
Neural, Parallel, and Scientific Computations 17 (2009) 47-58

A CONNECTIONIST MODEL FOR RAINFALL PREDICTION

Bimal Dutta and Angshuman Ray

Institute of Engineering and Management
Salt Lake Electronics Complex, Calcutta 700 091, India

Srimanta Pal
Electronics and Communication Sciences Unit

Indian Statistical Institute, 203 B T Road, Calcutta 700 108, India

e-mail: srimanta@isical.ac.in

Dipak Chandra Patranabis
Department of Instrumentation and Electronics Engineering,

Jadavpur University, Salt Lake Campus, Kolkata – 700098, INDIA &
Heritage Institute of Technology, Kolkata – 700107

e-mail: dcp@iee.jusl.ac.in

Abstract: In this paper a neural network based method of local rainfall prediction is proposed. This
method is developed based on past observations on various atmospheric parameters such as
temperature, relative humidity, vapor presser, etc. We propose a neural network model whose
architecture combines several multilayer perceptron networks (MLPs) to realize better performance
after capturing the seasonality effect in the atmospheric data. We also demonstrate that the use of
appropriate features can further improve the performance in prediction accuracy. These observations
inspired us to use a feature selection MLP, FSMLP, (instead of MLP) which can select good features
on-line while learning the prediction task. The FSMLP is used as a preprocessor to select good features.
The combined use of FSMLP and SOFM-MLP results in a network system that uses only very few
inputs but can produce good prediction.

Keywords – Rainfall, feature selection, multi-layer perceptron, neural networks, backpropagation,
atmospheric science.

1. INTRODUCTION

There are many real life problems in which future events need to be predicted on the basis of past
history. In such cases, knowledge of underlying laws governing the process can be very useful. The
discovery of strong empirical regularities in observations on a given system can also help prediction.
However, the laws underlying the behavior of a system are not easily discovered and the empirical
regularities or periodicities are not always evident and can often be masked by noises.

Lower atmospheric parameters are used in various applications such as avionics, pollution dispersal,
communication, etc. Therefore the accurate measurement or prediction of these parameters is
necessary. Though perfect prediction of these parameters is hardly ever possible, neural networks can
be used to obtain a reasonably good prediction in many cases (Tsintikidis, 1997; Salehfar, 1998; Pal et
al., 2003; Sarma et al., 2005). Weather forecasting needs to estimate or predict atmospheric parameters
(e.g., temperature, rainfall, relative humidity, wind speed, wind direction, atmospheric pressure, etc.)
well in advance. Often it is very difficult to obtain an accurate prediction because of many other
factors like topography of a place, surrounding structures and environmental pollution. The lower
atmosphere is continuously changing. The accuracy of a forecasting system may be improved if the
system considers these factors.

Rainfall is not a regular phenomena in all places. It has some seasonality effects. So the rainfall
prediction problem is not similar as other regular atmospheric parameters like temperature, humidity,
etc. Rainfall is also a time series data like atmospheric pressure, temperature, vapor pressure, relative
humidity, radiation, etc. The rainfall pattern of Calcutta is shown in Figure 1. Some of the traditional
time series analysis of the rainfall is shown in Table 2.

Here we focus on prediction of rainfall based on past measurements of various atmospheric parameters.

Our assumption is that short-term changes in the dynamics of the atmosphere will be captured in the

data available for forecasting. Normally, rainfalls are measured once in a day at different places using

Received February 10, 2009 1061-5369 $15.00 © Dynamic Publishers, Inc.

48 Dutta, Ray, Pal, and Patranabis

rain gauge by the department of meteorology. Other parameters such as wind direction and its velocity,
temperature, relative humidity, vapor pressure, radiation, etc. are also measured by the meteorologists.

Figure 1. Actual rainfall at Dum Dum, Calcutta Station over consecutive 7 years (1989-95).

We have collected the following information for a day from the meteorology department: (1) mean sea
level pressure at 1730 Hrs. and 0630 Hrs., (2) vapor pressure at 1730 Hrs. and 0630 Hrs., (3) relative

humidity at 1730 Hrs. and 0630 Hrs., (4) maximum temperature at 1730 Hrs., (5) minimum temperature
at 0630 Hrs., (6) maximum radiation, (7) minimum radiation and (8) rainfall. We have daily
observation on these variables for the period 1989-95. Figure 1 shows the variation of the rainfall over
the said period of 7 years.

In this paper first we study the effectiveness of multiplayer perceptron networks for prediction of
rainfall. Next we design a hybrid network which uses both self-organizing feature map (SOFM) and
MLP to realize a much better prediction system. Then we demonstrate that use of appropriate features
cannot only reduce the number of features but also can improve the prediction accuracy. We then use a
feature selection MLP, which can select good features on-line while learning the prediction task. This
finally results in a network system that uses only very few inputs and can produce good prediction.

2. SOME POPULAR PREDICTION METHODS TO RAINFALL

FORECASTING

In this section we consider two prediction model based on neural networks and statistical methods, and
investigate their effectiveness in predicting the rainfall. We use the multi-layer perceptron (MLP)
network and the auto-regressive (AR) model.

We make a brief, but comprehensive discussion of the MLP network because this is used later to design
a more effective neural network for rainfall prediction.

The MLP network consists of several layers of neurons of which the first layer is known as the input

layer and the last one is known as the output layer, remaining layers are called hidden layers. A typical
MLP network is shown in Fig. 2. The nodes in successive layers are fully connected but there is no
connection within a layer. Every node, in the hidden layers and the output layer computes the weighted
sum of its inputs and apply a sigmoidal activation function to compute its output, which is then
transmitted to the nodes of the next layer as input (Haykin, 2001). The main objective of the MLP
learning is to set the connection weights in such a way that the error between the network output and
the target output is minimized. During learning the network weights may be updated by several

 MODEL FOR RAINFALL PREDICTION 49

methods of which the backpropagation technique is the most popular one. In this work we use the
backpropagation learning.

It is known that under a fairly general assumption a single hidden layer is sufficient for a multilayer
perceptron to compute an uniform approximation of a given training set (represented by the set of
inputs and a desired (target) output) (Haykin, 2001). Hence in this study we restrict ourselves to a
three-layer network, i.e., one hidden layer.

Figure 2. An MLP for rainfall forecasting.

In addition to MLP we also use autoregressive (AR) model. In AR model, rainfall at time t is predicted
using a linear function of only past rainfall of a few days.

The auto-regressive (AR) model of order p, that is, AR(p) predicts the current (tth) value x(t) of a
variable x using its p previous observations such as x(t – 1), x(t – 2), …, x(t – p). Mathematically, the

AR(p) model can be expressed as x(t) = a0 + Σ1 ≤i≤ paix(t−i), where ai's are the coefficients. For
example, in rainfall prediction, the AR(p) model computes (predicts) the rainfall of the tth day (R(t))

based on last p days rainfall R(t−1), R(t−2), …, R(t−p).

We use an AR model of order three, i.e., the rainfall of the tth day is predicted based on the rainfall of

past two days, i.e., days t−1, t−2. The performance of this AR model is shown in Table 2. In later
section we shall discuss a feature selection mechanism that rejects rainfall information beyond past
two days. In this regard, one can, of course, use model selection criteria such as Akaike-Information-
Criteria (AIC) (Akaike, 1974).

3. DATA PREPARATION

MLP networks: For a particular day t, we have observation on 11 variables. Let us denote them by x(t)

∈ℜ11. Now let us assume that the rainfall for day t, i.e., R(t), are determined by the atmospheric
conditions of past k days and t – 2 date feature.

Thus we attempt to predict R(t) using X(t) = (x(t − 1), x(t − 2), …, x(t − k)) + 1 ∈ ℜ11k+1 .

If k = 2, then we use (x(t − 1), x(t − 2)) ∈ ℜ23 to predict Yt = R(t).

We have N number of observations. Now we construct the input (X) and output (Y) data for training

and test the network, where X= {X(N), X(N − 1), …, X(N − k)} and Y = {Y(N), Y(N − 1), …, Y(N −

k)}. In order to train the network we use input-output pairs (X(i),Y(i)), i = N, N − 1, N − 2, …, N − k.

In this case we have (N − k) pairs. Note that Yt = R(t). After obtaining (X, Y), we partition X (and also

Y) randomly as Xtr (Ytr) and Xte (Yte) such that Xtr ∪ Xte= X, Xtr ∩ Xte = φ. (Xtr, Ytr) is then used for
training the system and (Xte, Yte) is used to test the system. So our MLP will have 11k +1 input nodes
and 1 output nodes. In our data set N = 700 |Xtr| = 600, |Xte| = 170 and we use k = 2.

AR model: The rainfall, R(t) of the t-th day is determined using the rainfalls of three previous days,

i.e., using R(t − 1), R(t − 2), R(t − 3).

3.1 Results

We have made several runs of the MLP net with different hidden nodes (nh). Table 1 reports the
average performance (average on 10 runs) on the test data for nh = 5, 10, 15 and 20 nodes. Table 1
shows the cumulative percentage of prediction within different ranges. For example, the column with

50 Dutta, Ray, Pal, and Patranabis

nh = 5 shows that on the test data the network could make prediction with ≤ ±2.5mm error in 83.67%
cases. It is interesting to note that the networks with nh= 5, 10, 15 and 20 perform reasonably well but
the performance degrades with increase in the number of hidden nodes beyond 20.

Table 1: Cumulative percentage frequency for MLP Networks

Range % Frequency of rainfall for Test data

in mm nh=5 nh=10 nh=15 nh=20

±0.5 44.89 51.02 51.02 53.06

±1.0 58.16 67.34 63.26 66.32

±1.5 75.51 78.57 76.53 77.55

±2.0 78.57 82.65 79.59 79.59

±2.5 83.67 85.71 83.67 83.67

±3.0 85.71 86.73 85.71 85.71

±3.5 87.75 87.75 87.75 87.75

±4.0 87.75 87.75 87.75 87.75

±4.5 87.75 89.79 88.77 88.77

±5.0 89.79 90.81 88.77 89.79

Max Dev 135.7 136.6 126.4 135.9

Avg Dev 13.3 8.2 3.3 6.3

Table 2 summarizes the performance of AR(3) model, MLP model and SOFM-MLP (self-organizing
feature map MLP). The performance of the AR system exhibits a poorer performance than the two
neural models.

The results obtained from MLP are satisfactory. But these results are not so good. One possible reason
for this can be the presence of seasonality. This can be improved further. So we now propose a hybrid
network which can account for seasonality of data. Our basic philosophy would be as follows. We
group the data, X, into a set of homogeneous subgroups. Then for each subgroup we train a separate
feed forward network. In this prediction, first we have to choose the appropriate trained MLP and then
apply the test input to that net to get the prediction. The partitioning of the training data will be done
using a self-organizing feature map (SOFM). Here we first briefly describe the SOFM, before
describing the prediction network.

Table 2: Cumulative percentage frequency for SOFM-MLP, MLP, AR models

Cumulative Frequency for SOFM-MLP, MLP and AR models.

Range SOFM-MLP MLP AR

±0.5 87.73 83.53 4.95

±1.0 90.78 84.12 5.20

±1.5 93.28 85.88 5.24

±2.0 95.21 87.06 5.24

±2.5 95.77 88.23 5.24

±3.0 96.70 88.82 5.29

±3.5 97.08 88.82 5.36

±4.0 97.26 89.41 5.44

±4.5 97.64 90.00 5.52

±5.0 97.82 90.00 5.56

4. SOFM NETWORK

Kohonen's self organizing feature map (SOFM) has been successfully used in numerous applications
such as pattern recognition (Kohonen, 1987), image processing (Nasarabadi, 1988), process control
(Mark, 1988). Designing of classifiers (Mitra 1994) and other pattern recognition systems based on
SOFM (Chi, 1995) are some of the most successful areas of its application. SOFM (Kohonen, 1990)
has the interesting property of achieving a distribution of the weight vectors that approximates the

 MODEL FOR RAINFALL PREDICTION 51

distribution of the input data. This property of the SOFM can be exploited to generate prototypes
which in turn can partition the data into homogeneous groups. We want to use this property.

4.1 Architecture

The self-organizing feature map (SOFM) is basically a transformation AD
SOFM : ℜp → V(ℜq) of higher

dimensional (p) data to lower dimension (q) by an algorithm. This is often advocated for visualization
of metric-topological relationships and distributional density properties of feature vectors (signals) X =

{x1, …, xN} in ℜp. In principle X can be transformed onto a display lattice in ℜq for any q. SOFM is
implemented through a neural network as shown in Fig. 3. The visual display produced by AD

SOFM

helps to form hypothesis about topological structure present in X. Here we consider (m × n) structure

and displays in ℜ2.

A SOFM network is shown in Fig. 3, where input vectors x ∈ ℜp are distributed by a fan-out layer to

each of the (m × n) output nodes in the competitive layer. Each node in this competitive layer has a

weight vector vij attached to it where i ∈ {1,2, …, m} and j ∈ {1,2, …, n}. This attached weight vector

is equivalent to the prototype of the cluster. Let Op = {vij} ⊂ ℜp denotes the set of m × n weight

vectors. Op is (logically) connected to a display grid O2 ⊂ V(ℜ2). Now (i, j) in the index set {1,2, …,

m} × {1,2, …, n} is the logical address of the cell. There is a one-to-one correspondence between the p

dimensional vector vij and the (i, j)th cell, i.e., Op ←O2 where where i ∈ {1,2, …, m} and j ∈ {1,2, …,
n}.

Figure 3. The SOFM network architecture.

4.2 Algorithm

The feature mapping is an iterative algorithm. It starts with (usually) a random initialization of the
weight vectors vij for i =1,2, …, m and j =1,2, …, n. For notational clarity we suppress the double

subscripts in v. Now let an input vector x ∈ ℜp enter the network and let s denote the current iteration

number. During sth iteration, find a vector v which is obtained after (s – 1)th iteration, i.e., vr,s−1, that

best matches the input vector x in the sense of minimum Euclidean distance in ℜp. This vector, vr,s−1
has an (logical) ``image" which is the cell in O2 with subscript r (as shown in Fig. 4). Next a
topological (spatial) neighborhood Nr(s) centered at r is defined in O2, and its display cell neighbors are

located. A 3×3 window, N(r), centered at r corresponds to updating nine prototypes in ℜp. Finally, vr,s−1

and other weight vectors associated with cells in the spatial neighborhood Ns(r) are updated using the
rule

52 Dutta, Ray, Pal, and Patranabis

Vk,s = vk,s−1 + Hrk(s)(x − vk,s−1).
Here r is the index of the ``winner" prototype

r = arg mink {|x − vk,s−1|}

and |∗| is the Euclidean norm on ℜp.

The function Hrk(s) which expresses the strength of interaction between cells r and k in O2 usually
decreases with s, and for a fixed s it decreases as the distance (in O2) from cell r to cell k increases.

Hrk(s) is usually expressed as the product of a learning parameter αs and a lateral feedback function

gs(dist(r,k)). A common choice for gs is gs(dist(r,k)) = exp{−dist
2(r,k)/σs

2}. αs and σs both decrease with
s. The topological neighborhood Nr(s) also decreases with s. This scheme, when repeated long enough,

usually preserves spatial order in the sense that weight vectors which are metrically close in ℜp
generally have, at termination of the learning procedure, visually close images in the viewing plane.

We repeat the SOFM for (500 × m × n) steps (Kohonen, 1990).

5. SOFM-MLP HYBRID NETWORK

 The architecture of this hybrid network is shown in Fig. 4. It has eight layers. The first layer with p
nodes scales the data -- it is the scaling interface between user and the system at the input side. The
second and third layers constitute the SOFM layer. The output of the scaling layer is fed as input to the
SOFM layer. So the second layer has p nodes. There are complete connections between layers 2 and 3
as discussed earlier for the SOFM net.

 Let the number of nodes in the output layer of the SOFM network is K. So, there are K MLP
networks, each of which receives p inputs. Consequently, the fourth layer has Kp nodes. These Kp
nodes constitute the input layer of a set of K MLP networks. Without loss of generality, we assume that
each of the K MLP networks has only one hidden layer, although it could be more than one and also it
can vary for different MLP nets. Let the nodes in layer four be numbered as Ni, i=1, 2, …, Kp. Nodes
N1 to Np will be the input nodes of the first MLP (M1); nodes Np+1 to N2p will be input nodes of the
second MLP (M2); Similarly, nodes N(K-1)p+1 to Nnp will be the input nodes of Kth MLP, MK. As
mentioned earlier, p = 11k+1.

The j-th input node of MLP Mi gets two inputs from the previous layers: the jth normalized input (say
xj) and the output of the ith node of the SOFM network (say oi). Each node of layer four computes the
product of the two inputs it receives, i.e., the jth input node of Mi computes xj. oi as output and passes it
on the first hidden layer of the MLP network, Mi. Since only one output of the SOFM layer will be one
and rest of the outputs will be zero, only one of the MLP networks, which is connected to the winner
node, will get the normalized input unattenuated. While all inputs to each of the remaining (K-1) MLP
will be zero. So only one of the MLP will be activated.

Since we assume only one hidden layer, the nodes in layer six are the output nodes of the MLP nets.
Each MLP, Mi will have two output nodes. Let us denote these nodes by O6

i where the index i
corresponds to the ith MLP, Mi. Layers 4 - 6 together constitute the MLP layer in Fig. 4. The outputs
of this MLP-layer are then aggregated in layer seven which has just one node. Let us denote this node

by R. Now nodes O6
i, ∀ i=1,2, …, K are connected to node m and O6

i2, ∀ i=1,2, …, K are connected to
node M. All connection weights between layers 6 and 7 are set to unity and node R computes the
weighted sum of all inputs as the output which is then passed to the scaling layer. Note that, the
network architecture ensures that the aggregated output that is fed to the scaling layer is nothing but the
output of the MLP corresponding to the winning node of the SOFM network.

The prototypes generated by SOFM not only preserves topology but also density. We want to have this
density preservation property. If there is a dense cluster in the input space SOFM will place more
prototypes there, consequently we will have more competitive MLPs for dense regions. Hence finer
details of the process can be modeled better resulting in enhancement of overall performance. None of
clustering algorithm has this density matching property, thereby making the self-organizing map
somewhat superior to clustering algorithm.

5.1 Training the SOFM-MLP Hybrid Network

First Xtr is normalized by the input normalization (i.e., scaling) layer. Then with the normalized Xtr
the SOFM net is trained. Once the SOFM training is over, then Xtr is partitioned into K subsets, X(l)

tr, l
= 1, 2, ..., K as follows:

MODEL FOR RAINFALL PREDICTION 53

X(l)
tr = xi ∈ ℜp | || xi − vl|| = minj||xi − vj|| .

In other words, X(l)
tr is the set of input vectors for which the l-th prototype, vl of the SOFM becomes

the winner. Let Y(l)
tr be the set of output vectors associated with vectors in X(l)

tr. Now we train K
multilayer perceptron nets M1, M2, ..., MK, where Ml is trained with X(l)

tr, Y
(l)

tr. Note that, each of Ml, l
= 1, 2, ..., K will have the same number of nodes in the input layer, i.e., p = 11k and the same number
of nodes in the output layer. But the number of nodes in the hidden layer for different Ml could be
different. This training is done off-line and during training, we do not consider the output of the SOFM.
In fact, we do not feed the input to SOFM for training the MLP.

Once the training of both SOFM and K MLP's is over, we are in a position to use the hybrid net for
prediction of rainfall.

Consider the input vector x(t) ∈ ℜ11k (this will be generated based on 11 observations on each of the
past k days). Now x(t) is applied to the first layer. The first layer normalizes it and the normalized input
then goes to the SOFM layer. x(t) makes the output of only one of the K SOFM output nodes, say of

the lth node, high (1) and sets the rest (K−1) outputs to zero. The normalized x(t) and output of the ith
SOFM node are now fed to the ith MLP Mi, i = 1, 2, ..., K. Consequently, only the lth MLP will be
active and rest of the MLPs will be inactive. The integrated output from the MLP layer will be nothing
but the output of the lth MLP, which will then be scaled back to the original scale by the output scaling
layer -- and we get the prediction for the rainfall of day t + 1.

Figure 4. A hybrid neural net for rainfall prediction.

Table 3: Cumulative percentage frequency table for SOFM-MLP when observations on past 2 days are used as
input (Test sample)

Range % Frequency of rainfall for test data

in mm nh=5 nh=10 nh=15 nh=20

±0.5 82.3 81.7 85.3 83.0

±1.0 84.3 83.7 86.5 85.0

±1.5 87.0 85.5 88.0 87.5

±2.0 87.8 87.5 88.5 88.2

±2.5 88.8 89.0 89.3 89.2

±3.0 89.2 89.7 90.3 89.5

±3.5 89.5 90.0 90.7 89.8

±4.0 89.8 90.3 90.7 90.0

±4.5 90.5 90.8 90.8 90.5

±5.0 90.8 91.0 91.3 91.2

Max Dev 77.2 76.8 79.0 75.9

Avg Dev 1.9 1.9 1.6 1.8

5.2 Results

Table 3 depicts the performance of the SOFM-MLP network on the test data when each of the K (= 8)
MLPs uses nh= 10, nh = 15 and nh = 20 nodes in the hidden layer. For the SOFM layer we have used 8
nodes thereby the training data were partitioned into 8 homogeneous subgroups. For this data set the
choice of 8 was made based on a few experiments. In this case, use of more than 8 nodes results in
some clusters with very few data points.

54 Dutta, Ray, Pal, and Patranabis

Each MLP is trained 10 times with different random initialization and Table 3 represents the average
prediction accuracy over these runs. From Table 2 we find that within an error of ±1.0 mm, the
SOFM-MLP shows an improvement between 83.7% to 86.5% over the direct use of MLP. In case of an
error of ±5.0 mm, this improvement is about 90.8% to 91.3%. If we consider the maximum deviation
and the average deviation, we also find consistently better results for SOFM-MLP.

6. ONLINE FEATURE SELECTION AND HYBRID NETWORK

We have observed two things: the hybrid network works better than MLP and the choice of good
features improves the prediction accuracy. Therefore, if we can do online feature selection, i.e., select
the good features while learning the prediction task, we can probably further improve the performance
of the network and this can also tell us about various important features responsible for rainfall. This
may help us to get a better insight into the rainfall process. We try to do these now.

6.1 Online Feature Selection Technique

Here we choose good features that will improve the rainfall prediction. An online feature selection
network selects the good features while learning the estimation task. We can probably further improve
the performance of our network and this can also tell us about various important features responsible
for this prediction.

In a standard multilayer perceptron network, the effect of some features (inputs) can be eliminated by
not allowing them into the network. The “partially useful” features can be identified and attenuated
according to their relative usefulness (Pal and Chantalapudi 1997, Pal et al. 2003, Sarma et al 2005).
This can be realized by associating an adaptive gate to each input node. The gate should be modeled in
such a manner that for a good feature, it is completely opened and the feature is passed unattenuated
into the net; while for a bad feature, the gate should be closed tightly. On the other hand for a partially
important feature, the gate could be partially open. Mathematically, the gate is modeled by a function F
with a tunable parameter. The degree to which the gate is opened determines the goodness of the
feature. We multiply an input feature value by its attenuation value and the modulated feature value is
passed into the network. The gate functions attenuate the features before they propagate through the net
so we may call these gate functions as attenuator functions. A simple way of identifying useful gate
functions is to use s-type (or sigmoidal) functions with a tunable parameter which can be learnt using
training data.

Let F: R → [0,1] be an attenuation function associated with each of the p input nodes. If x is the node

input then xF(γ) is the node output. Thus, xF(iγ) can be viewed as the activation function of the ith

input layer node, where iγ is a parameter (not a connection weight) of the activation function. Thus, the

input layer nodes act as “neurons” (i.e., have internal calculations). Notice that F (iγ) acts as a fixed

multiplier for all input values of the ith feature once iγ is known. The function F can have various

forms. In the experiments described below we use the attenuation function

γ

γ
−+

=
e

F
1

1
)(

Thus, the ith input node attenuates ix by an amount F(iγ) ∈ (0,1), where the input “weight” iγ is a

parameter to be learnt during training. If F(iγ) is close to 0, we may choose to eliminate input feature

ix : this is how the FSMLP accomplishes feature selection. How do we learn iγ ? If we regard the

input layer of the FSMLP with nodes as in Fig. 2, it can be viewed as the “first”' hidden layer in a
standard MLP. Then the back-propagation formulae for the MLP are simply extended backwards into

this new first layer to adjust the p iγ s during training. Let

q = number of nodes in the first hidden (not input) layer;

µ = learning rate for the parameters of the attenuator membership functions,

η = learning rate for the connection weights,

)(tw
ih
ij = weight connecting ith node of the input layer to the jth node of the first hidden layer

for the tth iteration and
1
jδ = error term for the jth node of the first hidden layer.

F′ (iγ) = derivative of F at iγ ,

F : R→(0,1) = attenuator function with argument iγ for input node i.

MODEL FOR RAINFALL PREDICTION 55

Table 4: Feature attunations after 5000 iterations

Feature Exp1 Exp2 Exp3 Exp4 Exp5

date 0.994408 0.995326 0.994349 0.994401 0.994349

pmin(t-2) 0.037687 0.034179 0.036586 0.036168 0.036586

pmax(t-2) 0.049841 0.050345 0.050567 0.050500 0.050567

vpmax(t-2) 0.571023 0.567013 0.610024 0.606581 0.610024

vpmin(t-2) 0.035260 0.041261 0.038821 0.039218 0.038821

rhmin(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426

rhmax(t-2) 0.981611 0.974963 0.981208 0.980619 0.981208

tmax(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426

tmin(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426

rain(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426

rmax(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426

rmin(t-2) 0.047426 0.047426 0.047426 0.047426 0.047426

pmin(t-1) 0.647053 0.656292 0.690670 0.688052 0.690670

pmax(t-1) 0.014436 0.025190 0.014467 0.015558 0.014467

vpmax(t-1) 0.980603 0.962653 0.983048 0.982541 0.983048

vpmin(t-1) 0.129533 0.081264 0.099814 0.101237 0.099814

rhmin(t-1) 0.993324 0.964764 0.992428 0.991945 0.992428

rhmax(t-1) 0.005520 0.007016 0.005383 0.005442 0.005383

tmax(t-1) 0.066341 0.060743 0.057793 0.057599 0.057793

tmin(t-1) 0.978657 0.971962 0.959644 0.955657 0.959644

rain(t-1) 0.001737 0.002357 0.001768 0.001802 0.001768

rmax(t-1) 0.057392 0.067241 0.062358 0.064471 0.062358

rmin(t-1) 0.986055 0.978115 0.987440 0.987164 0.987440

Table 5: Feature Selection by Voting Scheme Using Table 4

Feature Exp1 Exp2 Exp3 Exp4 Exp5 Frequency Decision

date Selected Selected Selected Selected Selected 5 Selected

pmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

pmax(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

vpmax(t-2) Rejected Rejected Selected Selected Selected 5 Selected

vpmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rhmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rhmax(t-2) Selected Selected Selected Selected Selected 5 Selected

tmax(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

tmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rain(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rmax(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rmin(t-2) Rejected Rejected Rejected Rejected Rejected 0 Rejected

pmin(t-1) Selected Selected Selected Selected Selected 5 Selected

pmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected

vpmax(t-1) Selected Selected Selected Selected Selected 5 Selected

vpmin(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rhmin(t-1) Selected Selected Selected Selected Selected 5 Selected

rhmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected

tmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected

tmin(t-1) Selected Selected Selected Selected Selected 5 Selected

rain(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rmax(t-1) Rejected Rejected Rejected Rejected Rejected 0 Rejected

rmin(t-1) Selected Selected Selected Selected Selected 5 Selected

56 Dutta, Ray, Pal, and Patranabis

It can be easily shown that the learning rule for connection weights remains the same for all layers

except for)(tw
ih
ij . The update rule for)(tw

ih
ij and iγ are:

))1(()1()(1 −−−= tFxtwtw iji
ih
ij

ih
ij γδη

−′+−= ∑

=

q

j

ij
ho
ijiii tFwxtt

1

1))1(()1()(γδµγγ .

The p weights iγ are initialized with values that make
ie

F i γ
γ

−+
=

1

1
)(close to 0 for all i.

Consequently,)(ii Fx γ is small at the beginning of training, so the FSMLP allows only a very small

“fraction” of each input feature value to pass into the standard part of the MLP. As the network trains,
it selectively allows only important features to be active by increasing their attenuator weights (and

hence, increasing the multipliers of ix associated with these weights) as dictated by the gradient

descent. The training can be stopped when the network has learnt satisfactorily, i.e., the mean squared
error is low or the number of iteration reaches a maximum limit. Features with low attenuator weights
are eliminated from the feature set.

In this scheme we only consider those features whose attenuation weight values at the end of the run
are ≥ 0.5 considering 0.04 or less as initialized values. Now we apply this feature selection method on
our rainfall data and it selects only 8 features out of 23 features (Table 5). The FS MLP technique is
trained to the whole data set so as to choose the important features. The FS technique chooses a total of
8 features out of the 23 features as can be inferred from the result of Table 5. As Table 5 reveals that
FSMLP rejects the following features pmin(t – 2), pmax(t – 2), vpmin(t – 2), rhmin(t – 2), tmax(t – 2),
tmin(t – 2), rain(t – 2), rmax(t – 2), rmin(t – 2), pmax(t – 1), vpmin(t – 1), rhmax(t – 1), tmax(t – 1),
rain(t – 1), rmax(t – 1). It is an interesting observation that the today’s rainfall does not depend on the
previous days, rainfalls. But the network does not reject the following features: date, vpmax(t – 2),
rhmax(t – 2), pmin(t – 1), vpmax(t – 1), rhmin(t – 1), tmin(t – 1), rmin(t – 1). Date feature indicates the
seasonality effect of the place.

6.2 Results

In order to select the good features, we train the FSMLP using the entire data set. And after the
features are selected, we train the SOFM-MLP with the selected set of features. Table 4 displays the
attenuation factors of the 23 features after training the FSMLP.

For each network, the training is stopped when the prediction error on the validation set started
increasing. We have made 10 experiments each with MLP and SOFM-MLP. Interestingly, in all cases
but two, the training error and validation error exhibited identical behavior.

Table 6: Cumulative percentage frequency table for MLP using selected features.

Range % Frequency of rainfall for Test data

in mm nh=5 nh=10 nh=15 nh=20

±0.5 83.5 82.4 83.5 83.5

±1.0 83.5 83.5 84.1 84.1

±1.5 84.7 84.7 85.9 84.1

±2.0 86.5 87.1 87.1 85.3

±2.5 86.5 87.1 88.2 85.9

±3.0 88.2 88.2 88.8 87.6

±3.5 89.4 89.4 88.8 87.6

±4.0 91.2 90.6 89.4 89.4

±4.5 91.8 91.2 90.0 91.2

±5.0 92.4 92.4 90.0 91.8

Max Dev 125.6 125.7 125.9 126.4

Avg Dev 3.3 3.2 3.2 3.3

MODEL FOR RAINFALL PREDICTION 57

Table 7: Cumulative percentage frequency table for SOFM-MLP using selected features

Range in

mm

% frequency of rainfall for test data

nh = 5 nh= 10 nh = 15 nh = 20

±0.5 82.62 90.22 87.73 90.04

±1.0 85.45 92.09 90.78 92.46

±1.5 87.704 93.46 93.28 93.28

±2.0 92.15 94.28 95.21 94.65

±2.5 93.85 95.03 95.77 94.84

±3.0 94.92 95.77 96.71 95.40

±3.5 96.24 95.96 97.08 95.40

±4.0 97.20 96.33 97.26 95.77

±4.5 97.90 96.52 97.64 95.96

±5.0 98.08 96.71 97.83 96.71

Max Dev 72.6 64.4 62.1 69.7

Avg Dev 1.6 1.1 1.1 1.4

Tables 6 and 7 depict the average performance of MLP and SOFM-MLP using the selected features in
conjunction with a validation data. Since in these cases we have used only 8 input features, we have
restricted the maximum number of nodes in the hidden layer to 20 only.

Comparing Table 7 with Table 3 we find that in this case too there is a marginal improvement in
performance for SOFM-MLP with the selected features. A comparison of Table 7 with Table 6 clearly
shows that again SOFM-MLP outperforms the conventional MLP. The most important point is that we
can use only a few features to get good results.

7. CONCLUSION AND DISCUSSION

From what have been presented above on concludes that:

(1) The proposed hybrid SOFM-MLP network consistently performs better than the conventional
MLP network.

(2) Use of gradient as features instead of the raw observations can reduce the required size of the
network and make the training task simpler yet achieving better performance.

(3) Feature selection is an important factor for better prediction of atmospheric parameters. In this
regards our FSMLP turns out to be an excellent tool that can select good features while
learning the prediction task.

(4) The combined use of FSMLP and SOFM-MLP results in an excellent paradigm for prediction
of atmospheric parameters.

There are couple of other areas where we need to do experiments. For example, we plan to use
FSMLP and SOFM-MLP set for prediction of other atmospheric parameters. We would also like to
investigate their usefulness in different pattern recognition problems.

REFERENCES

1. Tsintikidis D., Haferman J.L., Anagnostou E.N., Krajewski W.F., & Smith T.F. (1997). A
neural network approach to estimating rainfall from spaceborne microwave data. IEEE

GeoScience and Remote Sensing, v. 35, pp. 1079-1093.
2. Salehfar H., & Benson S.A. (1998). Electric utility coal quality analysis using artificial neural

network techniques. Neurocomputing, v. 23, pp. 195-206.
3. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on

Automatic Control, v. AC-19, pp. 716-723.
4. Kohonen, T., Torkkola, K., Shozakai, M., Kangas, J., & Venta, O. (1987). Microprocessor

implementation of a large vocabulary speech recognizer and phonetic typewriter for Finnish and
Japanese. Proc. European Conference of Speech Technology, (Edinberg, 1987), pp. 377-380.

5. Nasarabadi, N. M., & Feng, Y. (1988). Vector Quantization of images based on Kohonen self-
organizing feature maps. Proc. IEEE Int. Conf. on Neural Networks, ICNN-88, (San Diego,
Cal., 1988), pp. I-101-I-108.

6. Marks, K. M., & Goser, K. F. (1988). Analysis of VLSI process data based on self-organizing
feature maps. Proc. Neuro-Nimes'88, (Nimes, France), pp. 337-347.

58 Dutta, Ray, Pal, and Patranabis

7. Mitra, S., & Pal, S. K. (1994). Self-organizing neural network as a fuzzy classifier. IEEE Trans.

Syst. Man, Cyberc., v. 24, pp. 385-398.
8. Chi, Z., Wu, J., & Yan, H. (1995). Handwritten numeral character recognition using self-

organizing maps and fuzzy rules. Pattern Recognition, v. 28, pp. 59-66.
9. Kohonen, T. (1990). The self-organizing map. Proc. IEEE, v. 78, pp. 1464-1480.
10. Pal, N. R., & Chintalapudi, K. (1997). A connecionist system for feature selection. Neural,

Parallel & Scientific Computation, v. 5, pp. 359-381.
11. Haykin, S. (2001). Neural Networks A Comprehensive Foundation. Second Edition, Pearson

Education, Singapore.
12. Pal, N. R., Pal, S., Das J., & Majumdar, K. (2003). SOFM-MLP: A hybrid neural network for

atmospheric temperature prediction. IEEE. Trans. Geosci. Remote Sens., v. 41, pp. 2783-2791.
13. Sarma, D.K., Konwar, M., Das, J., Pal, S., & Sharma, S. (2005). A soft computing approach for

rainfall retrieval from the TRMM microwave imager. IEEE Trans. on Geoscience and Remote

Sensing, v. 43, pp. 2879-2885.

