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Abstract: The paper points out the inconsistency and ambiguity of the field axioms of 
the real number system and notes that the only clearly defined and consistent 
mathematical model of the real numbers is the set of terminating decimal. Then it 
identifies present mathematics having global applications. They are continuous and 
discrete; the former meets the needs of the natural sciences since physical space is a 
continuum that pervades everything in nature and the latter of computing and applications 
since physical systems are discrete. Then the base mathematical space over which 
mathematics is to be built called the new real number system is developed using three 
consistent axioms. This new mathematical space is a continuum, non-Archimedean and 
non-Hausdorff but contains the subspace of decimals which is discrete, Archimedean and 
Hausdorff. It introduces a new norm that has many advantages over the other norms of 
the real number system, especially, for purposes of computing. 

 
AMS (MOS) Subject classification. 35k60, 35k57 

 
 

1. INTRODUCTION 

 

Why do we need a new real number system? The real number system defined by the field 
axioms [12] which is supposedly a complete ordered field has a number of defects. It is 
neither complete nor ordered nor a field. We make the following observation.  
 (1) The counterexample to the trichotomy axiom constructed by Felix Brouwer [1] 
reveals the field axioms are inconsistent. An inconsistent mathematical system collapses 
since a theorem derived from some axioms is contradicted by another. Since ref [1] is not 
readily available the author presents below a modification of Brouwer’s counterexample 
to the trichotomy axiom that shows at the same time that the terminating decimals or 
fractions are not linearly ordered by “<” and the irrationals ill-defined.  
 (2) Linear ordering of the real numbers is necessary to put the real numbers on the 
real line for the purposes of analysis. All along we have taking linear ordering of the reals 
which is not true. 
 (3) The only consistent and clearly defined number system with global application is 
the system of terminating decimals but we do not know the right axioms for them and 
that is what we shall find out here.  
______________ 
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 (4) The real numbers are assumed to be infinite; an infinite set is inherently 
ambiguous since not all its elements are known, identifiable or computable. Therefore, 
any categorical statement about its elements such as one involving the universal 
quantifier “every” or the existential quantifier “there exists” is unverifiable.  
 (5) Large and small numbers are ambiguous due to our limited capability to compute 
them (present technology allows computation of limited number of digits of a number at 
a time).  
 (6) Most theorems of the real numbers are proved from the definition and properties 
of the decimals. When, occasionally, we use a field axiom to prove a theorem, e.g., the 
axiom of choice in the proof of existence of nonmeasurable set, we are confronted with 
such contradiction as the Banach-Tarski paradox [2,11]. This paradox is really due to the 
use of the existential quantifier “there exists” in the proof of the existence of 
nonmeasurable set that plays the major role in arriving at it and the axiom of choice is 
quite incidental. 
 (7) The real number system has lots of ambiguity which is a source of contradiction; 
among the sources of ambiguity aside from those we have already noted are:  
 (a) Vacuous concept or proposition (declarative statement); e.g., “Let N be the 
largest integer”. This statement leads to the Perron paradox that says: The largest integer 
is 1 [13]. To avoid this situation we put at the outset all the concepts we need in the 
construction of a mathematical space; then we do not need to prove existence later. 
 (b) Ill-defined concept (negation of well-defined) or proposition. A concept is well-
defined if its existence, properties and relationship with other concepts are specified by 
the axioms (note that existence is important to avoid vacuous proposition). A proposition 
is ill-defined if it involves an ill-defined concept. In particular, the use of undefined 
concept is inadmissible as it introduces unnecessary ambiguity.  
 (c) Self-referent proposition, i.e., the conclusion refers to the hypothesis. All the 
Russell Paradoxes belong to this category, e.g., the barber paradox: The barber of Seville 
shaves those and only those who do not shave themselves; who shaves the barber? 
Incidentally, the indirect proof is a case of self-reference and the only way to avoid it is to 
stick to constructivist mathematics of which this paper is an example.  
 (e) Invalid extension. The axioms of a mathematical space do not apply to any of its 
extensions since the latter lies in its complement; therefore, each extension requires new 
concepts and separate axioms consistent with the initial axioms. Improper extension is 
the source of the problem with the imaginary number i from which we can derive the 
contradiction, 1 = 0 [5].  
 (f) The use of universal rules of inference such as formal logic that has nothing to do 
with the axioms of the given mathematical space. The latter must be completely defined 
by its axioms including its rules of inference or logic; they must be specific to it.  
 (g) Unclarity on the subject matter of the given mathematical space. It cannot be the 
concepts of individual thought since they are inaccessible to others, cannot be studied 
collectively and, therefore, cannot be axiomatized as a mathematical space. David Hilbert 
provided the remedy by requiring the subject matter of mathematics to be the 
representation of thought by symbols that everyone can examine (we also call them 
concepts) subject to consistent axioms. 
 We now present our counterexample to the trichotomy axiom. Let C be an irrational 
number. We want to isolate C in an interval such that all the decimals to the left of C are 
less than C and all decimals to the right of C are greater than C. We do this by 
constructing a sequence of smaller and smaller rational intervals (rational endpoints) such 
that each interval in the sequence is inside the preceding (this is called nested sequence of  
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intervals). In the construction we skip the rationals that do not satisfy the above 
condition. Although given two distinct rationals x, y we can tell if x < y or x > y, we 
cannot line them up on the real line under the relation “<”since if x, y are two rationals, x 
< y, there is an infinity of rationals between them and we cannot verify their arrangement. 
Therefore, we settle for this scenario: starting with the rational interval [A,B] we find a 
nested sequence of rational intervals that “insures” C lies between the two endpoints at 
each stage. We go for an arrangement that will allow us to distinguish the left from the 
right endpoints of the sequence. We construct rows of rationals starting with numerator 1 
in the first row, 2 in the second row, etc., and the denominators in each case consisting of 
consecutive integers starting from 1 in increasing order going left so that in each case we 
start with a denominator of a potential right endpoint. Actually, we can squeeze the rows 
into a single row since no particular order with respect to “<” is involved.  
 Even this arrangement is a problem. For example, suppose at a certain stage in the 
construction we have a right endpoint 1/5 then the number 20/100 appears on the left. 
Then, in trying to pair the right endpoint 1/5 with a left endpoint we skip 20/100 and all 
other rationals to the right of 1/5 in the ordering “<” that appear on the left and move 
further left than all of them. We do the same in choosing the right endpoints moving 
inward. Without loss of generality, we take this rational 1/5 to be the first right endpoint 
in the construction. Then once we have found the left pair for 1/5 we either use this as the 
left endpoint of the next rational interval and pair it with some rational on the left of 1/5 
or find a new left endpoint to the right of the first left endpoint to pair with a right 
endpoint left of 1/5, etc. We make sure that we do not get closer to C than 10−n at the nth 
step in the choice of the first n endpoints so that C remains inside each interval. While we 
are sure for all left and right endpoints A, B that we have already identified in our 
construction, A < C < B and all rationals right of A and left of B in the ordering “<” 
satisfy this inequality, there remains an interval of rational endpoints containing C and 
rationals that do not satisfy this inequality no matter how large we choose n. Therefore, 
the location of C remains unknown. 
 This construction attests to the ambiguity of the concept irrational and the problem 
of representing an irrational as limit of a sequence of rationals; for every such sequence 
there is always a gap. As we have just seen even the rationals are ambiguous mainly 
because there is an infinity of rationals between any given two rationals so that we cannot 
order them under the relation “<”, i.e., we cannot line them up in the line interval 
between 0 and 1, denoted by [0,1], in accordance with this relation. This is due to the 
ambiguity of infinity. Consequently, the real number system has no ordering under this 
relation and the trichotomy axiom that says, given two real numbers x, y, one and only 
one of the following holds: x < y, x = y, x > y, is false.  
 This construction shows the fractions just as ambiguous as the nonterminating 
decimals the latter having a bit of advantage for being linearly ordered by the 
lexicographic ordering (see below). We shall see later that new real numbers are linearly 
ordered by “<” under the lexicographic ordering and satisfy the trichotomy axiom.  
 

2. OUR STRATEGY 

 
Our strategy is not simply to build a contradiction-free mathematical space that we shall 
call the new real number system R* but also to meet the needs of the natural sciences and 
practical affairs. This means that the new real number system must contain mathematics 
that has global applications. In particular, it must provide both continuous and discrete 
mathematics including the decimals whose physical model, the metric system, has global  
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applications that other systems of measures are converting to it. Any other useful 
mathematics that may arise we shall consider a bonus. Concretely, the new real number 
system must be a continuum since physical space is which pervades everything and 
cannot be split into disjoint nonempty subsets. The key is to choose the right consistent 
axioms upon which to build the new real number system. These are the parameters for 
our construction. 
 

3. THE TERMINATING DECIMALS 

 
We first build the terminating decimals R as our base space subject to the following:  
 
 Axiom 1. 0 and 1 are elements of R. 
 Axioms 2 – 3.  The addition and. multiplication tables that well-define 0, 1, the 
integers and the terminating decimals.   
 
The elements 0 and 1 are called the additive and multiplicative identities. For the moment 
they are not well-defined but they will be by the addition and multiplication tables. 
Moreover, R is completely defined by the axioms and, naturally, mathematical reasoning 
is solely determined by them.  
 We first define the digits or basic integers beyond 0 and 1:   
 
1 + 1 = 2; 2 + 1 = 3; …, 8 + 1 = 9.                (1) 
 
(We omit the statement of the addition and multiplication tables which is familiar to 
everyone since primary school) Then we define the rest of the integers as base 10 place-
value numerals:  
 
 anan–1…a1 = an10n + an–110n–1 + … + a1,              (2) 
 
where the ans are basic integers.  
 Now, we extend the integers to include the additive and multiplicative inverses −x 
and, if x is not 0, 1/x (reciprocal of x), respectively. Note that the reciprocal of an integer 
exists only if it has no prime factor other than 2 or 5. This extension requires 
corresponding extension of the operations + and ×, in effect, re-stating associativity, etc., 
as part of its axioms and something else that is new: the rules of sign that we take as part 
of the axioms of this extension (we need not write them as they are familiar). Then we 
define a new operation: division of an integer x by a nonzero integer y, or quotient, 
denoted by x/y and defined by:  
 
x/y = x(1/y).                  (3) 
 
This quotient exists when y has no prime factor other than 2 or 5. We similarly extend 
associativity and commutativity of addition and multiplication and distributivity of 
multiplication relative to addition and include them the axioms of the extension. We 
consider subtraction the inverse operation of addition and division that of multiplication, 
examples of duality that we shall consider in detail below.  
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 We define a terminating decimal as follows:  
  
anan–1…a1.bkbk–1…b1 = an10n + an–110n–1 +… + a1 + b1/10 + b2/102 +…  + bk/10k      
 = an10n + an–110n–1 +… + a1 + b1(0.1) + b2(0.1)2 + … + bk(0.1)k.          (4) 
 
where anan–1…a1   is the integral part, b1b2…bk  the decimal part and 0.1 = 1/10. Note that 
the terminating decimals are well-defined since the reciprocal of 10 has only the factors 2 
and 5. Then the quotient x/y of an integer x by nonzero integer y exists only if y has no 
prime factor other than 2 or 5. Such quotient is called rational. We recall that in the real 
number system a rational is nonterminating periodic (a terminating decimal is periodic). 
This is ambiguous for nonterminating decimal since it is not verifiable. We call a decimal 
that is not rational eurrational but we do not know what that is yet because we know 
nothing beyond the terminating decimals.  
 This definition of the integers as the integral parts of the terminating decimals 
resolves the inadequacy of Peanos’s postulates in the development of the natural numbers 
for they are clearly isomorphic to them and makes them integers in the sense of [3].  
 

4. THE NONTERMINATING DECIMALS 

 
Now we define the nonterminating decimals for the first time without contradiction and 
with contained ambiguity, i.e., approximable by certainty. We build them on what we 
know: the terminating decimals, our point of reference for all its extensions. 
 A sequence of terminating decimals of the form,  
 
N.a1, N.a1a2, …, N.a1a2…an, …              (5) 
 
where N is integer and the ans are basic integers, is called standard generating or g-
sequence. Its nth g-term, N.a1a2…an, defines and approximates its g-limit, the 
nonterminating decimal,   
 
N.a1a2…an,…,                 (6) 
 

at margin of error 10−n. The g-limit of (5) is nonterminating decimal (6) provided the nth 
digits are not all 0 beyond a certain value of n; otherwise, it is terminating. As in standard 
analysis where a sequence converges, i.e., tends to a specific number, in the standard 
norm, a standard g-sequence, converges to its g-limit in the g-norm where the g-norm of 
a decimal is itself.  
 We define the nth distance dn between two decimals a, b as the numerical value of 
the difference between their nth g-terms, an, bn, i.e., dn = |an − bn| and their g-distance is 
the g-limit of dn, We denote by R* the g-closure of R, i.e., its closure in the g-norm.  
 A terminating decimal is a degenerate nonterminating decimal, i.e., the digits are all 
0 beyond a certain value of n. The nth g-term of a nonterminating decimal repeats every 
preceding digit in the same order so that if finite terms are deleted or altered the nth g-
term and, therefore, also the g-limit is unaltered as the remaining terms generate its g-
sequence. Thus, a nonterminating decimal may have many g-sequences and we consider 
them equivalent for having the same g-limit.    
 Since addition and multiplication and their inverse operations subtraction and 
division are defined only on terminating decimals computing nonterminating decimals is 
done   by   approximation  each by its nth g-terms  (called n-truncation)  and  using  their  
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approximation to find the nth g-term of the result as its approximation at the same margin 
of error. This is standard computation, i.e., approximation by decimal segment at the nth 
digit. Thus, with our premises we have retained standard computation but avoided the 
contradictions and paradoxes of the real numbers. We have also avoided vacuous 
statement, e.g., vacuous approximation, because nonterminating decimals are g-limits of 
g-sequences which belong to R*. Moreover, we have contained the inherent ambiguity of 
nonterminating decimals by approximating them by their nth g-terms which are not 
ambiguous being terminating decimals. In fact, the ambiguity of R* has been contained 
altogether by its construction on the additive and multiplicative identities 0 and 1.  
 As we raise n, the tail digits of the nth g-term of any decimal recedes to the right 
indefinitely, i.e., it becomes steadily smaller until it is unidentifiable. While it tends to 0 
in the standard norm it never reaches 0 and is not a decimal since its digits are not fixed; 
ultimately, they are indistinguishable from the similarly receding tail digits of the other 
nonterminating decimals. In iterated computation when we are trying to get closer and 
closer approximation of a decimal, e.g., calculating f(n) = (2n4+1)/3n4, n = 1, 2, …, the 
tail digits may vary but recede to the right indefinitely and become steadily smaller 
leaving fixed digits behind that define a decimal. We approximate the result by taking its 
initial segment, the nth g-term, to desired margin of error.  
 Consider the sequence of decimals,  
 
(δ)na1a2…ak, n = 1, 2, …,                (7)  
 
where δ is any of the decimals, 0.1, 0.2, 0.3, …, 0.9, a1, …, ak, basic integers (not all 0 
simultaneously). We call the nonstandard sequence (7) d-sequence and its nth term nth d-
term. For fixed combination of δ and the aj’s, j = 1, …, k, in (7) the nth term is a 
terminating decimal and as n increases indefinitely it traces the tail digits of some 
nonterminating decimal  and becomes smaller and smaller until we cannot see it anymore 
and indistinguishable from the tail digits of the other decimals (note that the nth d-term 
recedes to the right with increasing n by one decimal digit at a time). The sequence (7) is 
called nonstandard d-sequence since the nth term is not standard g-term; while it has 
standard limit (in the standard norm) which is 0 it is not a g-limit since it is not a decimal 
but it exists because it is well-defined by its nonstandard d-sequence. We call its 
nonstandard g-limit dark number and denote by d. Then we call its norm d-norm 
(standard distance from 0) which is d > 0. Moreover, while the nth term becomes smaller 
and smaller with indefinitely increasing n it is greater than 0 no matter how large n is so 
that if x is a decimal, 0 < d < x.   
 Now, we allow δ to vary steadily in its domain and also the ajs along the basic 
integers (not simultaneously 0). Then their terms trace the tail digits of all the decimals 
and as n increases indefinitely they become smaller and smaller and indistinguishable 
from each other. We call their nonstandard limits dark numbers and denote by d* which 
is set valued and countably infinite and includes every g-limit of the nonstandard d-
sequence (7). To the extent that they are indistinguishable d* is a continuum (in the 
algebraic sense since no notion of open set is involved). Thus, the tail digits of the 
nonterminating decimals merge and form the continuum d*. 
 At the same time, since the tail digits of all the nonterminating decimals form a 
countable combination of the basic digits 0, 1, …, 9 they are countably infinite, i.e., in 
one-one correspondence with the integers. In fact, any set that can be labeled by integers 
or there is some scheme for labeling them by integers is in one-one correspondence with 
the integers, i.e., countably infinite. It follows that the countable union of countable set is  
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countable. Therefore, the decimals and their tail digits are countably infinite. However, as 
the nth d-terms of (7) trace the tail digits of the nonterminating decimals they become 
unidentifiable and cannot be labeled by the integers anymore; therefore, they are no 
longer countable. In fact they merge as the continuum d*.  
 Like a nonterminating decimal, an element of d* is unaltered if finite g-terms are 
altered or deleted from its g-sequence. When δ = 1 and a1a2…ak = 1 (7) is called the basic 
or principal d-sequence of d*, its g-limit the basic element of d*; basic because all its d-
sequences can be derived from it. The principal d-sequence of d* is,  
 
(0.1)n , n = 1, 2, …                (8) 
 
obtained by the iterated difference, 
  
N – (N – 1).99… = 1 – 0.99... = 0 with excess remainder of 0.1; 
        0.1 – 0.09   = 0 with excess remainder of 0.01; 
        0.01 – 0.009 = 0 with excess remainder of 0.001; 
        …………………………………………………          (9) 
 
Taking the nonstandard g-limits of the left side of (9) and recalling that the g-limit of a 
decimal is itself and denoting by dp the d-limit of the principal d-sequence on the right 
side we have,  
 
N – (N – 1).99… = 1 – 0.99... = dp.                         (10) 
 
Since all the elements of d* share its properties then whenever we have a statement “an 
element d of d* has property P” we may write “d* has property P”, meaning, this 
statement is true of every element of d*. This applies to any equation involving an 
element of d*. Therefore, we have, 
 
d* = N – (N – 1).99… = 1 – 0.99...             (11)    
 
 Like a decimal, we define the d-norm of d* as d* > 0. 
 Theorem. The d-limits of the indefinitely receding (to the right) nth d-terms of d* is 
a continuum that coincides with the g-limits of the tail digits of the nonterminating 
decimals traced by those nth d-terms as the aks vary along the basic digits.  
 If x is nonzero decimal, terminating or nonterminating, there is no difference 
between (0.1)n and x(0.1)n as they become indistinguishably small as n increases 
indefinitely. This is analogous to the sandwich theorem of calculus that says, lim(x/sinx) 

= 1, as x → 0; in the proof, it uses the fact that sinx < x < tanx or 1 < x/sinx < secx where 
both extremes tend to 1 so that the middle term tends to 1 also. In our case, if 0 < x < 1, 0 
< x(0.1)n < (0.1)n  and both extremes tend to 0 so must the middle term and they become 
indistinguishably small as n increases indefinitely. If x > 1, we simply reverse the 
inequality and get the same conclusion. Therefore, we may write, xdp = dp (where dp is 
the principal element of d*), and since the elements of d* share this property we may 
write xd* = d*, meaning, that xd = d for every element d of d*. We consider d* the 
equivalence class of its elements. In the case of x + (0.1)n and x, we look at the nth g-
terms of each and, as n increases indefinitely, x + (0.1)n and x become indistinguishable. 
Now, since (0,1)n > ((0.1)m)n > 0 and the extreme terms both tend to 0 as n increases 
indefinitely,   so   must  the  middle term tend to 0 so that they become indistinguishably  
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small (the reason d* is called dark for being indistinguishable form 0 yet greater than 0): 
We summarize our discussion as follows: 
 
if x is not a new integer, x + d* = x; otherwise, if x = N.99… x + d* = N+1, x – d* = x;

 if x ≠ 0, xd* = d*; (d*)n = d*, n = 1, 2, …, N = 0, 1, …         (12) 
 
1 – d* = 0.99…, N – (N – 1).99… 1 – 0.99… = d*, N = 1, 2, …         (13) 
 
 It follows that the g-closure of R, i.e., its closure in the g-norm, is R* which includes 
the additive and multiplicative inverses and d*. We also include in R* the upper bounds 
of the divergent sequences of terminating decimals and integers (a sequence is divergent 
if the nth terms are unbounded as n increases indefinitely, e.g., the sequence 9, 99, …) 
called unbounded number u* which is countably infinite since the set of sequences is. We 
follow the same convention for u*: whenever we have a statement “u has property P for 
every element u of u*” we can simply say “u* has property P). Then u* satisfies these 
dual properties:  
 

for all x, x + u* = u*; for x ≠ 0, xu* = u*.           (14) 
 
Neither d* nor u* is a decimal and their properties are solely determined by their 
sequences. Then d* and u* have the following dual or reciprocal properties and 
relationship:  
 
0d* = 0, 0/d* = 0, 0u* = 0, 0/u* = 0, 1/d* = u*, 1/u* = d*.          (15) 
 

Numbers like u* − u*, d*/d* and u*/u* are still indeterminate but indeterminacy is 
avoided by computation with the g- or d-terms. 
 The decimals are linearly ordered by the lexicographic ordering “<” defined as 
follows: two elements of R are equal if corresponding digits are equal. Let  
 

N.a1a2..., M.b1b2... ∈ R.              (16) 
 

Then,  
 
N.a1a2. . . < M.b1b2 if N < M or if N = M, a1 < b1; if a1 = b1, a< b2; …,         (17) 
 
and, if x is any decimal we have, 
 
0 < d* < x < u*              (18) 
 
The trichotomy axiom follows from lexicographic ordering. This is the natural ordering 
mathematicians sought among the real numbers but it does not exist there because it 
contradicts the trichotomy axiom.  
 

5. DUALS AND THEIR RECIPROCALS 

 
Mathematical systems are better understood by bringing in the notion of dual systems 
because it introduces some symmetry that may be useful. We can look at divergent 
sequences, i.e., sequences whose terms become bigger and bigger that we  can no  longer  
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comprehend them and become indistinguishable from each other, as dual of convergent 
sequences. In this sense the divergent sequences also form a continuum. We denote their 
upper bounds by u* which satisfies (12) and (15). Then we look at d* as the dual of u* 
and R* that of the system of additive and multiplicative inverses (which has holes, 
namely, the nonexistent multiplicative inverses of integers). Thus R* is a semi-field, the 
nonzero integers forming a semi-ring since some of them have no multiplicative inverses. 
Like d*, u* cannot be separated from the decimals, i.e., there is no boundary between 
either of them and the decimals and between finite and infinite, i.e., we cannot separate 
d* from a decimals and there is no boundary to cross between finite and infinite so that 
beyond a certain finite decimal everything else is infinite. The latter is what is meant by 

the expression u* + x = u* for any decimal x. Duality is also seen in this case: Let λ > 1 

be terminating decimal then the sequence λn, n = 1, 2, …, diverges to u* but (1/λ)n, n = 1, 

2, … converges, d-lim (1/λ)n = d*. 
 

6. ISOMORPHISM BETWEEN THE INTEGERS AND DECIMAL INTEGERS 

 
To find out more about the structure of R* we show the isomorphism between the 
integers and the decimal integers, i.e., integers of the form, 
 
N.99…, N = 0, 1, …              (19) 
 
but before doing so we first note that 1 + 0.99… is not defined in R since 0.99… is 
nonterminating but we can write 0.99. . . = 1 – d* so that 1 + 0.99… = 1 + 1 – d* = 2 – d* 

=1.99… and we now define 1 + 0.99… = 1.99… or, in general, N – d* = (N−1).99… The 
pairs (N,(N–1).99…), N = 1, 2,..., are called twin integers because they are isomorphic:  
 Let f be the mapping N → (N – 1).99… then we show that f is an isomorphism 
between the integers and decimal integers.  
 
(a) f(N+M) = (N+M–1).99… = N + M – 1 + 0.99…  
          = N – 1 + M – 1 + 1.99… = N – 1 + 0.99… + M – 1 + 0.99…  
          = (N–1).99… + (M–1).99… = f(N) + f(M).         (20) 
 
Equation (20) means that addition of integers is the same as addition of decimal integers. 
 Next, we show that multiplication is also an isomorphism.  
 
(b) f(NM) = (NM–1).999... = NM – 1 + 0.99…    
 
(c) = NM – N ! M + 1 + N  + –1 + M + –1 + 0.99…  
  = NM – N – M + 1 + (N–1).99… + (M–1).99… + (–1)(0.99…  
  = NM – N – M + 1 + N(0.99… + (–1)(0.99… + M(0.99…   
  + (–1)(0.99…) + 0.99… = (N – 1)(M – 1) + (N–1)(0.99…)  
  + (M – 1)(0.99… + (0.99…)2 = ((N – 1) + 0.99… M – 1) + 0.99…  
  = (((N – 1).99…)((M – 1).99…) = (f(N))(f(M)).          (21) 
 
We have now established the isomorphism between the integers and the decimal integers 

with respect to both operations. We include in this isomorphism the map d* → 0, so that 
its kernel is the set {d*,0.99…) from which follows equations (22):  
 
(d*)n = d* and (0.99…)n = 0.99…, n = 1, 2, ….          (22) 
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(The second equation can be proved also by mathematical induction) 
 For the curious reader we exhibit other properties of 0.99… Let K be an integer, 
M.99… and N.99… decimal integers. Then 
 
(a) K + M.99… = (K+M).99…  
 
(b) K(M.99…)  = K(M + 0.99…) = KM + K(0.99…) = KM + (K–1).99…  
 
(c) M.99… + N.99… = M + N + 0.99… + 0.99…).          (23) 
 
To verify that 2(0.999...) = 1.99…, we note that (1.99…)/2 = 0.99…       
 
(d) (M.99…)(N.99…) =  (M + 0.99…)(N + 0.99…)  
  = MN + M(0.99… + N(0.99…) + (0.99…)2  
      = MN + (M–1).999… + (N–1).99… + 0.99…  
      = MN + (M + N–2).99… +  0.99…  
      = MN + (M + N–.1).99… = (MN+M+N–1).99…  
 (e) 0.99… + 0.99… = 2(0.99…) = 1.99…          (24) 

We extended the isomorphism to include d* by the mapping f(0) = d*, even if d* is 
neither a decimal nor an integer, because d* behaves like 0 and 0.99… like 1. The 
isomorphism makes the decimal integers also integers (i.e., equivalent and behave alike) 
in the sense of [3].  
 

7. ADJACENT DECIMALS AND RECURRING 9s 

 
Two decimals are adjacent if they differ by d*. Predecessor-successor pairs and twin 
integers are adjacent. In particular, 74.5700… and 74.5699… are adjacent. 
 Since the decimals have the form N.a1a2…an,…, N = 0, 1, 2, …, the digits are 
identifiable and, in fact, countably infinite and they are linearly ordered by lexicographic 
ordering. Therefore, they are discrete or digital and the adjacent pairs are also countably 
infinite. However, since their tail digits form a continuum, R* is a continuum with the 
decimals its countably infinite discrete subsystem. 
 A decimal is called recurring 9 if its tail decimal digits are all equal to 9. For 
example, 4.3299… and 299.99… are recurring 9s; so are the decimal integers. (In an 
isomorphism between two algebraic systems, their operations are interchangeable, i.e., 
they have the same algebraic structure but differ only in notation). 
 The recurring 9s have interesting properties. For instance, the difference between the 
integer N and the recurring 9, (N – 1).99…, is d*; such pair of decimals are called 
adjacent because there is no decimal between them and they differ by d*. In the 
lexicographic ordering the smaller of the pair of adjacent decimals is the predecessor and 
the larger the successor. The average between them is the predecessor. Thus, the average 
between 1 and 0.99… is 0.99… since (1.99…)/2 = 0.99…; this is true of any recurring 9, 
say, 34.5799… whose successor is 34.5800… Conversely, the g-limit of the iterated or 
successive averages between a fixed decimal and another decimal of the same integral 
part is the predecessor of the former. 
 Since adjacent decimals differ by d* and there is no decimal between them, i.e., we 
cannot split d* into nonempty disjoint  sets, we have another proof that d* is a continuum  
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(in the algebraic sense). Then we have another proof that R* is a continuum (also in the 
algebraic sense).  
 It follows from the counterexample to the trichotomy axiom that an irrational 
number cannot be expressed as limit of sequence of rationals since the closest it can get 
to it is some rational interval which still contains some rational whose relationship to it is 
unknown.   
 Now we know what the eurrationals are; they are the nonterminating decimals, 
periodic and nonperiodic. The g-sequence of an eurrational, which is a sequence of 
rationals, gets directly to its g-limit, digit by digit. We note further that an eurrational is 
an infinite series in terms of its digits as follows:  
 
N.a1a2…an…, = N + .a1 + .0a2 + … + .00…0an +…; 0.99… = 0.9 + 0.09 + …     (25) 
  

8. THE STRUCTURE OF R* AND ITS SUBSPACES 

 
We add the following results to the information we now have about the various subspaces 
of R* to provide a full picture of the structure of the new real number system. The next 
theorem is a definitive result about the continuum R*. 
 Theorem. In the lexicographic ordering R* consists of adjacent predecessor-
successor pairs (each joined by d*); therefore, the g-closure R* of R is a continuum [9].  
 Proof. For each N, N = 0, 1, …, consider the set of decimals with integral part N. 
Take any decimal in the set, say, N.a1a2..., and another decimal in it. Without loss of 
generality, let N.a1a2... be fixed and let it be the larger decimal. We take the average of 
the nth g-terms of N.a1a2...and the second decimal; then take the average of the nth g-
terms of this average and N.a1a2...; continue. We obtain the d-sequence with nth d-term, 

(0.5)−na1a2...an+k, which is a d-sequence of d*. Therefore, the g-limit of this sequence of 
averages is the predecessor of N.a1a2... and we have proved that this g-limit and N.a1a2... 
are predecessor-successor pair, differ by d* and form a continuum. Since the choice of 
N.a1a2... is arbitrary then by taking the union of these predecessor-successor pairs of 
decimals in R* (each joined by the continuum d*) for all integral parts N, N = 0, 1, …, 

we establish that R* is a continuum. �  
 However, the decimals form countably infinite discrete subspace of R* since there is 
a scheme for labeling them by the integers.  
 We can imagine the terminating decimals as forming a right triangle with one edge 
horizontal and the vertical one extending without bounds. The integral parts are lined up 
on the vertical edge and they are joined together by their branching digits between the 
hypotenuse and the horizontal and extend to d* which is adjacent to 0 (i.e., differs from 0 
by a dark number) at the vertex of the horizontal edge.    
 Corollary. R* is non-Archimedean and non-Hausdorff in both the standard and the 
g-norm and the subspace of decimals are countably infinite, hence, discrete but 
Archimedean and Hausdorff.  
 The following theorem is standard in the real in the real number system with the 
standard norm. Therefore, we do not bring in d* in the proof so that this is really a 
theorem about the decimals with the standard norm which is not true in the g-norm 
because the decimals merge into a continuum at their tail digits and cannot be separated. 
 Theorem. The rationals and irrationals are separated, i.e., they are not dense in their 
union (this is the first indication of discreteness of the decimals) [7].  

 Proof. Let p ∈ R (the real numbers including the ambiguous irrationals with the 
standard norm) be an irrational number and let qn, n = 1, 2, …, be a  sequence of rationals  
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towards and left of p, i.e., n > m implies qn > qm; let dn be the distance from qn to p and 
take an open ball of radius dn/10n, center at qn. Note that qn tends to p but distinct from it 

for any n. Let U = ∪ Un, as n → ∞, then U is open and if q is any real number, rational or 
irrational to the left of p then q is separated from p by disjoint open balls, one in U and, 
center at q and the other in the complement of U, center at p. Since the rationals are 
countable the union of set open sets U for all the rationals and the irrational p is separated 
from all the rationals.  
 We use the same argument if p were rational and since the reals has countable basis 
we take qn an irrational number, for each n, at center of open ball of radius  dn/10n. Take 
U to be the union of such open balls then, using the same argument, a real number in U, 

rational or irrational, is separated by disjoint open balls from p. � 

 This means that every decimal is separated from the rest, the terminating decimals 
from the eurrationals and from each other.  
 The next theorem has standard proof (in R); it raised eyebrows in internet forums.  
 Theorem. The largest and smallest elements of the open interval (0,1) are 0.99… 
and 1 – 0.99…, respectively [6].  
 Proof. Let Cn be the nth term of the g-sequence of 0.99…  For each n, let In be open 
segment (segment that excludes its endpoints) of radius 10−2n centered at Cn. Since Cn lies 
in In for each n, Cn lies in (0,1) as n increases indefinitely. Therefore, the decimal 0.99… 
lies in the open interval (0,1) and never reaches 1. To prove that 0.99… is the largest 
decimal in the open interval (0,1) let x be any point in (0,1). Then x is less than 1. Since 
Cn is steadily increasing n can be chosen large enough so that x is less than  Cn and this is 
so for all subsequent values of n. Therefore, x is less than 0.99… and since x is any 
decimal in the open interval (0,1) then 0.99… is, indeed, the largest decimal in the 
interval and is itself less than 1. 
 To prove that 1 – 0.99… is the smallest element of R, we note that the g-sequence of 
1 – 0.99… in (16) is steadily decreasing. Let Kn be the nth term of its g-sequence. For 
each n, let Bn be an open interval with radius 10−2n centered at kn. Then Kn lies in Bn for 
each n and all the Bns lie in the open set in (0,1). If y is any point of (0,1), then y is 
greater than 0 and  since the generating sequence 1 – 0.99… is steadily decreasing n can 
be chosen large enough such that y is greater than Kn and this is so for all subsequent 
values of n. Therefore, y is greater than = 1 – 0.99… and since the choice of y is 
arbitrary, 1 – 0.9… is the smallest number in the open interval (0,1); at the same time 1 – 

0.99… is greater than 0. �   
 This theorem is true in the real number system and follows from the properties of the 
terminating decimals but it was not known because neither 0.99… nor 1 – 0.99… was 
well-defined; it was assumed all along that 1 = 0.99…the right side being ill-defined.  
 The next theorem used to be called Goldbach’s conjecture [4,7].  
 Theorem. An even number greater than 2 is the sum of two prime numbers. 
 This is unsolved because, like Fermat’s equation (FLT) [5], it is indeterminate. 
Before proving the theorem, we first note that an integer is a prime if it leaves a positive 
remainder when divided by another integer other than 1. We retain this definition in R*.  
 Proof. The conjecture is obvious for small numbers. Let n be even greater than 10, p, 
q integers and p prime. If q is prime the theorem is proved; otherwise, it is divisible by an 
integer other than 1 and q. If we divide q by an integer other than 1 and q then since d* 

cannot be separated from any decimal, the remainder is d* > 0. Therefore, q is prime. �  
 We now have a sense of how the decimals are arranged by the lexicographic 
ordering. Consider the decimals with integral part N:  
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N.99……………. 
…………………. 
N.4800…………. 
N.4799…………. 
…………………. 
N.10…………….. 
………………….. 
N.00…0100… 
………………….. 
 
N.00…                (26) 
 

The largest decimal in the set is the decimal integer N.99… and the smallest is the 
terminating decimal N.00… From the bottom up the decimals with integral part N are 
arranged as predecessor-successor pairs each joined by d*.Each gap indicated by the 
ellipses is filled by countably infinite adjacent predecessor-successor pairs each also 
joined by d* so that their union is a continuum. We now have a clear picture of how R* is 
arranged on the new real line linearly ordered by <, the lexicographic ordering. 
 
A. Important results; resolution of a paradox 

 

 (1) Every convergent sequence has a g-subsequence that defines a decimal adjacent 
to its limit. If the decimal is terminating it is the limit itself. 
 (2) It follows from (1) that the limit of a sequence of terminating decimals can be 
found by evaluating the g-limit of its g-subsequence which is adjacent to it. We can use 
this as alternative way of computing the limit of ordinary sequence. 
 (3) In [10] several counterexamples to the generalized Jourdan curve theorem for n-
sphere are shown where a continuous curve has points in both the interior and exterior of 
the n-sphere, n = 2, 3,. . . , without crossing the n-sphere. The explanation is: the 
functions cross the n-sphere through dark numbers. 
 (5) Given two decimals and their g-sequences and respective nth g-terms An, Bn we 

define the nth g-distance as the g-normAn− Bnof the difference between their nth g-

terms. Then their g-distance is the g-limAn− Bn, as n → ∞, which is adjacent to the 
standard norm of the difference [3]. The advantage here is that the g-distance is the g-
norm of their decimal difference and the difference between nonterminating decimals 
cannot be evaluated otherwise. Moreover, this notion of distance can be extended to n-
space, n – 2, 3, ..,  and the distance between two points can be evaluated digit by digit in 
terms of their components without the need for evaluating roots. In fact, any computation 
in the g-norm yields the results directly, digit by digit, without the need for intermediate 
computation such as evaluation of roots in standard computation.  
 

B. More on nonstandard numbers 

 
We highlight some properties of special class of nonstandard numbers that can be 
checked by looking at their g- or divergent sequences. The principal element of d* (g-
limit of its principal g-sequence) is dark number of order 0.1. 

 Let γ be a fraction such that 0 < γ < 1 and let dγ = g-limγn, as n → ∞, n integer, dγ is 

called dark number of order γ. An unbounded number u of order λ > 1 is defined as the 

upper bound of the sequence λn, as n → ∞. The number u is an element of u* just as dγ is  
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an element of d*. Since γn is positive and steadily decreasing, dγ is less than any given 
decimal. (In this section we only consider positive decimal and hence we shall drop the 
qualification positive) To see this, let x be any decimal; since γ < 1, the integer n can be 

chosen large enough that 0 < dγ < λn < x. Similarly, it can be an unbounded decimal of 
any order greater than any decimal.  
 The following is obvious by checking their g-sequences. 
 1. The product of any decimal and dark number of order γ is dark number of order γ; 

the product of a decimal and unbounded number of order λ is unbounded of order λ. 
 2. If d1 and d2 are dark numbers of order γ1 and γ2, respectively, where γ1 < γ2, then 
d1 + d2 is dark number of order γ2, d2 − d1 is dark number of order γ1, d1/d2 is dark number 
of order γ1/ γ2 and  d1/d2 is unbounded number of order γ2/γ1. 
 3. A decimal divided by a dark number of order γ is unbounded of order 1/ γ; a 

decimal divided by unbounded number of order λ is a dark number of order 1/λ; the 
reciprocal of dark number of order γ is unbounded number of order 1/γ; the reciprocal of 

unbounded number of order λ is dark number of order 1/λ.  

 4. If µ1, µ2 are unbounded numbers of orders λ1, λ2, respectively, where λ1 > λ2, then 

µ1+ µ2 and µ1 − µ2 are both unbounded numbers of order λ1 and µ1/µ2 and µ2/µ1 are 

unbounded and dark numbers of orders λ1/ λ2 and λ2/λ1, respectively.  
 5. The sum of two dark numbers of the same order is a dark number of that order; the 
quotient of two dark numbers is indeterminate but can be avoided using nth g-term 
approximation. If the nth g-term of the quotient is a decimal then the quotient is a 
decimal, if it is greater than 1 the quotient is u*; if it is less than 1 the quotient is d*. 
 These results, taken from [6], are useful in avoiding indeterminate forms in 
calculation. Moreover, since all elements of d* share the properties of d*, we can use any 
element of this class for our argument in proving a theorem, especially, in dealing with 
inequality, the advantage being that it has clear structure. Consequently, there is no loss 
of generality in using the principal nth g-term of d* for any purpose involving d*.  
 
Remark 
 
Gauss’ diagonal method proves neither the existence of nondenumerable set nor a 
continuum; it proves only the existence of countably infinite set, i.e., the off-diagonal 
elements consisting of countable union of countably infinite sets. The off-diagonal 
elements are not even well-defined because we know nothing about their digits (a 
decimal is determined by its digits). Therefore, we raise these conjectures:  
 Conjectures. (1) Nondenumerable set does not exist; (2) Only discrete set has 
cardinality; a continuum has none. 
 

9. THE COUNTER EXAMPLES TO FLT 

 
Given the contradiction in negative statement, we use Fermat’s equation in place of the 
statement of Fermat’s last theorem (FLT) so that its solutions are counterexamples to 
FLT. We first summarize the properties of the basic digit 9.  
 (1) String of 9s differs from nearest power of 10 by 1, e.g., 10100 – 99…9 = 1.  
 (2) If N is an integer, then (0.99…)N = 0.99… and, naturally, both sides of the 
equation have the same g-sequence. Therefore, for any integer N, ((0.99,..)10)N = 
(9.99…)10N. 
 (3) (d*)N = d*; ((0.99,..)10)N + d* = 10N, N = 1, 2, … 
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 Then the exact solutions of Fermat’s equation are given by the triple (x,y,z) = 
((0.99…)10T,d*,10T), T = 1, 2, …, that clearly satisfies Fermat’s equation,  

xn + yn = zn,                       (26) 
 
for n = NT > 2.  Moreover, for k = 1, 2, …, the triple (kx,ky,kz) also satisfies Fermat’s 
equation. They are the countably infinite counterexamples to FLT that prove the 
conjecture false [5]. One counterexample is, of course, sufficient to disprove a conjecture. 
 

10. WELL-BEHAVED FUNCTIONS 

 
We call well-behaved polynomial, rational, exponential, logarithmic and circular 
functions and their sum, product, quotient and composites away from points of 
discontinuity. We consider well-behaved functions on the terminating decimals R which 
are discrete but continuous on R* being a continuum.   
 Since R is discrete its image under a well-behaved function is discrete. However, 
since the dark numbers between points in its graph are not seen the latter behaves like a 
continuous graph of standard analysis, the difference only of interest for computing and 
applications, especially, simulation where the tools are discrete. Then there is no need to 
approximate continuous function by discrete function as done in [14,15].  
 

11. COMPUTATION 

 
Computation is mapping of function or algebraic operation on functions into a number 
system or system of functions (e.g., finding solution of differential equation). 
Computation includes finding the result of algebraic operations on functions and 
evaluation of their values and limits.  
 We recall some of the concepts involved in computation. One is the limit point of 
topology (we simply refer to it as limit) in the standard norm which is clearly defined. 
The point P is limit of a sequence or series (sum of terms of a sequence) if every 
neighborhood of P contains a term of the sequence or series. What is its relationship with 
the g-norm? They are adjacent (differ by d*) because the standard norm of a decimal 
N.a1a2…an… is the sum of its series expansion, 
 

N.a1a2…an… = N + .a1 + .0a2 + … + .0…0 an… = N + Σ(1)−nan, n = 1, 2, …       (27) 
 
This sum in the standard norm is adjacent to the decimal; therefore, it approximates the 
decimal by an error of d*.  
 Since the g-norm is precise, i.e., yields the result of computation directly as a 
decimal digit by digit, the margin of precision is determined by the number of decimal 
digits computed; the intermediate steps of standard computation, e.g., evaluation of roots, 
are avoided. Then the limit is approximated by the g-limit, i.e., the decimal, to any level 
of accuracy within 10−n, the nth d-term of d*. Thus, computation by the g-norm saves 
considerable computer time.  
 As example, we note that the standard norm or magnitude of the nonterminating 
decimal 0.99… is the sum of the series, 
 

0.99… = 0.9 + 0.09 + … 0.00…09 + … = Σ9(1)−n,           (28) 
 



74                 Escultura 
 
which is  and approximation of 1 at margin of error d* and 1 is adjacent to its g-norm, 
0.99…, since 1 – 0.99… = d* [3]. Of course, d* does not show in (28) being dark but d* 
+ 0.99… = 1.   
 For purposes of computation we denote the nth g-term of a decimal by the functional 
notation n-ξ(x) called n-truncation. Since a g-sequence defines or generates a decimal we 
call the latter its g-limit. Since nonterminating decimals cannot be added, subtracted, 
multiplied or divided, they must be n-truncated first to carry out the operations on them. 
The margin of error at each step in the computation must be consistent (analogous to the 
requirement of number of significant figures in physics, the rationale being that the result 
of computation cannot be more accurate than any of the approximations of the terms). 
While we can start division by terminating decimal since it starts on the left digits the 
quotient does not exist when the divisor has a prime factor other than 2 or 5. On this basis 
we have modified the definition of a rational as quotient of two integers including 
terminating decimal and called a non-rational eurrational. They include all the 
nonterminating decimals, periodic and nonperiodic.  
 Let x = N.a1…an… and y = M.b1…bn…, then 
 
n-ξ(x) = N.a1…an, n-ξ(y) = M.b1…bn, n-ξ(x + y) = n-ξ(x) + n-ξ(y),        (29) 
 
n-ξ(x – y) = n-ξ(x) – n-ξ(y), n-ξ(xy) = (n-ξ(x))(n-ξ(y)), n-ξ(x/y)  
       = (n-ξ(x))/(n-ξ(y)),             (30) 
 

provided n-ξ(y) ≠ 0 as divisor. Consider the function f(x1,…,xk) of several variables; we 
n-truncate f as follows: 
 
n-ξ(f(x1,…,xk)) = f(n-ξ(x1),…, n-ξ(xk)).           (31) 
 
If f is a composite function of several variables, f(g1(x1,…,xt),…,gs(y1,…,yu)) then, 
 
n-ξ(f(g1(x1,…,xt),…,gs(y1,…,yu))) = f(n-ξ(g1(n-ξ(x1)),…,n-ξ(xt)),…,  
 n-ξ(gs(n-ξ(y1)),…, n-ξ(yu))).            (32) 
 
This formalizes standard computation now based on the new real numbers. The 
computation itself uses the g-terms of the decimals involved and provides the result 
directly, digit by digit; it approximates the result to within any d-term of d*, the closest 
approximation one can ever get to is d* as in (28). Computation using the g-norm applies 
to monotone increasing function since the g-terms of a decimal is monotone increasing. 
However, a monotone decreasing function can be converted to a monotone increasing 
one and g-norm computation applied to the latter. 
 We give very simple examples below to illustrate the methodology without getting 
distracted by unnecessary complexity. Consider the monotone increasing function,  

       
f(x) = x1/3.               (33) 
 
We want to evaluate f(5) to within 3 decimal digits. We make a series of 3-trunctions of 
f(5) to find the first three g-terms of its g-sequence.  
 Step 1. Find the largest integer N such that N3 

≤ 5. Clearly, N = 1.  
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 Step 2. Divide segment [0,1] by points, 0, 0.1, 0.2, …, 0.9, 1, and find  the largest 
number a1 such that (1.a1)

3 
≤ 5. If (1.a1)

3 = 5,  f(5)  is a terminating decimal. This is not so 
here since, a1 = 0.7 and (1.7)3 = 4.913 and the first term of the g-sequence is 1.7.   
 
 
 Step 3. Divide the segment [0,0.1] by the points 0, 0.01, 0.02, …, 0.09, 0.1] and find 
the largest number among them and call it a2 such that (1.7a2)

3 
≤ 5. In this case, a2 = 0. 

Then the first three digits of f(5) are known: 1.70. 
 Step 4. Find a3 such that (1.70a3)

 3 
≤ 5; then a3 = 9 and (1.709)3 = 4.991. Thus, the 3rd 

g-term of f(5) = 1.709. The calculation can be carried out to find the nth term of the g-
sequence of f(5) for any n. This is how the scientific calculator computes cube root. 
Actually, we calculated the first three terms of the g-sequence of x1/3 or its 3rd g-term. 
 This calculation applies to any well-behaved function since every point on it away 
from point of discontinuity has a neighborhood in which it is monotone. We used the g-
norm to compute the result directly digit by digit. This is exactly how the calculator does 
it. It may look time-consuming but it can be done in split second with the right software.  
 Suppose we have the composite function, h(x) = f(g(x)), where f(x) = x1/2, g(x) = x + 
1 so that f(g(x)) = (x + 1)1/2. We want to evaluate h(9) up to the 3rd decimal digit, i.e., at 
10−3 margin of error.  
 Step 1. We want to find the 3-truncation N.a1a2a3 of h(9). We first compute the 
integral part. Obviously, the largest integer N such that N2 does not exceed (h(9))2 = 10 is 
N = 3.  
 Step 2. Divide the interval [0,1] by the points, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1, and find the largest among them and denote it by 0.a1 such that (3.a1)

2 does not exceed 
10. that decimal is 0.1. 
 Step 3. Divide the interval [0,0.1] by the division points 0.01, 0.02, 0.03, 0.04, 0.05, 
0.06, 0.07, 0.08, 0.09, 0.1 and find the largest of the division points and denote it by 0.0a2 
such that (3.1a2)

2 does not exceed 10. The decimal is 0.06.  
 Step 4. Divide the interval [0,0.01] by the division points 0.001, 0.002, 0.003, 0.004, 
0.005, 0.006, 0.007, 0.008, 0.009, 0.01 and find the largest among the division points and 
denote it by 0.00a3  such that (3.16a3)

2 does not exceed 10. That number is 0.002.  
 Therefore, the 3rd g-term approximation of h(9) at margin of error (10)−3 is 3.162.   
 To find fractional root of a decimal x, say, h(x) = xk/m, we consider it as a composite 
function f(g(x)), where f(x) = x1/m, g(x) = xk both of which are monotone increasing. 
Then we can n-truncate each of f(x) and g(x) and then n-truncate the corresponding 
composite of their n-trunctions to obtain the nth g-term approximation of the composite 
function h(x). Extension to sum, product and quotients is obvious.  
 

12. THE LIMIT OF A DECIMAL 

 
We recall that point P is the limit of the g-sequence or series expansion of a 
nonterminating decimal if every open interval containing P contains an element of the 
sequence or series. For example, 1 is the unique limit of 0.99… Since the limit and g-
limit of a nonterminating decimal are adjacent the g-limit of the value of a function 
approximates the value at margin of error d* or the nth g-term at margin of error 10−n. 
The terminating decimal 4.5300… and 4.5299… are adjacent the former being the 
successor of the latter in the lexicographic ordering of the decimals. Therefore, the 
former is the limit of the g-sequence of the latter. A nonstandard number, aside from d* 
and u*, is the sum of a decimal and d*. This means that its g-sequence has a set of digits  
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that moves to the right indefinitely leaving fixed digits behind. The digits that move to 
the right are the nonstandard nth d-terms of d* and the digits that remain fixed are the 
digits of the g-terms of the decimal. Since d* cannot be separated from the decimal as its 
dark component except that we cannot identify its dark component being a point in the 
continuum we can look at the latter as the standard component. Moreover, d* cannot be 
separated from 0 although distinct from it; therefore, it is adjacent to it.     
 The sequence, 1.25315, 1.250153, 1.2500351, 1.25000531, … shows the nth d-terms 
of some nonstandard decimal, i.e., a terminating decimal, and the receding d-terms of d* 
so that the nonstandard decimal is 1.25 + d* that reduces to the standard decimal 1.25. In 
other words, we can look at a decimal as approximation of some nonstandard number and 
the margin of error is d*. What is the purpose of all these? Consider the function,  
 

F(x) = H(x) + δ(x),              (34) 
 

where H(x) does not diverge as x tends to some limit and δ(x) tends to 0 as limit then in 

the calculation of the limit of F(x) as x → s the nth g-term will consist of two components 
one with digits remaining fixed and another set of digits that recedes indefinitely to the 
right, the nth d-term of d*. This means that in evaluating limit of a function we keep 
computing the value of the function (iterated computation) over finer and finer 
refinements of the sequence of termininating decimals that tends to s as limit (there is no 
loss of generality in taking successive averages between the terms of the sequence and s). 

We call H(x) and δ(x) the principal and minor parts of F(x), respectively. Even if the 
function is not separated into principal and minor parts, they will show in the calculation 
of its limit. Moreover, since the computation involves iterated approximations the 
problem of indeterminacy does not arise.  
 If the function is a sequence of terminating decimals {an}, n = 1, 2, …, we take the 
values of the sequence along n, which need not be consecutive values. To facilitate 
convergence we may skip some values of n and take large values.  
 Consider our previous example, the sequence of numbers, f(n) = (n4 + 1)/n4. We 
compute the terms along n = 1, 2, …, and note their truncated sequence of values: 
 
 n = 1,    f(1)   = 2.0000000 
 n = 2,    f(2)   = 1.0625000 
 n = 3,    f(3)   = 1.0123456 

 n = 4,    f(4)   = 1.0039062 
  ………………………… 
 n = 50, f(50) = 1.0000000.            (35) 
 
Discarding the first term f(1) = 2.0000000 corresponding to n = 1, which is not a g-term, 
we have the nonstandard g-sequence of f(n), 
 
1.0625000, 1.0625000, 1.0123456, 1.0039062, 1.0016000, …, 1.0001000, …,      (36)  
 
whose limit is 1 + d*. Note the nth d-term with set of digits varying and receding to the 
right indefinitely leaving the fixed digits behind. The varying elements are the d-terms of 
d*. The fixed digits left behind are the g-terms of 1, a terminating decimal. 
 Consider the limit of the sequence, f(n) = (2n4+1)/3n4, n = 1, 2, … We find a 
nonterminating decimal that is adjacent to it. We do the following computation: 
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n = 2,    f(2)   = 0.6875000 n = 6,  f(6)       =  0.66669238      
n = 4,    f(4)   = 0.6679687 n = 7,  f(7)       =  0.66680540  
n = 3,    f(3)   = 0.6707818 n = 8,  f(8)       =  0.66674800 
n = 5,    f(5)   = 0.6672000 n = 9,  f(9)       =  0.66671740   
 ……………………………………………………………………..  
n = 100, f(100) = 0.66666666.            (37)  
 
 
 Thus, the nonterminating decimal adjacent to the limit of f(n), as n → ∞, is 0.66…, a 
periodic eurrational.  
 We now compute the g-limit of a function. Let f(x) be a function and suppose we 
want to find limf(x), as x → s. We find limf(x) along successive refinements starting with 
the steadily increasing sequence x0, x1, x2, …, left of and towards s > 0 as limit. We 
refine the sequence by inserting the succession of averages of s and x0, of s and x1, etc., 
…, relabeling them as s1, s2, s3, …, etc. so that the refinement becomes the sequence, x0, 
s1, s2, s3, … We continue the refinement and compute the values of the nth g-term of g-
limf(x) along the kth refinement. If for some suitable value of k we find some set of digits 
in the nth g-terms of f(x) that recedes to the right leaving fixed digits behind up to the nth 
term, then that would be the nth g-term of the g-limit which is adjacent to the limit. If s is 
nonterminating, we obviously need to truncate s to the desired accuracy to do the 
computation. The advantages of this scheme for computing the value of f(x) or the 
limf(x) is quite clear. For instance, a software for computing limit of well-behaved 
functions can be developed that would take split second to get the result. This is not 
possible for non-well-behaved functions such as wild oscillation [8].   
 

13. COMPUTATION WITH NONSTANDARD NUMBERS 

 
Consider the function f(x) = g(x) + d(x) in the neighborhood of a decimal s, where x is 
decimal and g(x) (principal part) and d(x) (minor part) are decimal-valued functions and 

g(x) tends to nonzero decimal as limit and d(x) tends to 0, as x → s. Then g-limf(x) = g-

lim(g(x) + g-limd(x)) = g-limg(x), as x → a. If g-limg(x) is unbounded at s then g-limf(x) 
is unbounded. In computation we treat nonstandard function f(x) as binomial, the sum of 
principal and minor parts. In algebraic operations involving sum and product we write the 

result in the form F(x) = G(x) + η(x), where F(x) and η(x) are the principal and minor 

parts, respectively. Then g-limF(x) = g-limG(x), as x → s. The minor part of the function 
G(x) may be discarded in the calculation of its g-limit; if they appear as factors, the 
arithmetic of dark numbers applies.  

 If λ is a terminating decimal, i.e., a fraction, such that 0 < λ < 1, the g-limit of the 

nonstandard sequence λn, n = 1, 2, …, is called dark number of order λ. Consider the 
non-uniformly bounded convergent sequence S [6]:  
 
0.123, (0.312)2, (0.231)2, (0.123)3,…,           (37) 
 
whose terms are cyclic permutations of the digits 1, 2, 3. To find its limits we split it into 
three component sequences:  
 
(a) 0.123, (0.123), (0.123)3, …,  
(b) 0.312), (0.312)2,  
(0.312)3,…, (c) 0.231, (0.231)2, (0.231)3,…,           (38) 
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which converge to distinct elements of d*. Therefore, the g-limit of (38) is three-valued, 
consisting of dark numbers of these orders. Since the number of ways of forming such 
component sequences is countable one may form a dark number of countable set-valued 
order as well as nonstandard functions with set-valued principal and minor parts. Since 
they all recede to the right indefinitely they become indistinguishable and their d limit is 
a continuum. 
 
 A module H(x1,. . .,xk) is a rational expression in the variables x1, . . ., xk. Suppose 
the values of the arguments are given and H is computable as a single decimal, 
terminating or nonterminating. Then the value of H can be computed to any margin of 
error. If this is not the case, then compute the nth g-terms of the arguments, at consistent 
margin of error, and find the value of H in terms of those nth g-terms. Given two modules 

H and G and using the approximation function ξn, we define ξn(H + G) = ξn(H) + ξn(G) 

and ξn(HG) = ξn(H)nξn(G) at consistent margin of error. In dealing with nonterminating 
decimals it may not be possible to verify equality between two modules by actual 
computation. In this case, we say that two modules H(x1,…,xk), G(x1,…,xm) are equal if 
their n-truncations are equal, i.e., ξn(H) = ξn(G), for each n = 1, 2, … 
 Although dark numbers of some orders are special elements of d* they share the 
properties of d* and we may substitute d* in any equation or expression involving them.  
 Consider the function H(x) = h(x) + d(x), where h(x) tends to a decimal and d(x) 

tends to 0, as x → s. Then g-limH(x) = g-limh(x) since the sum of a decimal and dark 

number is the same decimal. If some function ∇g(x) is small and tends to 0 as limit, i.e., 

dark number of some order γ, and limh(x) is a decimal then lim(∇g(x)H(x), x → s, is 

dark number of order γ provided h(x) does not diverge. A function of the form ∇g(x)hx), 

as x → s, is dark number of order α if ∇g(x) tends to the form αn, where n → ∞ , as x → 
s. Note that g-limH(x) = g-limh(x) + g-limd(x) = g-limh(x). Thus, taking the g-limit of a 
function amounts to discarding the minor part of the nonstandard function provided the 
principal part does not diverge. If the g-limit is terminating decimal it is generally 
obtained by substitution because it is actually attained. For example, if f(x) is the 
principal part of some nonstandard function, say, H(x) = x2 + d(x), then g-limH(x), as x 

→ a, is a2. The sum or product of nonstandard functions is obtained by considering each 
function as binomial, the sum of its principal and minor parts. This is also the way to 
handle nonstandard numbers and operations and inverse operations. If the divisor tends to 
0 then it is a divergent sequence of u* and the arithmetic of u* applies. For instance, if 
the quotient has the form d1(x)/d2(x) and numerator and denominator tend to 0, i.e., dark 
numbers of orders γ1, γ2, respectively, the quotient has order γ = γ1/γ2 and is either a dark 
number, decimal or unbounded number depending on whether γ < 1, γ = 1 or γ > 1. 
However, by n-truncation to find the nth g-terms, we can tell what the g-limit would be 
and so indeterminacy is avoided. Moreover, for finding limit of ordinary indeterminate 
form, truncation will compute the g-limit directly without being bothered by 
indeterminacy. 
 

14. DISCRETE OPTIMIZATION 

 
As long as function is well-behaved in the neighborhood of a point P there is a 
neighborhood of P at which the function is steadily increasing or decreasing; if the 
function is steadily increasing we can find its maximum M. If we want to find its 
minimum we find some constant K so that K – f(x) is steadily increasing. Then max(K – 
f(x)) = min(f(x)). If the maximum M exists, maximum of (M – f(x)) = minimum of f(x)  
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also exists. Note that this algorithm for computing maximum or minimum yields the 
answer directly as a decimal which is adjacent to the limit (standard norm). This offers 
some advantage over the standard norm, especially, in computation in the standard norm 
that requires finding the roots. This is avoided because the digits of the result are obtained 
directly by n-truncation as in the above examples.  
 We illustrate optimization, again, with a simple function along continuous 
refinements of division points in an interval on its domain. Consider the function  
 

y = f(x) = 2 + 2x – x2 = −(x – 2)2 + 1. 
 
We start with the values of f(x) on the interval between its zeros. We continue to find its 
values along midpoints (averages) until the values taper off to a certain value. We work 
on the monotone increasing side of the function. Then we have the fallowing system of 
values of f(x) starting with integral points; 
 
f(1) = 0; f(2) = 1, f(2) = 0; f(1/2) = 0.75; f(3/4) = 15/16 = 0.9375. 
f(7/8) = 63/64 = 0.9843; f(15/16) = 255/256 = 0.9960; 
f(31/32) = 1023/1024 = 0.9990; f(63/64) = 4095/4096 = 0.9997; 
f(127/128) = 16383/16384 = 0.9999.           (39)  
 
Note that the value of the function along refinements tapers off at 0.9999 and if we 
continue along the relevant terms of the sequence of values of x that tends towards x = 1 
we will generate the eurrational 0.99… which is adjacent to 1, the maximum of f(x) and 
its g-norm. We did not use the sequence of averages but sequences of the for x/(x+1) 
starting with x = 1/2; it does not matter.     
 The rest of the section is an introduction to discrete calculus to pave the way for the 
development of the subject.  
 

15. ADVANTAGES OF THE G-NORM 

 
Here are the advantages of the g-norm over other norms. 
 (a) It avoids indeterminate forms. 
 (b) Since the g-norm of a decimal is itself, computation yields the answer directly as 
decimal, digit by digit, and avoids the intermediate approximations of standard 
computation. This means significant savings in computer time for large computations. 
 (c) Since the standard limit is adjacent to the g-limit of some g-sequence, evaluating 
it reduces to finding some nonterminating decimal adjacent to it; the decimal is computed 
using the g. Both the computation and approximation are precise. In fact, the exact 
margin of error is d*. This applies to the result of any computation: it is adjacent to some 
nonterminating decimal and the latter is found using the g-norm.  
 (d) In iterated computation along successive refinements of sequence xj that tends to 

a as j → ∞. The iteration is simplified by taking midpoints or averages between the 
sequence of points xj and the g-limit s.   
 (e) Approximation by nth g-term or n-truncation contains the ambiguity of 
nonterminating decimals.  
 (f) Calculation of distance between two decimals is direct, digit by digit, and requires 
no square root. In fact, calculation by the g-norm involves no root or radical at all. 
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 (i) In general radicals in computation, e.g., taking root of a prime, is avoided by nth 
g-term approximation or n-truncation to any desired margin of error where accuracy is 
measured by number of digits of the result obtained.  
  The g-norm is the natural norm for purposes of computation for it does three things: 
(a) it puts rigor in computation since every step is in accordance with the new definition 
of the previously ill-defined nonterminating decimals (as meaningless infinite arrays of 
digits most of which unknown) in terms of the well-defined terminating decimals, (b) the 
margin of error is precisely determined and (c) the result of the computation is obtained 
digit by digit and avoids intermediate unnecessary approximations of standard 
computation. For large computation (c) provides significant  saving in computing time as  
it avoids these intermediate approximations and proceeds directly to the calculation of 
digits of the resulting decimal.   
 

16. INTRODUCTION TO DISCRETE CALCULUS 

 
 With the g-norm we can now set up the mechanism for discrete differentiation and 
integration since both involve limits. This is all we can do here: introduce the concepts of 
discrete differentiation and integration. 
 To find the derivative at x = s, where s is terminating decimal, we find the nth g-term 
of ∆f/∆x, as ∆x → 0, i,e., x → s, where ∆x = x – s, starting from a point x0 near s where 
∆f/∆x is steadily increasing or decreasing along successive points x0, x1, etc., and where 
∆0 = x0 – s, ∆1 = x1 – s, etc. This way, we find the g-sequence of the g-limit (the exception 
is when ∆f/∆x diverges). If the derivative of f(x) exists in the sense of calculus it also 
exists in discrete calculus and the differentiation rules of calculus applies. We have here a 
simpler technique for optimization. Moreover, even function having no derivative in 
calculus such as set-valued function or function having set-valued derivative may have an 
optimum. Ref. [8] discusses set-valued functions and derivatives including wild 
oscillation of the form f(x) = sinn(1/x2), n = 1, 2, … When ∆x  tends to 0 in the standard 
norm but ∆f tends to a nonzero decimal then ∆f/∆x diverges.  
 The extension of our computational technique to composite function of several 
functions of several variables is straight forward and similar to the techniques of calculus. 
The only innovation here is the use of truncation for finding g-sequences. 
 The graph of well-behaved functions is the same as its graph in the Cartesian 
coordinate system since each missing element is the dark number d* squeezed between 
adjacent decimals which is not detectable.  
 The functions of discrete calculus are functions over the decimals. Therefore, they 
are discrete-valued. Consider the function y = f(x) in the interval [a,b] and subdivide [a,b] 
by the finite set of points (decimals) {xk}, k = 1, 2, …, s, where a = x1, b = xs. We further 

subdivide the set by the finite set of points {xm}, m = 1, 2, …, t, take {xk}∪{xm} = {xn}, 
n = 1, …, w = s + t , and call it {xn}, n = 1, …, w, where we relabel the points of the 
union of the two sets, preserving their lexicographic ordering and taking a = x1, b = xt, a 
refinement of both {xk} and {xm}. For a well-behaved function, except at points where it 
is undefined, there is no significant difference for purposes of evaluating its value or limit 
in taking midpoints of the subsegments determined by each refinement of the subdivision 
of the interval [a,b].  
 One advantage of discrete function is: we do not need derivative to find maximum or 
minimum; naturally, problems of optimization unsolvable in calculus may be solvable 
here. For instance, this technique applies to some functions with set-valued derivatives 
such as the schizoid or curve with cusp. It is also applicable to set-valued functions.  
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 However, the case where the given function is wild oscillation such as f(x) = sinn1/x, 
n = 1, 2, …, k, requires special technique appropriate for set-valued functions [8].   
 Consider the arc of the function y = f(x) over the interval [a,b] and let the set of 
points {xk}, k =, 1, 2, …, s, subdivide the interval [a,b] suitably so that each local 
maximum or minimum is isolated in some interval. This is possible since the values of 
f(x) over the decimals are countably infinite and discrete. Unless the maximum or 
minimum lies at an end point, its neighborhood will contain interval on which f(x) is 
increasing on one side and decreasing on the other. At the same time, the end point of a 
function in an interval is either minimum or maximum. In fact, every closed interval in 
the range of a  function contains  its maximum or  minimum.  Without loss of generality,  
consider interval [c,d] containing a maximum. Subdivide the interval [c,d] and take 
successive refinements {xm} of {xk} ({xm} relabeled suitably) until the values of f(xm), 
tapers to a constant α along {xm}m = 1, 2, …, w.  In this new setting the values of a 
function, being discrete, is no different from a sequence of numbers. As the values 
become close to each other they contain a d-sequence with a set of digits in its terms 
receding to the right and forming a d-sequence of d* and another set of values that remain 
fixed. The latter defines a decimal, a local maximum in this interval. By suitable 
translation of the function the minimum can be similarly obtained (the end point is either 
a maximum or minimum). Then the absolute maximum of f(x) is the maximum of Mk, k 
= 1, 2, …, m. In this algorithm for finding the g-limit of a function there will be, in 
general, several inequivalent g-sequences each a g-sequence of a local maximum. A 
single g-sequence may split into distinct g-sequences in further computation of the nth g-
terms when their limits are close to each other. Some functions have countably infinite 
maxima, e.g., infinitesimal zigzag and oscillation [8].  
 This method applies to function with maximum at cusp, e.g., schizoid. By suitable 
transformation the minimum can be found in a similar way. This approach is both 
intuitive and computational. A more sophisticated version of it for discrete function is 
approximation of continuous function developed in [10,11].   
 We extend our method to the calculation of the length of an arc of a curve. Consider 
the function y = f(x) over the interval [a,b]. Let the set of points {xk}, k = 1, 2, …, s, 
subdivide the interval [a,b] and form the sum, 
           
Lk = ∑((xk+1  - xk )

2 + (f(xk+1 − xk )
2 )1/2 , k = 1, 2, …, s,         (40) 

         

where a = x1, b = xs. Take refinements of {xm} of {xk} ({xm} relabelled suitably) until the 
values of Lm tapers to a constant Γ; we call Γ the length of the curve of y = f(x) over [a,b]. 
 In calculus the right derivative of a curve at point P is obtained by drawing a line 
from P to a point Q nearby and moving Q towards P from the right along the curve, the 
derivative being the limit of the slope of the line PQ as Q moves towards P (actually, Q 
moves along discrete points, i.e., approximation of “continuous” curve by polygonal 
line). We find the right discrete derivative similarly by taking Q to move along discrete 
set of points, the advantage being that this is purely computational. The right discrete 

derivative is found in the same manner by taking the limit of the quotient ∆f(x)/∆x, as ∆x 

→ 0+, along suitable refinement. When the right and left derivatives at  a  point  are  
equal  then  we  say  that  the  curve  is discretely regular there. To find the left discrete 
derivative of the function y = f(x) at the point P(b,f(b)] on the interval [a,b], we assume 
f(x) > 0 and increasing. Subdivide the interval [a,b] by the set of points {xk}, k = 1, 2, …, 
s, where a = x1, b = xs, and form the quotient, 
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DL(f(b)) = (f(xk+1 − xk ))/( xk+1 − xk).             (41) 
 
 We take successive refinements of {xk} to obtain the g-sequence of a decimal or 
divergent sequence of u*. Then DL is either terminating, nonterminating, zero or u*, 
taking approximation in each case. The right derivative DR can be computed similarly. 
When the function is discretely regular at x we denote its discrete derivative at x by Dx.    
 We introduce the notion of locally approximating the shape of a steadily increasing 
function on [a,b] at a point by its derivative at P, as P traces the arc over [a,b], obtained 
by finding the limit of the minimum of the maximum horizontal distance between the 
derivative function and the function itself as P traces the arc [6].  Computation is straight  
forward for well-behaved functions. That limit gives the shape of the curve in a small 
neighborhood of P. It is expressed by the following theorem for smooth curves that 
applies as well to discrete curves since the gaps are dark.. 
 Minimax principle. When the minimum of the maximum horizontal distance 
between two simple smooth arcs with no inflection point can be made arbitrarily small 
then an element of arc and variation of derivative at a point on one approximates the 
other [6]. 
 We define the integral of f(x) over the interval [a,b] as the limit of the sums of the 
areas of the trapezoidal areas under the curve through successive refinements determined 
by the midpoints of the subsegments at each refinement, as we do in calculus except that 
it is simpler here since  the  upper   and  lower  sums  coincide. This is another advantage 
with discrete function. The indefinite integral of f(x) is simply the area under f(x) over 
the interval [a,x]. Note that the integral of f(x) is independent of the derivative. To 
evaluate it we divide the interval [a,b] into subintervals by the points {xk}, k = 1, 2, …, s, 
a = x1, b = xs, form the sum,  
 

 ∑[a,b]f(x) = ∑(xk+1 − xk) (f(xk+1)+f(xk))/2, from k = 1 to k = s,         (42)  
   
and find its limit through successive refinements of {xm}, as  m→∞.  
 From these examples, we find that computation in the standard norm reduces to 
finding the nonterminating decimal adjacent to the result and, therefore, it can be 
approximated to any desired margin of error. 
 This is just a framework for building discrete calculus appropriate for computing and 
simulation. Simulation is important for finding ballpark estimate of hidden forces. For 
example, suppose there is some distortion of the orbit of a planet. This would mean the 
presence of some cosmological body whose gravity impinges on the planetary orbit. Then 
by simulating different masses and gravitational forces at different points in the 
neighborhood of the distortion one may get the best fit and take that sight as potential 
region for searching the unknown mass.  
 
References  

 
[1] Benacerraf, P. and Putnam, H., Philosophy of Mathematics, Cambridge University 

Press, Cambridge, 1985. 
[2] Bhaskar, T. G., Kovak, D., Lakshmikantham V. (2006) The Hybrid Set Theory, in  
  Press 
[3] Corporate Mathematical Society of Japan, Kiyosi Ito, ed., Encyclopedic Dictionary  
  of Mathematics (2nd ed.), MIT Press,  Cambridge, MA, 1993. 
 



DISCRETE COMPUTATION AND CALCULUS                              83 
 
[4] Davies, P. J. and Hersch, R., The Mathematical Experience, Birkhäuser, Boston, 

1981. 
[5] Escultura, E. E., Exact solutions of Fermat’s equation (A definitive  resolution of 

Fermat’s last theorem, Nonlinear Studies, 5(2), 1998. 
[6] Escultura, E. E., The mathematics of the new physics, J. Applied Mathematics and 

Computations, 130(1), 2002. 
[7] Escultura, E. E., The new mathematics and physics, J. Applied  Mathematics and 

Computation, 138(1), 2003. 
[8] Escultura, E. E., From macro to quantum gravity, Problems of Nonlinear Analysis in 

 Engineering Systems, 7(1), 2001.   
[9] Escultura, E. E., The mathematics of the grand unified theory, to appear, Nonlinear 

Analysis, in press.  
[10] Kline, M. Mathematics: The Loss of Certainty, Oxford University  Press, New York, 

1980. 
[11] Royden, H. L., Real Analysis, MacMillan, 3rd ed., New York, 1983. 
[12] Young, L. C., Lectures on the Calculus of Variations and Optimal Control Theory,  
  W. B. Saunders, Philadelphia, 1969. 
[13] Zeigler, B. P., “An Introduction to Calculus” Course Based on DEVS: Implications 

 of a Discrete Reformulation of Mathematical Continuity”. Presented at 
 International Conference on Simulation in Educaton ICSiE’05, January 23 – 25, 
 New Orleans, USA.  

[14] Zeigler, B. P., Continuity and Change (Activity) are Fundamentally Related in 
 DEVS Simulation Of Continuous Systems”, Keynote Talk at AI, Simulation and 
 Planning AIS’04, October 4 – 6, Kor.   


