.  
 
It is known that under a fairly general assumption a single hidden layer is sufficient for a multilayer 
perceptron to compute an uniform approximation of a given training set (represented by the set of 
inputs and a desired (target) output) (Haykin, 2001).  Hence in this study we restrict ourselves to a 
three-layer network, i.e., one hidden layer. 
 

 
Figure 2. An MLP for rainfall forecasting. 

 
In addition to MLP we also use autoregressive (AR) model. In AR model, rainfall at time t is predicted 
using a linear function of only past rainfall of a few days.  
 
The auto-regressive (AR) model of order p, that is, AR(p) predicts the current (tth) value x(t) of a 
variable x using its p previous observations such as x(t – 1), x(t – 2), …, x(t – p).  Mathematically, the 

AR(p) model can be expressed as x(t) = a0 + Σ1 ≤i≤ paix(t−i), where ai's are the coefficients. For 
example, in rainfall prediction, the AR(p) model computes (predicts) the rainfall of the tth day (R(t))  

based on last p days rainfall R(t−1), R(t−2), …, R(t−p). 
 
We use an AR model of order three, i.e., the rainfall of the tth day is predicted based on the rainfall of 

past two days, i.e., days t−1, t−2. The performance of this AR model is shown in Table 2.  In later 
section we shall discuss a feature selection mechanism that rejects rainfall information beyond  past 
two days.  In this regard, one can, of course, use model selection criteria such as Akaike-Information-
Criteria (AIC) (Akaike, 1974). 
 

3. DATA PREPARATION 
 
MLP networks: For a particular day t, we have observation on 11 variables. Let us denote them by x(t) 

∈ℜ11. Now let us assume that the rainfall for day t, i.e., R(t), are determined by the atmospheric 
conditions of past k days and t – 2   date feature. 
 

Thus we attempt to predict R(t) using X(t) = (x(t − 1), x(t − 2), …, x(t − k)) + 1 ∈ ℜ11k+1 .  

If k = 2, then we use (x(t − 1), x(t − 2)) ∈ ℜ23 to predict Yt = R(t). 
 
We have N number of observations. Now we construct the input (X) and output (Y) data for training 

and test the network, where X= {X(N), X(N − 1), …, X(N − k)} and Y = {Y(N), Y(N − 1), …, Y(N − 

k)}. In order to train the network we use input-output pairs (X(i),Y(i)), i = N, N − 1, N − 2, …, N − k.  

In this case we have (N − k) pairs. Note that Yt = R(t).  After obtaining (X, Y), we partition X (and also 

Y) randomly as Xtr (Ytr) and Xte (Yte) such that Xtr ∪ Xte= X, Xtr  ∩ Xte = φ.  (Xtr, Ytr) is then used for 
training the system and (Xte, Yte) is used to test the system. So our MLP will have 11k +1 input nodes 
and 1 output nodes. In our data set N = 700 |Xtr| = 600, |Xte| = 170 and we use k = 2. 
 
AR model: The rainfall, R(t) of the t-th day is determined using the rainfalls of three previous days, 

i.e., using R(t − 1), R(t − 2), R(t − 3).   
 

3.1 Results 
 
We have made several runs of the MLP net with different hidden nodes (nh). Table 1 reports the 
average performance (average on 10 runs) on the test data for nh = 5, 10, 15 and 20 nodes. Table 1 
shows the cumulative percentage of prediction within different ranges. For example, the column with  
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nh = 5 shows that on the test data the  network  could  make  prediction  with ≤ ±2.5mm error in 83.67% 
cases.  It is interesting to note that the networks with nh= 5, 10, 15 and 20 perform reasonably well but 
the performance degrades with increase in the number of hidden nodes beyond 20.   
 
 
 

 
Table 1: Cumulative percentage frequency for MLP Networks 

Range % Frequency of rainfall for Test data 

in mm nh=5 nh=10 nh=15 nh=20 

±0.5 44.89 51.02 51.02 53.06 

±1.0 58.16 67.34 63.26 66.32 

±1.5 75.51 78.57 76.53 77.55 

±2.0 78.57 82.65 79.59 79.59 

±2.5 83.67 85.71 83.67 83.67 

±3.0 85.71 86.73 85.71 85.71 

±3.5 87.75 87.75 87.75 87.75 

±4.0 87.75 87.75 87.75 87.75 

±4.5 87.75 89.79 88.77 88.77 

±5.0 89.79 90.81 88.77 89.79 

Max Dev 135.7 136.6 126.4 135.9 

Avg Dev 13.3 8.2 3.3 6.3 

 
 
Table 2 summarizes the performance of AR(3) model, MLP model and SOFM-MLP (self-organizing 
feature map MLP). The performance of the AR system exhibits a poorer performance than the two 
neural models. 
 
The results obtained from MLP are satisfactory. But these results are not so good. One possible reason 
for this can be the presence of seasonality. This can be improved further.  So we now propose a hybrid 
network which can account for seasonality of data.  Our basic philosophy would be as follows. We 
group the data, X, into a set of homogeneous subgroups. Then for each subgroup we train a separate 
feed forward network. In this prediction, first we have to choose the appropriate trained MLP and then 
apply the test input to that net to get the prediction.  The partitioning of the training data will be done 
using a self-organizing feature map (SOFM).  Here we first briefly describe the SOFM, before 
describing the prediction network. 
 

Table 2: Cumulative percentage frequency for SOFM-MLP, MLP, AR models 

Cumulative Frequency for SOFM-MLP, MLP and AR models. 

Range SOFM-MLP MLP AR 

±0.5 87.73 83.53 4.95 

±1.0 90.78 84.12 5.20 

±1.5 93.28 85.88 5.24 

±2.0 95.21 87.06 5.24 

±2.5 95.77 88.23 5.24 

±3.0 96.70 88.82 5.29 

±3.5 97.08 88.82 5.36 

±4.0 97.26 89.41 5.44 

±4.5 97.64 90.00 5.52 

±5.0 97.82 90.00 5.56 

 
 

4. SOFM  NETWORK 
 
Kohonen's self organizing feature map (SOFM) has been successfully used in numerous applications 
such as pattern recognition (Kohonen, 1987), image processing (Nasarabadi, 1988), process control 
(Mark, 1988).  Designing of classifiers (Mitra 1994) and other pattern recognition systems based on 
SOFM (Chi, 1995) are some of the most successful areas of its application.  SOFM (Kohonen, 1990) 
has the interesting  property of  achieving a distribution  of the weight  vectors that approximates the  
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distribution of the input data.  This property of the SOFM can be exploited to generate prototypes 
which in turn can partition the data into homogeneous groups. We want to use this property. 
 

4.1 Architecture 
 

The self-organizing feature map (SOFM) is basically a transformation AD
SOFM : ℜp → V(ℜq) of higher 

dimensional (p) data to lower dimension (q) by an algorithm. This is often advocated for visualization 
of metric-topological relationships and distributional density properties of feature vectors (signals) X = 

{x1, …, xN} in ℜp. In principle X can be transformed onto a display lattice in ℜq for any q. SOFM is 
implemented through a neural network as shown in Fig. 3.  The visual display produced by AD

SOFM 

helps to form hypothesis about topological structure present in X. Here we consider (m × n) structure 

and displays in ℜ2.  
 

A SOFM network is shown in Fig. 3, where input vectors x ∈ ℜp are distributed by a fan-out layer to 

each of the (m × n) output nodes in the competitive layer. Each node in this competitive layer has a 

weight vector vij attached to it where i ∈ {1,2, …, m} and j ∈ {1,2, …, n}.  This attached weight vector 

is equivalent to the prototype of the cluster. Let Op = {vij} ⊂ ℜp denotes the set of m × n weight 

vectors. Op is (logically) connected to a display grid O2 ⊂ V(ℜ2).  Now (i, j) in the index set {1,2, …, 

m} × {1,2, …, n} is the logical address of the cell. There is a one-to-one correspondence between the p 

dimensional vector vij and the (i, j)th cell, i.e.,  Op ←O2 where where i ∈ {1,2, …, m} and j ∈ {1,2, …, 
n}. 
 

 
Figure 3. The SOFM network architecture. 

 
 

4.2 Algorithm 
 
The feature mapping is an iterative algorithm. It starts with (usually) a random initialization of the 
weight vectors vij for i =1,2, …, m and j =1,2, …, n. For notational clarity we suppress the double 

subscripts in v. Now let an input vector x ∈ ℜp enter the network and let s denote the current iteration 

number. During sth iteration, find a vector v which is obtained after (s – 1)th iteration, i.e., vr,s−1, that 

best matches the input vector x in the sense of minimum Euclidean distance in ℜp. This vector, vr,s−1 
has an (logical) ``image" which is the cell in O2 with subscript r (as shown in Fig. 4). Next a 
topological (spatial) neighborhood Nr(s) centered at r is defined in O2, and its display cell neighbors are 

located. A 3×3 window, N(r), centered at r corresponds to updating nine prototypes in ℜp. Finally, vr,s−1 

and other weight vectors associated with cells in the spatial neighborhood Ns(r) are updated using the 
rule 
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Vk,s = vk,s−1 + Hrk(s)(x − vk,s−1). 
Here r is the index of the ``winner" prototype 

r = arg mink {|x − vk,s−1|} 

and |∗| is the Euclidean norm on ℜp.  
 
The function Hrk(s) which expresses the strength of interaction between cells r and k in O2 usually 
decreases with s, and for a fixed s it decreases as the distance (in O2) from cell r to cell k increases.  

Hrk(s) is usually expressed as the product of a learning parameter αs and a lateral feedback function 

gs(dist(r,k)). A common choice for gs is gs(dist(r,k)) = exp{−dist
2(r,k)/σs

2}. αs and σs both decrease with 
s. The topological neighborhood Nr(s) also decreases with s. This scheme, when repeated long enough, 

usually preserves spatial order in the sense that weight vectors which are metrically close in ℜp 
generally have, at termination of the learning procedure, visually close images in the viewing plane. 

We repeat the SOFM for (500 × m × n) steps (Kohonen, 1990). 

 
 

5. SOFM-MLP HYBRID NETWORK 
 
 The architecture of this hybrid network is shown in Fig. 4. It has eight layers. The first layer with p 
nodes scales the data -- it is the scaling interface between user and the system at the input side. The 
second and third layers constitute the SOFM layer. The output of the scaling layer is fed as input to the 
SOFM layer.  So the second layer has p nodes. There are complete connections between layers 2 and 3 
as discussed earlier for the SOFM net.  
 
  Let the number of nodes in the output layer of the SOFM network is K.  So, there are K MLP 
networks, each of which receives p inputs. Consequently, the fourth layer has Kp nodes. These Kp 
nodes constitute the input layer of a set of K MLP networks. Without loss of generality, we assume that 
each of the K MLP networks has only one hidden layer, although it could be more than one and also it 
can vary for different MLP nets. Let the nodes in layer four be numbered as Ni, i=1, 2, …, Kp. Nodes 
N1 to Np will be the input nodes of the first MLP (M1); nodes Np+1 to N2p will be input nodes of the 
second MLP (M2); Similarly, nodes N(K-1)p+1 to Nnp will be the input nodes of Kth MLP, MK.  As 
mentioned earlier, p = 11k+1. 
 
The j-th input node of MLP Mi gets two inputs from the previous layers: the jth normalized input (say 
xj) and the output of the ith node of the SOFM network (say oi). Each node of layer four computes the 
product of the two inputs it receives, i.e., the jth input node of Mi computes xj. oi as output and passes it 
on the first hidden layer of the MLP network, Mi.  Since only one output of the SOFM layer will be one 
and rest of the outputs will be zero, only one of the MLP networks, which is connected to the winner 
node, will get the normalized input unattenuated.  While all inputs to each of the remaining (K-1) MLP 
will be zero. So only one of the MLP will be activated. 
 
Since we assume only one hidden layer, the nodes in layer six are the output nodes of the MLP nets. 
Each MLP, Mi will have two output nodes. Let us denote these nodes by O6

i where the index i 
corresponds to the ith MLP, Mi.  Layers 4 - 6 together constitute the MLP layer in Fig. 4. The outputs 
of this MLP-layer are then aggregated in layer seven which has just one node.  Let us denote this node 

by R.  Now nodes O6
i, ∀ i=1,2, …, K are connected to node m and O6

i2, ∀ i=1,2, …, K are connected to 
node M. All connection weights between layers 6 and 7 are set to unity and node R computes the 
weighted sum of all   inputs as the output which is then passed to the scaling layer. Note that, the 
network architecture ensures that the aggregated output that is fed to the scaling layer is nothing but the 
output of the MLP corresponding to the winning node of the SOFM network. 
 
The prototypes generated by SOFM not only preserves topology but also density. We want to have this 
density preservation property. If there is a dense cluster in the input space SOFM will place more 
prototypes there, consequently we will have more competitive MLPs for dense regions. Hence finer 
details of the process can be modeled better resulting in enhancement of overall performance. None of 
clustering algorithm has this density matching property, thereby making the self-organizing map 
somewhat superior to clustering algorithm. 
 

5.1 Training the SOFM-MLP Hybrid Network 
 
First Xtr is normalized  by the input normalization (i.e., scaling) layer.  Then with the normalized Xtr 
the SOFM net is trained. Once the SOFM training is over, then Xtr is partitioned into K subsets, X(l)

tr, l 
= 1, 2, ..., K as follows: 
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X(l)
tr = xi ∈ ℜp  | || xi − vl|| = minj||xi  − vj|| . 

In other words, X(l)
tr is the set of input vectors for which the l-th prototype, vl of the SOFM becomes 

the winner.  Let Y(l)
tr be the set of output vectors associated with vectors in X(l)

tr.  Now we train K 
multilayer perceptron nets M1, M2,  ..., MK, where Ml is trained with X(l)

tr, Y
(l)

tr.  Note that, each of Ml, l 
= 1, 2, ..., K will have the same number of nodes in the input layer, i.e., p = 11k and the same number 
of nodes in the output layer.  But the number of nodes in the hidden layer for different Ml could be 
different. This training is done off-line and during training, we do not consider the output of the SOFM. 
In fact, we do not feed the input to SOFM for training the MLP. 
 
Once the training of both SOFM and K MLP's is over, we are in a position to use the hybrid net for 
prediction of rainfall. 
 

Consider the input vector x(t) ∈ ℜ11k  (this will be generated based on 11 observations on each of the  
past k days). Now x(t) is applied to the first layer. The first layer normalizes it and the normalized input 
then goes to the SOFM layer. x(t) makes the output of only one of the K SOFM output nodes, say of 

the lth node,  high (1) and sets the rest (K−1) outputs to zero. The normalized x(t) and output of the ith 
SOFM node are now fed to the ith MLP Mi, i = 1, 2, ..., K. Consequently, only the lth MLP will be 
active and rest of the MLPs will be inactive. The integrated output from the MLP layer will be nothing 
but the output of the lth MLP, which will then be scaled back to the original scale by the output scaling 
layer -- and we get the prediction for the rainfall of day t + 1. 
 

 
Figure 4. A hybrid neural net for rainfall prediction. 

 
Table 3: Cumulative percentage frequency table for SOFM-MLP when observations on past 2 days are used as 
input (Test sample) 

Range % Frequency of rainfall for test data 

in mm nh=5 nh=10 nh=15 nh=20 

±0.5 82.3 81.7 85.3 83.0 

±1.0 84.3 83.7 86.5 85.0 

±1.5 87.0 85.5 88.0 87.5 

±2.0 87.8 87.5 88.5 88.2 

±2.5 88.8 89.0 89.3 89.2 

±3.0 89.2 89.7 90.3 89.5 

±3.5 89.5 90.0 90.7 89.8 

±4.0 89.8 90.3 90.7 90.0 

±4.5 90.5 90.8 90.8 90.5 

±5.0 90.8 91.0 91.3 91.2 

Max Dev 77.2 76.8 79.0 75.9 

Avg Dev 1.9 1.9 1.6 1.8 
 

5.2 Results 
 
Table 3 depicts the performance of the SOFM-MLP network on the test data when each of the K (= 8) 
MLPs uses nh= 10, nh = 15 and nh = 20 nodes in the hidden layer.  For the SOFM layer we have used 8 
nodes thereby the training data were partitioned into 8 homogeneous subgroups. For this data set the 
choice of 8 was made based on a few experiments. In this case, use of more than 8 nodes results in 
some clusters with very few data points.  
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Each MLP is trained 10 times with different random initialization and Table 3 represents the average 
prediction accuracy over these runs.  From Table 2 we find that within  an error of ±1.0 mm, the 
SOFM-MLP shows an improvement between 83.7% to 86.5% over the direct use of MLP. In case of an 
error of ±5.0 mm, this improvement is about 90.8% to 91.3%.  If we consider the maximum deviation 
and the average deviation, we also find consistently better results for SOFM-MLP. 
 

6. ONLINE FEATURE SELECTION AND HYBRID NETWORK 
 
We have observed two things: the hybrid network works better than MLP and the choice of good 
features improves the prediction accuracy.  Therefore, if we can do online feature selection, i.e., select 
the good features while learning the prediction task, we can probably further improve the performance 
of the network and this can also tell us about various important features responsible for rainfall. This 
may help us to get a better insight into the rainfall process. We try to do these now. 
 
6.1  Online Feature Selection Technique 

 
Here we choose good features that will improve the rainfall prediction.  An online feature selection 
network selects the good features while learning the estimation task. We can probably further improve 
the performance of our network and this can also tell us about various important features responsible 
for this prediction.  

 
In a standard multilayer perceptron network, the effect of some features (inputs) can be eliminated by 
not allowing them into the network. The “partially useful” features can be identified and attenuated 
according to their relative usefulness (Pal and Chantalapudi 1997, Pal et al. 2003, Sarma et al 2005).  
This can be realized by associating an adaptive gate to each input node.  The gate should be modeled in 
such a manner that for a good feature, it is completely opened and the feature is passed unattenuated 
into the net; while for a bad feature, the gate should be closed tightly. On the other hand for a partially 
important feature, the gate could be partially open. Mathematically, the gate is modeled by a function F 
with a tunable parameter. The degree to which the gate is opened determines the goodness of the 
feature.  We multiply an input feature value by its attenuation value and the modulated feature value is 
passed into the network. The gate functions attenuate the features before they propagate through the net 
so we may call these gate functions as attenuator functions. A simple way of identifying useful gate 
functions is to use s-type (or sigmoidal) functions with a tunable parameter which can be learnt using 
training data. 

 
Let F: R → [0,1] be an attenuation function associated with each of the p input nodes. If x is the node 

input then xF(γ) is the node output. Thus, xF( iγ ) can be viewed as the activation function of the ith 

input layer node, where iγ is a parameter (not a connection weight) of the activation function. Thus, the 

input layer nodes act as “neurons” (i.e., have internal calculations).  Notice that F ( iγ ) acts as a fixed 

multiplier for all input values of the ith feature once iγ  is known. The function F can have various 

forms. In the experiments described below we use the attenuation function  

                                                                  
γ

γ
−+

=
e

F
1

1
)(  

Thus, the ith input node attenuates ix by an amount F( iγ ) ∈ (0,1), where the input “weight” iγ  is a 

parameter to be learnt during training.   If F( iγ ) is close to 0, we may choose to eliminate input feature 

ix : this is how the FSMLP accomplishes   feature selection.  How do we learn iγ ? If we regard the 

input layer of the FSMLP with nodes as in Fig. 2, it can be viewed as the “first”' hidden layer in a 
standard MLP. Then the back-propagation formulae for the MLP are simply extended backwards into 

this new first layer to adjust the p iγ s during training. Let 

 
q = number of nodes in the first hidden (not input) layer; 

µ = learning rate for the parameters of the attenuator membership functions, 

η = learning rate for the connection weights, 

)(tw
ih
ij  = weight connecting ith node of the input layer to the jth node of the first hidden layer 

for the tth iteration and 
1
jδ  = error term for the jth node of the first hidden layer. 

F′ ( iγ ) = derivative of F at iγ , 

F : R→(0,1) = attenuator function with argument iγ for input node i. 
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Table 4: Feature attunations after 5000 iterations 

Feature Exp1 Exp2 Exp3 Exp4 Exp5 

date 0.994408 0.995326 0.994349 0.994401 0.994349 

pmin(t-2) 0.037687 0.034179 0.036586 0.036168 0.036586 

pmax(t-2) 0.049841 0.050345 0.050567 0.050500 0.050567 

vpmax(t-2) 0.571023 0.567013 0.610024 0.606581 0.610024 

vpmin(t-2) 0.035260 0.041261 0.038821 0.039218 0.038821 

rhmin(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426 

rhmax(t-2) 0.981611 0.974963 0.981208 0.980619 0.981208 

tmax(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426 

tmin(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426 

rain(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426 

rmax(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426 

rmin(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426 

pmin(t-1) 0.647053 0.656292 0.690670 0.688052 0.690670 

pmax(t-1) 0.014436 0.025190 0.014467 0.015558 0.014467 

vpmax(t-1) 0.980603 0.962653 0.983048 0.982541 0.983048 

vpmin(t-1) 0.129533 0.081264 0.099814 0.101237 0.099814 

rhmin(t-1) 0.993324 0.964764 0.992428 0.991945 0.992428 

rhmax(t-1) 0.005520 0.007016 0.005383 0.005442 0.005383 

tmax(t-1) 0.066341 0.060743 0.057793 0.057599 0.057793 

tmin(t-1) 0.978657 0.971962 0.959644 0.955657 0.959644 

rain(t-1) 0.001737 0.002357 0.001768 0.001802 0.001768 

rmax(t-1) 0.057392 0.067241 0.062358 0.064471 0.062358 

rmin(t-1) 0.986055 0.978115 0.987440 0.987164 0.987440 

 

 

Table 5: Feature Selection by Voting Scheme Using Table 4 

Feature Exp1 Exp2 Exp3 Exp4 Exp5 Frequency Decision 

date Selected Selected Selected Selected Selected 5 Selected 

pmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

pmax(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

vpmax(t-2) Rejected Rejected Selected Selected Selected 5 Selected 

vpmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rhmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rhmax(t-2) Selected Selected Selected Selected Selected 5 Selected 

tmax(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

tmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rain(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rmax(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

pmin(t-1) Selected Selected Selected Selected Selected 5 Selected 

pmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

vpmax(t-1) Selected Selected Selected Selected Selected 5 Selected 

vpmin(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rhmin(t-1) Selected Selected Selected Selected Selected 5 Selected 

rhmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

tmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

tmin(t-1) Selected Selected Selected Selected Selected 5 Selected 

rain(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected 

rmin(t-1) Selected Selected Selected Selected Selected 5 Selected 
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It can be easily shown that the learning rule for connection weights remains the same for all layers 

except for )(tw
ih
ij . The update rule for )(tw

ih
ij  and iγ  are: 
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The p weights iγ are initialized with values that make 
ie

F i γ
γ

−+
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1

1
)(  close to 0 for all i. 

Consequently, )( ii Fx γ is small at the beginning of training, so the FSMLP allows only a very small 

“fraction” of each input feature value to pass into the standard part of the MLP. As the network trains, 
it selectively allows only important features to be active by increasing their attenuator weights (and 

hence, increasing the multipliers of ix associated with these weights) as dictated by the gradient 

descent. The training can be stopped when the network has learnt satisfactorily, i.e., the mean squared 
error is low or the number of iteration reaches a maximum limit. Features with low attenuator weights 
are eliminated from the feature set.  
 
In this scheme we only consider those features whose attenuation weight values at the end of the run 
are ≥ 0.5 considering 0.04 or less as initialized values. Now we apply this feature selection method on 
our rainfall data and it selects only 8 features out of 23 features (Table 5). The FS MLP technique is 
trained to the whole data set so as to choose the important features. The FS technique chooses a total of 
8 features out of the 23 features as can be inferred from the result of Table 5. As Table 5 reveals that 
FSMLP rejects the following features pmin(t – 2), pmax(t – 2 ), vpmin(t – 2), rhmin(t – 2), tmax(t – 2), 
tmin(t – 2), rain(t – 2), rmax(t – 2), rmin(t – 2), pmax(t – 1), vpmin(t – 1), rhmax(t – 1), tmax(t – 1), 
rain(t – 1), rmax(t – 1).  It is an interesting observation that the today’s rainfall does not depend on the 
previous days, rainfalls. But the network does not reject the following features: date, vpmax(t – 2), 
rhmax(t – 2), pmin(t – 1), vpmax(t – 1), rhmin(t – 1), tmin(t – 1), rmin(t – 1). Date feature indicates the 
seasonality effect of the place.  
 

6.2 Results 
 
In order to select the good features, we train the FSMLP using the entire data set.  And after the 
features are selected, we train the SOFM-MLP with the selected set of features. Table 4 displays the 
attenuation factors of the 23 features after training the FSMLP. 
 
For each network, the training is stopped when the prediction error on the validation set started 
increasing. We have made 10 experiments each with MLP and SOFM-MLP. Interestingly, in all cases 
but two, the training error and validation error exhibited identical behavior. 
 

Table 6: Cumulative percentage frequency table for MLP using selected features. 

Range % Frequency of rainfall for Test data 

in mm nh=5 nh=10 nh=15 nh=20 

±0.5 83.5 82.4 83.5 83.5 

±1.0 83.5 83.5 84.1 84.1 

±1.5 84.7 84.7 85.9 84.1 

±2.0 86.5 87.1 87.1 85.3 

±2.5 86.5 87.1 88.2 85.9 

±3.0 88.2 88.2 88.8 87.6 

±3.5 89.4 89.4 88.8 87.6 

±4.0 91.2 90.6 89.4 89.4 

±4.5 91.8 91.2 90.0 91.2 

±5.0 92.4 92.4 90.0 91.8 

Max Dev 125.6 125.7 125.9 126.4 

Avg Dev 3.3 3.2 3.2 3.3 
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Table 7: Cumulative percentage frequency table for SOFM-MLP using  selected features 

Range in 

mm 

% frequency of rainfall for test data 

nh = 5 nh= 10 nh = 15 nh = 20 

±0.5 82.62 90.22 87.73 90.04 

±1.0 85.45 92.09 90.78 92.46 

±1.5 87.704 93.46 93.28 93.28 

±2.0 92.15 94.28 95.21 94.65 

±2.5 93.85 95.03 95.77 94.84 

±3.0 94.92 95.77 96.71 95.40 

±3.5 96.24 95.96 97.08 95.40 

±4.0 97.20 96.33 97.26 95.77 

±4.5 97.90 96.52 97.64 95.96 

±5.0 98.08 96.71 97.83 96.71 

Max Dev 72.6 64.4 62.1 69.7 

Avg Dev 1.6 1.1 1.1 1.4 

 
Tables 6 and 7 depict the average performance of MLP and SOFM-MLP using the selected features in 
conjunction with a validation data. Since in these cases we have used only 8 input features, we have 
restricted the maximum number of nodes in the hidden layer to 20 only. 
 
Comparing Table 7 with Table 3 we find that in this case too there is a marginal improvement in 
performance for SOFM-MLP with the selected features.  A comparison of Table 7 with Table 6 clearly 
shows that again SOFM-MLP outperforms the conventional MLP. The most important point is that we 
can use only a few features to get good results. 
 
 

7. CONCLUSION AND DISCUSSION 
 
From what have been presented above on concludes that: 
 

(1) The proposed hybrid SOFM-MLP network consistently performs better than the conventional 
MLP network. 

(2) Use of gradient as features instead of the raw observations can reduce the required size of the 
network and make the training task simpler yet achieving better performance. 

(3) Feature selection is an important factor for better prediction of atmospheric parameters. In this 
regards our FSMLP turns out to be an excellent tool that can select good features while 
learning the prediction task.  

(4) The combined use of FSMLP and SOFM-MLP results in an excellent paradigm for prediction 
of atmospheric parameters.  

There are couple of other areas where we need to do experiments. For example, we plan to use 
FSMLP and SOFM-MLP set for prediction of other atmospheric parameters. We would also like to 
investigate their usefulness in different pattern recognition problems. 
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