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ABSTRACT. A linear second order singularly perturbed differential difference equation without

turning point is considered as a model problem. Simple upwind, Midpoint upwind and a Hybrid

algorithm are analysed on a Shishkin mesh. Theoretical error bounds are established and proved

that hybrid algorithm yields second order approximation. Numerical experiments support these

theoretical results.
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1. INTRODUCTION

We consider boundary value problems(BVPs) for linear second order singularly

perturbed differential difference equations(DDEs) on the domain Ω = (0, 1)

(1.1) −ǫ2u′′(x) + a(x)u′(x) + α(x)u(x − δ) + w(x)u(x) + β(x)u(x + η) = f(x)

subject to the interval conditions:

(1.2a) u(x) = φ(x) − δ(ǫ) ≤ x ≤ 0

(1.2b) u(x) = γ(x) 1 ≤ x ≤ 1 + η(ǫ)

where ǫ is a small parameter 0 < ǫ << 1, the delay parameter δ(ǫ)(0 < δ(ǫ) < 1) is of

◦(ǫ), the advance parameter η(ǫ)(0 < η(ǫ) < 1) is of ◦(ǫ), and a(x), α(x),β(x), w(x),

f(x), φ(x) and γ(x) are smooth functions of x and are assumed, for simplicity, to be

independent of ǫ and

(1.3) α(x) + β(x) + w(x) ≥ θ > 0

The solution u(x) is continuous on [0,1], continuously differentiable on (0,1) and also

statisfies (1.1) and (1.2).

For the retarded arguments equal to zero (i.e., δ = 0 = η), the solution of the

above problem exhibits layer behavior of width O(ǫ2 ln(ǫ−2)) on the left or the right
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depending on the value of a(x). The boundary layer occurs at x = 0 when a(x) < 0

on 0 ≤ x ≤ 1 and occurs at x = 1 when a(x) > 0 on 0 ≤ x ≤ 1. If a(x) changes sign

in 0 < x < 1, then the solution exhibit turning point behavior. Such problems are

not analyzed in this paper. In this we have considered the model with layer behavior

and without any turning points.

DDEs of above type arise naturally in the theoretical analysis of neuronal vari-

ability. In the brain, time delays arise because interneural distances and axonal con-

duction times are finite. Details about various models for determining the responses

of a neuron to random synaptic input can be found in [9], [10]. On the theoretical side

there have been many advanced model of nerve membrane potential in the presence

of random synaptic inputs. Due to the analytic difficulties in solving any realistic

model, computer simulation has played an important role as a first step. In 1965,

Stein introduced a model for neuron activity which incorporates some of the physi-

ological features of real neurons [3], [4]. The model and its modifications have been

used as a basis for many studies devoted to the theoretical description of neuronal

activites [12], [16], [15].

The concept of the model is to calculate the expected time to firing of a nerve

impulse when there is Poisson excitation. Between two jumps caused by the input

process, the membrane potential decays exponentially (−xu′(x)) to the resting level

with a membrane time. By the term membrane potential, we mean the membrane

depolarization from the resting level at the trigger zone. If there are inputs that can be

modeled as Weiner process with variance σ and drift parameter µ then the calculation

of the expected time u(x), given the initial membrane potential x ∈ (x1, x2) can be

formulated as a linear second order differential difference equation

−
σ2

2
u′′(x) + (µ − x)u′(x) + λIu(x − aI) + λEu(x + aE) − (λE + λI)u(x) = 1,

where the values at x = x1 and x = x2 corresponds to the inhibitory reversal potential

and to the threshhold value of membrane potential for action potential generation,

respectively. The reaction terms corresponds to excitatory and inhibitory synaptic in-

puts which are assumed to be poissonian. This excitatory synaptic input contributes

to the membrane potential by aE with intensity λE and similarly the inhibitory synap-

tic inputs contributes to the membrane potential by aI with intensity λI . aE and aI

are small quantities and could depend on voltage. A convincing neurophysiological

demonstration of Stein’s model can be found in the following literature [3], [11], [7].

One of the principle difficulties with the application of this model lies in solving

the delay differential equations that form the mathematical expression of the model

[16]. Though there have been extensive studies of the properties of the solutions of

many kinds of functional equations [1], [2] a little progress has been made on equa-

tions of type (1.1) with both forward(advance) and backward(delay) delays. These
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applications motivates the approximation of DDEs of Stein’s model type. Stein [3]

approximated the solution of his model using monte carlo techniques. Others who

approximated the Stein’s model(DDE) are Tuckwell and Richter [11], Tuckwell and

Cope [8] and Wilbur and Rinzel [16]. Lange and Miura considered a linear second

order differential equation with a small delay as well as advance in the reaction term

with layer behavior in [5]. For small delays authors used taylors series for the ap-

proximation of the retarded arguments and showed how the delay affects the layer

solution. In [17], Kadalbajoo and Sharma discussed standard upwind, fitted operator

and fitted mesh for a similar problem.

The intension of this paper is to improve the rate of convergence and the accuracy.

The numerical scheme should also be uniformly accurate in ǫ, δ & η and the solution

cost should not grow with decreasing ǫ or with increasing δ & η. The standard finite

difference scheme and the second order central difference scheme on a uniform mesh

are not going to be successful in this case. The central difference scheme would lead

to an oscillating (non-physical) solution unless the number of grid points is very high.

Fig. 1-3 shows how the computational cost increases for smaller values of ǫ. Hence it

may not be practically possible to compute the solution for smaller values of ǫ using

central difference scheme on an uniform mesh.
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Figure 1: exact solution of Ex: 4.1 for ǫ = 0.003 & δ = 1.6 ∗ 10−3
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Figure 2: N = 1024 Figure 3: N = 10, 48, 576

Numerical solution of Ex: 4.1 using Lcd on uniform mesh with ǫ = 0.003 & δ = 1.6 ∗ 10−3
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We are going to extend the results of [18] to more complicated DDEs of type (1.1).

In this we will consider a midpoint upwind scheme on a priori adaptive Shishkin mesh

and proved that it improves the convergence outside the layer region. To improve the

convergence through out the domain we consider a hyrbid scheme. The considered

methods is shown to have almost second order error estimate in the maximum norm.

The remaining part of the paper is organized as follows. In Section 2, we discuss

a priori estimates for the retarded arguments and certain differentiability properties

of the solution. In Section 3, we discuss the numerical formulation of the schemes

and also about the calculation of parameters for shishkin mesh. In Section 4, we

discuss the convergence of the difference scheme. In Section 5, numerical results and

discussion are given. Through out this paper, C denotes generic positive constant

that is independent of ǫ and in the case of discrete problems it is also independent of

N which may take different values. ‖ · ‖ denotes the global maximum norm over the

appropriate domain as defined above. Ω=(0,1) and Ω=(0,1)∪{0, 1}=[0,1]

2. A PRIORI ESTIMATES

We consider the case when the delays δ, η are ◦(ǫ)(note that the coefficient of the

diffusion term is ǫ2 not ǫ) and use simple Taylor series through second order derivative

to approximate the retarded arguments ([7, page 3], [6, page 275])

(2.1) u(x − δ) ≈ u(x) − δu′(x) +
δ2

2
u′′(x)

(2.2) u(x + η) ≈ u(x) + ηu′(x) +
η2

2
u′′(x)

Eqs. (1.1) & (1.2) yields the following ODE

(2.3) Lǫu(x) = f(x)

where

Lǫ = {−ǫ2 +
δ2

2
α(x)+

η2

2
β(x)}

d2

dx2
+(a(x)−δα(x)+ηβ(x))

d

dx
+(α(x)+β(x)+w(x))I

subject to the boundary conditions:

(2.4a) u(0) = φ(0) = φ0

(2.4b) u(1) = γ(1) = γ1

Eq (2.3) differs from eq (1.1) by terms of ©(δ3u′′′, η3u′′′). When the shifts are suf-

ficiently small, then eq (2.3) is a good approximation to eq (1.1). We consider the

case when the solution of (2.3), (2.4) exhibits layer behavior on the right side of the

interval. It is assumed that

(2.5) a(x) − δα(x) + ηβ(x) ≥ M > 0 ∀x ∈ [0, 1]
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where M is a positive constant. The other case, i.e., when a(x) − δα(x) + ηβ(x) ≤

−M < 0 ∀x ∈ [0, 1] the layer occurs at the left side can be treated similarly. Here

we assume that α(x) ≤ M1, β(x) ≤ M2 and −ǫ2 + δ2

2
α(x) + η2

2
β(x) < 0 and with the

condition (2.5) the solution exhibits a layer near x = 1.

3. THE DISCRETIZATION

Let {xi}
N
i=0 be our computational domain and N , the number of grid points in

the domain be an even positive integer. For each i ≥ 1, we define hi = xi − xi−1 and

xi− 1
2

= (xi + xi−1)/2.

Because of a boundary layer of thickness σ located at x = 1, we want to use a

fine mesh in the subinterval [σ, 1] and a coarse mesh outside the layer region [0, 1−σ].

We set

(3.1) σ = min{
1

2
, C(ǫ2 −

δ2

2
M1 −

η2

2
M2) log(N)},

where C = 1/θ. We call σ the transition point from the coarse to the fine mesh. The

fine and the coarse meshsizes are defined as h1 = (1 − σ)/(N/2) and h2 = σ/(N/2).

Since, N being an even positive integer 50% of the grid points will be in the layer

region. The above a priori adaptive piecewise uniform mesh is referred to as Shishkin

mesh and is given by

xi =







2(1−σ)
N

i for 1 ≤ i ≤ N/2

1 − σ + 2σ
N

(i − N/2) for N
2
≤ i ≤ N

=







h1i for 1 ≤ i ≤ N/2

σ + h2(i − N/2) for N
2
≤ i ≤ N

If the transition point σ is chosen independently of N , then one cannot obtain a

convergence result that is uniform in ǫ [20]. Similarly, we can generate a Shishkin

mesh when the layer is located at x = 0.

Let U = {Ui}
N
i=0 be any given function defined on the computational mesh, we

shall approximate the first-order and second-order derivatives at the grid point xi as

follows: The forward and backward divided difference operators are

D+Ui =
Ui+1 − Ui

hi+1

and D−Ui =
Ui − Ui−1

hi

respectively. The central difference operator D0 is given by

D0Ui =
1

hihi+1(hi + hi+1)
(−h2

i+1ui−1 + (h2
i+1 − hi2)ui + h2

i ui+1)

The second order derivative D+D−Ui is

D+D−Ui =
2

hihi+1(hi + hi+1)
(hi+1ui−1 − (hi+1 + hi)ui + hiui+1)

While D0Ui is second order consistent on any mesh, just as on equidistant meshes,

but this is not the case for D+D−Ui : a term (hi+1 − hi)u
′′′(xi), which arises in the
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consistency error analysis, is only of first-order on arbitary mesh. For more details,

the reader can refer to [14].

3.1. Upwind Scheme: Lh
up. To approximate the solution of Eq. (2.3) and (2.4) we

discretize the equation(2.3) using a standard upwind finite difference method on the

above mentioned shishkin’s mesh given by

Find UN ∈ R
N+1 := {Y = (y0, y1, . . . , yN) ∈ R

N+1 : y0 = φ0 and yN = γ1} such that

(3.2)

Lh
upU

N
i = {−ǫ2+

δ2

2
αi+

η2

2
βi}D

+D−UN
i +(ai−δαi+ηβi)D

−UN
i +(αi+βi+wi)Ui = fi

=⇒

UN
0 = φ0

−EiU
N
i−1 + FiU

N
i − GiU

N
i+1 = Hi i = 1, 2, . . . , N − 1

UN
N = γ1

where

Ei =
2{ǫ2 − δ2

2
αi −

η2

2
βi}

hi(hi + hi+1)
+

(ai − δαi + ηβi)

hi+1

Fi =
2{ǫ2 − δ2

2
αi −

η2

2
βi}

hihi+1
+

(ai − δαi + ηβi)

hi+1
+ (αi + βi + wi)

Gi =
2{ǫ2 − δ2

2
αi −

η2

2
βi}

hi+1(hi + hi+1)

Hi = fi

Assume (1.3), (2.5), It is very clear that the upwind operator Lh
up satisfies the following

conditions

(3.4) Ei > 0, Gi > 0 Fi > Ei + Gi

It follows from the above inequalities that the matrix system is an M-matrix and

has an inverse. From this one can prove the uniform boundedness of the difference

equations [22]. It can be proved [17] that the nodal errors eN
i satisfies

‖eN
i ‖ = ‖u(xi) − UN

i ‖ ≤ CN−1(ln N)2

where u is the exact solution of the model (2.3),(2.4), UN is the solution of (3.2) and

the constant C is independent of ǫ, δ, η and the mesh. The main disadvantage of this

upwind scheme is its low order of accuracy. In order to improve the order of accuracy

we discuss a simple midpoint upwind scheme which has proved to be popular in many

problems.
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3.2. Midpoint Upwind Scheme: Lh
mp. To keep the proof as simple as possible, we

restrict our model (2.3) to

(3.5) L1u =

(

−ǫ2 +
δ2

2
α(x) +

η2

2
β(x)

)

d2u

dx2
+ (a(x) − δα(x) + ηβ(x))

du

dx
= f(x)

subject to the boundary conditions (2.4). In this we use midpoint upwind method on

a shishkin mesh to approximate the solution of Eqs. (3.5) and (2.4) and is given by

Find UN ∈ R
N+1 := {Y = (y0, y1, . . . , yN) ∈ R

N+1 : y0 = φ(0) and yN = γ1} such

that

(3.6) Lh
mpU

N
i := {−ǫ2+

δ2

2
αi− 1

2
+

η2

2
βi− 1

2
}D+D−UN

i +(a−δα+ηβ)i− 1
2
D−UN

i = fi− 1
2

and ai−1/2 = (ai + ai−1)/2 as defined before. In the more general case the reaction

term should be replaced by the average, (α +β + w)i− 1
2
Ui− 1

2
. See [23], [24] for details

of the scheme.

Lemma 3.1. The system Lh
mpU

N
i = fi−1/2, 1 ≤ i ≤ N − 1, with given UN

0 and UN
N

has a solution. If Lh
mpU

N
i ≤ Lh

mpBi, 1 ≤ i ≤ N − 1, and if UN
0 ≤ B0, UN

N ≤ BN ,

then UN
i ≤ Bi, 1 ≤ i ≤ N − 1.

Proof. The equations Lh
mpUi = fi−1/2, 1 ≤ i ≤ N−1 may be considered as a system of

N−1 linear equations with Ui, 1 ≤ i ≤ N−1 where for i = 1 and i = N−1, the terms

involving U0 and UN are moved to the right hand side. It is an easy computation

to verify that the matrix is diagonally dominant and has non positive off diagonal

entries. Hence, the matrix is an irreducible M matrix, and so has a positive inverse.

Hence, the solution Ui, 1 ≤ i ≤ N −1 exists. The rest of the proof is very simple. For

more details the reader can refer [19]. We say {Bi} is a barrier function for {UN
i }.

Lemma 3.2. Let zi = 1 + xi, for 0 ≤ i ≤ N . Then there exists a positive constant C

such that Lh
mpzi ≥ C for 1 ≤ i ≤ N − 1.

Proof. This proof is a easy computation, it enables us to give a bound.

If s(x) is a smooth function. We now consider the truncation error of the operator

Lh
mp applied to s at xi− 1

2
define as τ := Lh

mp(si) − (L1s)(xi−1/2), where si = s(xi).

Lemma 3.3. There exists a constant C > 0 such that

|τ | ≤ C(ǫ2 − M1
δ2

2
− M2

η2

2
)

∫ xi+1

xi−1

|s(3)(t)|dt + Chi

∫ xi

xi−1

|s(3)(t)|dt.

Proof. By repeated use of the fundamental theorem of calculus, or by Peano’s theorem

one can obtain the proof as in [19].
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Lemma 3.4. For i = 0, 1, . . . , N , we set

Ri =
i
∏

j=1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)

Let C be any positive contant independent of ǫ, δ, η and of the mesh. Then for i =

1, 2, . . . , N − 1, we have

Lh
mpRi ≥

C

max{ǫ2 − δ2

2
M1 −

η2

2
M2, hi}

Ri

Proof. It is easy to verify that

Ri − Ri−1

hi

=
M

ǫ2 − δ2

2
M1 −

η2

2
M2

Ri−1,

Now,

Lh
mpRi =

2(−ǫ2 + δ2

2
αi− 1

2
+ η2

2
βi− 1

2
)M(Ri − Ri−1)

(hi + hi+1)
(

ǫ2 − δ2

2
M1 −

η2

2
M2

) +
(ai− 1

2
− δαi− 1

2
+ ηβi− 1

2
)M

ǫ2 − δ2

2
M1 −

η2

2
M2

Ri−1

=

MRi

(

ai− 1
2
− δαi− 1

2
+ ηβi− 1

2
−

2Mhi(ǫ
2− δ2

2
α

i− 1
2
−

η2

2
β

i− 1
2
)

(hi+hi+1)(ǫ2−
δ2

2
M1−

δ2

2
M2)

)

ǫ2 − δ2

2
M1 −

η2

2
M2 + Mhi

from which the result follows.

Lemma 3.5.

e−β(1−xi)/(ǫ2− δ2

2
M1−

η2

2
M2) ≤

N
∏

j=i+1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

for each i.

Proof.

e−Mhj/(ǫ2− δ2

2
M1−

η2

2
M2) =

(

eMhj/(ǫ2− δ2

2
M1−

η2

2
M2)

)−1

≤

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

∀j

The above inequality is true for each j. Now we multiply these inequalities for j =

i + 1, . . . , N , we get

e−β(1−xi)/(ǫ2− δ2

2
M1−

η2

2
M2) ≤

N
∏

j=i+1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

hence the result.

Now to prove the parameter uniform convergence of the scheme we need more infor-

mation about the exact solution of (2.3), (2.4), which is obtained by decomposing the

solution u into smooth and singular components as

u = v + w
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where the smooth component v can be written as v(x) = v0(x) + ǫv1(x) + ǫ2v2(x),

where v0(x) for x ∈ Ω is the solution of the reduced problem of (2.3), (2.4)

(3.7) (a(x)− δα(x)+ ηβ(x))v′
0(x)+ (α(x)+β(x)+w(x))v0(x) = f(x), v0(1) = u(1)

and v1(x) for x ∈ Ω satisfies the boundary value problem

(3.8) (a(x)− δα(x) + ηβ(x))v′
1(x) + (α(x) + β(x) + w(x))v1(x) = −v′′

0 (x), v1(1) = 0

and v2(x) satisfies the boundary value problem

(3.9) L1v2(x) = −v′′
1(x), x ∈ Ω, v2(0) = 0, v2(1) = 0

Thus the smooth component v(x) is the solution of

(3.10) L1v(x) = f(x), x ∈ Ω, v(0) = v0(0) + ǫv1(0), v(1) = u(1)

The singular component w is the solution of the homogenous problem

L1w(x) = 0, x ∈ Ω, |w(0)| ≤ Ce−M/(ǫ2− δ2

2
M1−

η2

2
M2), |w(1)| ≤ C

Theorem 3.6. Let u = v + w ∀x ∈ [0, 1] be the decomposition of the solution of our

model (2.3), (2.4). For sufficiently small ǫ and for any finite q and 0 < x < 1 we

have the following bounds

(3.11a) ‖v(k)‖ ≤ C for 0 ≤ k ≤ q

(3.11b) ‖w(k)‖ ≤ C(ǫ2 −
δ2

2
M1 −

η2

2
M2)

−ke−M(1−x)/(ǫ2− δ2

2
M1−

η2

2
M2)

Proof. The proof of inequality (3.11a) trivially follows from equation(3.7). See [21]

for a proof.

Lemma 3.7. There exists a constant C such that

N
∏

j=i+1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

≤ CN−4(1−i/N) for N/2 ≤ i < N

Proof. Suppose N/2 ≤ i < N . By [19]

N
∏

j=i+1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

≤ e−β(1−xi)/(Mh2+ǫ2− δ2

2
M1−

η2

2
M2)

= e−4(N−i)N−1 lnN/(1+4N−1 ln N)

= N−4(N−i)N−1/(1+4N−1 lnN)

= N−4(1−i/N)N16(i−1/N)N−1 ln N/(1+4N−1 lnN)

It is easy to verify that N16(i−1/N)N−1 ln N/(1+4N−1 lnN) is bounded for any N ≥ 2 from

which the result follows.
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Now we will derive the error estimates by estimating the errors of smooth part v and

the layer part w separately.

Theorem 3.8. We have the following error estimate for the midpoint upwind scheme

(3.6):

‖u − UN‖ ≤







CN−1(ǫ2 − δ2

2
M1 −

η2

2
M2 + N−1) for 0 ≤ i < 3N/4,

CN−1(ǫ2 − δ2

2
M1 −

η2

2
M2 + N−4(1−i/N)) lnN for 3N/4 ≤ i ≤ N,

Proof. As in Theorem (3.6) we split the computed solution {UN
i }N

i=0 as UN
i = V N

i +

W N
i for i = 0, 1, . . . , N where

Lh
mpV

N
i = fi−1/2, V N

0 = v(0), V N
N = v(1),

and

Lh
mpW

N
i = 0, W N

0 = w(0), W N
N = w(1).

Hence the nodal errors can be estimated separately in V N and W N .

Let us compute the nodal error for the smooth part {V N
i }. With lemmas 3.3 and

theorem 3.6 we get

(3.12)

|Lh
mp(vi − V N

i )| = |Lh
mp(V

N
i )− (L1v)(xi−1/2)| ≤ C(ǫ2 −

δ2

2
M1 −

η2

2
M2 + hi)(hi + hi+1)

Now let Bi := CN−1(ǫ2 − δ2

2
M1 −

η2

2
M2 + N−1)(1 − xi) be the barrier function and

with lemmas 3.1 and 3.2 we get

(3.13) |vi − Vi| ≤ CN−1(ǫ2 −
δ2

2
M1 −

η2

2
M2 + N−1)

Now lets analyze the error of the singular component. We know that

|W N
0 | = |w(0)| ≤ Ce

−M

ǫ2− δ2
2 M1−

η2

2 M2 = C

N
∏

j=1

e−Mhj/(ǫ2− δ2

2
M1−

η2

2
M2)

≤ C
N
∏

j=1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

and |W N
N | = w(1) ≤ C and Lh

mpW
N
i = 0 for i = 1, 2, . . . , N − 1. Now lets use

lemma 3.4 and define

Bi := C





N
∏

j=1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1


Si

a barrier function for {W N
i }. By the discrete maximum principle we get

|W N
i | ≤ Bi = C

N
∏

j=1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

∀i
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Therefore by lemma 3.5 and theorem 3.6 we get

(3.14) |wi − W N
i | ≤ C

N
∏

j=i+1

(

1 +
Mhj

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

∀i

and on the coarser part

(3.15) |wi − W N
i | ≤ CN−2 for 0 < i ≤ N/2

and on the finer part we compute the error as we did for the smooth component, i.e

by using the consistency and barrier function, but we restrict our domain to [1−σ, 1]

rather than [0, 1].

Now taking i = N/2 in (3.15) we get

|wN/2 − W N
N/2| ≤ CN−2 and |wN − W N

N | = 0.

It is easy to verify that lemma 3.3 for N/2 < i < N can be modified to (using

lemma 3.3 [19])

(3.16) |τ2| ≤ C

∫ xi+1

xi−1

[

(ǫ2 −
δ2

2
M1 −

η2

2
M2)|s

(3)(t)| + |s(2)(t)|

]

dt.

|Lh
mp(wi − W N

i )| ≤ C(ǫ2 −
δ2

2
M1 −

η2

2
M2)

−2

∫ xi+1

xi−1

e−β(1−x)/(ǫ2− δ2

2
M1−

η2

2
M2)dt

= C(ǫ2 −
δ2

2
M1 −

η2

2
M2)

−1

[

e

−M(1−xi+1)

ǫ2− δ2
2 M1−

η2

2 M2 − e

−M(1−xi−1)

ǫ2− δ2
2 M1−

η2

2 M2

]

= C(ǫ2 −
δ2

2
M1 −

η2

2
M2)

−1e

−M(1−xi)

ǫ2− δ2
2 M1−

η2

2 M2 sinh

(

Mh2

ǫ2 − δ2

2
M1 −

η2

2
M2

)

≤

(

C(ǫ2 −
δ2

2
M1 −

η2

2
M2)

−1N−1 ln N

)

e−β(1−xi)/(ǫ2− δ2

2
M1−

η2

2
M2)

≤ C(ǫ2 −
δ2

2
M1 −

η2

2
M2)

−1N−1 ln N

N
∏

j=i+1

(

1 +
Mh2

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1

By Lemma 3.5 and since sinh x ≤ Cx for x ∈ [0, 1].

Now let the barrier function be

Bi := C







N−2 + (N−1 ln N)





N
∏

j=1

(

1 +
Mh2

ǫ2 − δ2

2
M1 −

η2

2
M2

)−1


Ri







for i = N/2, . . . , N and C is chosen sufficiently large. Now in this case we have already

replaced the interval [0, 1] by [1 − σ, 1] and its easy to verify the discrete maximum

principle. So by using this principle, with the above barrier function, we get

|wi − W N
i | ≤ Bi
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Now by lemma 3.7 for i = N/2, . . . , N we get

(3.17) |wi − W N
i | ≤ C max

{

N−2, N−5+4i/N ln N
}

From (3.13), (3.15) and (3.17) gives the required result.

Thus for small ǫ, that for ǫ2 − δ2

2
M1 −

η2

2
M2 ≤ CN−1 the above midpoint scheme

gives second order convergence outside the layer region, while on the layer region the

order of convergence is at most first order. Hence this Lh
mp approximates the solution

better outside the layer region than the simple upwind Lh
up.

3.3. Central difference: Lh
cd. In this we use a second order central difference ap-

proximation to the convection term of Eq. (2.3) and is given by

Find UN ∈ R
N+1 := {Y = (y0, y1, . . . , yN) ∈ R

N+1 : y0 = φ(0) and yN = γ1} such

that

(3.18)

Lh
upU

N
i = {ǫ2 +

δ2

2
αi +

η2

2
βi}D

+D−UN
i +(ai − δαi +ηβi)D

0UN
i +(αi +βi +wi)Ui = fi

Lh
cd is not always stable when applied throught out the domain since the central

difference approximation to the convection term would lead to non-physical oscillation

unless the mesh size (h) is very very small. The behavior of Lh
cd scheme on uniform

mesh is shown in Figure 2 & 3. But, one of the very important factors affecting the

accuracy of the discrete solution is the choice of discretization schemes for the first

derivative convection term. In our hyrbid scheme we use central difference in the

boundary layer region (fine mesh region) and midpoint upwind schemes outside the

boundary layer region (coarse mesh region).

3.4. Hyrbid scheme Lh
hy. In this subsection we define difference schemes which are

hybrid of mid-point upwind and central difference schemes. Lets define a hybrid

scheme Lh
hy as,

Find UN ∈ R
N+1 := {Y = (y0, y1, . . . , yN) ∈ R

N+1 : y0 = φ(0) and yN = γ1} such

that

(3.19) Lh
hyU

N
i :=







Lh
mp for 1 ≤ i ≤ N

2

Lh
cd for N

2
< i ≤ N − 1

Here we use midpoint upwind approximating the grid points outside the layer region

and central difference scheme inside the layer region. Since we are applying central

difference scheme on the fine part of the shishkin mesh, in order to attain the stability

we need the following mild condition

Theorem 3.9. Assume that

(3.20)
N

ln N
≥ 2

max(a(x) − δα(x) + ηβ(x))

min(a(x) − δα(x) + ηβ(x))
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Then the hybrid scheme (3.19) satisfies the error estimate

(3.21) |u(xi) − UN
i | ≤







CN−1((ǫ2 − δ2

2
M1 −

η2

2
M2) + N−1) 0 ≤ i ≤ N/2

CN−2 ln2 N N/2 < i ≤ N.

Proof:- The argument is similar to the previous theorem. The condition (3.20)

guarantees that the matrix of the discrete problem is an M-matrix. Proof follows

the same way as we did for the midpoint upwind scheme except when estimating

|wi − W N
i | the error of the singular component on the fine part instead of (3.16) we

use the following one [19].

|τ3| ≤ Ch

∫ xi+1

xi−1

[

(ǫ2 −
δ2

2
M1 −

η2

2
M2)|s

(4)(t)| + |s(3)(t)|

]

dt for N/2 < i < N

which is true for the central scheme and is the key to get better accuracy compared

to other schemes.

3.5. Maximum pointwise error(EN
ǫ,δ), ǫ-uniform error(EN), Rate of conver-

gence (pN
ǫ,δ), ǫ-uniform rate of convergence(pN). We use the following definitions

to compute the maximum pointwise error and the rate of convergence [25]. The maxi-

mum pointwise error EN
ǫ,δ for a fixed ǫ,δ and N the number of grid points is calculated

by comparing the exact solution u(x) with the corresponding values of the approxi-

mations UN generated by using the methods discussed in the pervious subsections of

this section and is given by

EN
ǫ,δ = max

xi∈Ω
|u(xi) − UN

i |

If the exact solution is not known, then the maximum pointwise error is estimated

using the double mesh principle [26] defined by

EN
ǫ,δ = max

1≤i≤N−1
|UN

i − U2N
2i |.

where U2N
2i is the solution obtained on a mesh containing the same N number of

shishkin mesh used to compute {UN
i } and N more mesh points are added by selecting

the mid points of all {xi}
′s, i.e., xi+1/2 = (xi + xi+1)/2 for i = 0, 1, 2, . . . , N − 1.

For any value of N , the ǫ-uniform errors are calculated using

(3.22) EN = max
ǫ,δ

{EN
ǫ,δ}

With the calculated Errors, the rate of convergence of the scheme is calculated using

a standard technique given by

pN
ǫ,δ = log2

(

EN
ǫ,δ

E2N
ǫ,δ

)

=
log
(

EN
ǫ,δ − E2N

ǫ,δ

)

log 2
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The ǫ-uniform rate of convergence is calculated using

pN = log2

(

EN

E2N

)

=
log
(

EN − E2N
)

log 2

4. NUMERICAL RESULTS

In this section we consider two examples to show the efficiency of the schemes

on a priori adaptive shiskin mesh. First example is a constant coefficient problem

with only delay and second one is a variable coeficient problem with both delay and

advance.

Example 4.1.

−ǫ2u′′(x) − u′(x) − 2u(x − δ) + 3u(x) = 0,

under the interval and boundary conditions

u(x) = 1 for − δ ≤ x ≤ 0 and u(1) = 1

It has a layer at x = 0. The Exact solution is known.

Example 4.2.

−ǫ2u′′(x) + (1 + ex2

)u′(x) + (1 + x)exu(x − δ) − u(x) + e−xu(x + η) = 100x(1 − x),

under the interval and boundary conditions

u(x) = 1 for − δ ≤ x ≤ 0 and u(1) = −1 for 1 ≤ x ≤ 1 + η

It has a layer at x = 1. The exact solution is not known. We use double mesh

principle discussed in section 3.5.

The computed solutions UN of example 4.1 for different values of delay parameter

are shown in figure 1 and shows the effect of delay parameters in our test problem.

Tables 1, 2 & 3 shows the computed maximum pointwise error (EN
ǫ,δ), ǫ−uniform errror

(EN
δ ) and ǫ−uniform rate of convergence(pN

δ ) of example 4.1 computed using standard

upwind (Lh
up), midpoint upwind (Lh

mp) and our hybrid method (Lh
hy) respectively,

defending the advantages of Lh
hy over the other upwind methods. From these tables

we observe that the maximum pointwise error EN
ǫ,δ decreases as N increases for each

value of ǫ. We see that the maximum pointwise error stabilize as ǫ → 0 for each

N . Table 4 shows the ǫ−uniform errror (EN
δ ), parameter uniform errors (EN ) and

the parameter uniform rate of convergence (pN) of example 4.1 using Lh
hy. Table 5

gives comparison of different schemes proving the advantage of our hybrid scheme in

terms of accuracy and the rate of convergence. Similarly for our second test problem

(ex: 4.2) the errors EN
ǫ,δ are shown in Tables 6, 7 & 8 proving the advantage of our

hybrid scheme over other methods. To show the efficiency of the scheme with smaller
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grid points, we have computed the errors of ex: 4.2 with very high number of grid

points.

0.2

0.4

0.6

0.8

1

0 0.005

ε2=10−3

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 0.005

ε2=10−3

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 0.5 1

ε2=10−3

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 0.5 1

ε2=10−3

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 1e-05

ε2=10−6

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 1e-05

ε2=10−6

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 0.5 1

ε2=10−6

δ=0
δ=50%ε
δ=90%ε

0.2

0.4

0.6

0.8

1

0 0.5 1

ε2=10−6

δ=0
δ=50%ε
δ=90%ε

Figure 1. Solution of example 4.1 using Lh
hy for different ǫ
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Figure 2. Solution of example 4.2 using Lh
hy with (ǫ2 = 10−4)
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Table 1. EN
ǫ,δ=0.5∗ǫ for Ex:4.1 using the method Lh

up with N/2 nodes

for each subinterval

N

ǫ2 16 32 64 128 256 512 1024

10−1 3.24E-02 1.85E-02 1.05E-02 5.32E-03 2.68E-03 1.35E-03 6.75E-04

10−2 7.57E-02 4.24E-02 2.23E-02 1.15E-02 6.02E-03 3.19E-03 1.71E-03

10−3 8.10E-02 4.78E-02 2.65E-02 1.42E-02 7.47E-03 3.88E-03 2.00E-03

10−4 8.03E-02 4.75E-02 2.65E-02 1.45E-02 7.80E-03 4.17E-03 2.21E-03

10−5 7.99E-02 4.71E-02 2.64E-02 1.44E-02 7.79E-03 4.19E-03 2.24E-03

10−6 7.97E-02 4.70E-02 2.63E-02 1.44E-02 7.78E-03 4.18E-03 2.24E-03

10−7 7.97E-02 4.70E-02 2.63E-02 1.44E-02 7.77E-03 4.18E-03 2.24E-03

: : : : : : : :

10−10 7.97E-02 4.70E-02 2.63E-02 1.44E-02 7.77E-03 4.18E-03 2.24E-03

EN
δ 8.10E-02 4.78E-02 2.65E-02 1.45E-02 7.80E-03 4.19E-03 2.24E-03

pN
δ 0.7609 0.8510 0.8699 0.8945 0.8965 0.9035 0.9077

Table 2. EN
ǫ,δ=0.5∗ǫ for Ex:4.1 using the method Lh

mp with N/2 nodes

for each subinterval

N

ǫ2 16 32 64 128 256 512 1024

10−1 2.93E-02 1.79E-02 1.05E-02 5.36E-03 2.71E-03 1.36E-03 6.83E-04

10−2 6.37E-02 3.55E-02 1.88E-02 9.81E-03 5.20E-03 2.80E-03 1.52E-03

10−3 6.90E-02 4.05E-02 2.25E-02 1.22E-02 6.47E-03 3.39E-03 1.76E-03

10−4 6.83E-02 4.03E-02 2.26E-02 1.25E-02 6.79E-03 3.67E-03 1.96E-03

10−5 6.79E-02 4.00E-02 2.25E-02 1.24E-02 6.79E-03 3.69E-03 1.99E-03

10−6 6.77E-02 3.99E-02 2.24E-02 1.24E-02 6.77E-03 3.68E-03 1.99E-03

10−7 6.76E-02 3.99E-02 2.24E-02 1.24E-02 6.77E-03 3.68E-03 1.99E-03

: : : : : : : :

10−10 6.76E-02 3.99E-02 2.24E-02 1.24E-02 6.77E-03 3.68E-03 1.99E-03

EN
δ 6.90E-02 4.05E-02 2.26E-02 1.25E-02 6.79E-03 3.69E-03 1.99E-03

pN
δ 0.7687 0.8416 0.8544 0.8804 0.8798 0.8909 0.8952
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Table 3. EN
ǫ,δ=0.5∗ǫ for Ex:4.1 using the method Lh

hy with N/2 nodes

for each subinterval

N

ǫ2 16 32 64 128 256 512 1024

10−1 1.82E-03 9.34E-04 4.76E-04 2.40E-04 1.21E-04 6.04E-05 3.02E-05

10−2 5.76E-03 2.68E-03 1.06E-03 3.82E-04 1.31E-04 4.38E-05 1.45E-05

10−3 6.91E-03 3.02E-03 1.14E-03 4.01E-04 1.34E-04 4.34E-05 1.37E-05

10−4 7.44E-03 3.19E-03 1.19E-03 4.15E-04 1.38E-04 4.40E-05 1.37E-05

10−5 7.61E-03 3.25E-03 1.21E-03 4.20E-04 1.39E-04 4.45E-05 1.38E-05

10−6 7.67E-03 3.27E-03 1.21E-03 4.22E-04 1.40E-04 4.47E-05 1.39E-05

10−7 7.70E-03 3.27E-03 1.22E-03 4.23E-04 1.40E-04 4.47E-05 1.39E-05

: : : : : : : :

10−10 7.70E-03 3.27E-03 1.22E-03 4.23E-04 1.40E-04 4.47E-05 1.39E-05

EN
δ 7.70E-03 3.27E-03 1.22E-03 4.23E-04 1.40E-04 4.48E-05 1.39E-05

pN
δ 1.2356 1.4224 1.5282 1.5952 1.6439 1.6884 1.7436

Table 4. EN
δ for 10−1 ≤ ǫ2 ≤ 10−10 and δ = τ ∗ ǫ of Ex:4.1 using the

method Lh
hy

N

τ 256 512 1,024 2,048 4,096 8,192 16,384

0.0 1.40E-04 4.47E-05 1.39E-05 4.20E-06 1.24E-06 3.51E-07 8.90E-08

0.2 1.40E-04 4.47E-05 1.39E-05 4.21E-06 1.25E-06 3.63E-07 1.00E-07

0.4 1.40E-04 4.47E-05 1.39E-05 4.21E-06 1.25E-06 3.65E-07 1.02E-07

0.5 1.40E-04 4.48E-05 1.39E-05 4.15E-06 1.19E-06 3.04E-07 1.11E-07

0.6 1.40E-04 4.47E-05 1.39E-05 4.19E-06 1.23E-06 3.38E-07 7.62E-08

0.8 1.40E-04 4.47E-05 1.39E-05 4.19E-06 1.23E-06 3.44E-07 8.21E-08

1.0 1.40E-04 4.47E-05 1.39E-05 4.20E-06 1.24E-06 3.55E-07 9.26E-08

EN 1.40E-04 4.47E-05 1.39E-05 4.21E-06 1.25E-06 3.65E-07 1.02E-07

pN 1.6471 1.6852 1.7232 1.7519 1.7760 1.8393 –
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Table 5. Comparison of EN
ǫ,δ & pN

ǫ,δ using Lup,Lmp,Lhy for Ex: 4.1 on

Shishkin Mesh

ǫ2 = 0.0001 & δ = 0.005

N Upwind Midpoint Hybrid

[0, σ) [σ, 1] [0, σ) [σ, 1] [0, σ) [σ, 1]

16 8.032E-02 2.191E-02 6.758E-02 4.745E-04 7.437E-03 4.824E-04

0.759 0.945 0.635 1.954 1.223 1.977

32 4.747E-02 1.138E-02 4.353E-02 1.225E-04 3.187E-03 1.225E-04

0.838 0.967 0.664 1.976 1.421 1.956

64 2.655E-02 5.820E-03 2.748E-02 3.115E-05 1.190E-03 3.115E-05

0.875 0.968 0.728 1.965 1.521 1.965

128 1.448E-02 2.975E-03 1.659E-02 7.977E-06 4.146E-04 7.977E-06

0.892 0.955 0.775 1.935 1.590 1.934

256 7.803E-03 1.535E-03 9.698E-03 2.087E-06 1.377E-04 2.087E-06

0.904 0.924 0.809 1.878 1.645 1.878

512 4.171E-03 8.091E-04 5.534E-03 5.678E-07 4.404E-05 5.678E-07

0.916 0.874 0.836 1.783 1.684 1.783

1,024 2.210E-03 4.414E-04 3.100E-03 1.650E-07 1.371E-05 1.650E-07

0.930 0.812 0.855 1.644 1.714 1.644

2,048 1.160E-03 2.515E-04 1.714E-03 5.278E-08 4.180E-06 5.278E-08

0.943 0.792 0.871 1.478 1.737 1.477

4,096 6.032E-04 1.453E-04 9.373E-04 1.896E-08 1.254E-06 1.896E-08

0.953 0.925 0.882 1.314 1.757 1.314

8,192 3.115E-04 7.651E-05 5.085E-04 7.624E-09 3.710E-07 7.624E-09

0.954 1.115 0.892 1.188 1.771 1.188

16,384 1.608E-04 3.533E-05 2.740E-04 3.347E-09 1.087E-07 3.347E-09

0.946 1.196 0.900 1.105 1.783 1.103

32,768 8.345E-05 1.542E-05 1.469E-04 1.556E-09 3.158E-08 1.558E-09

0.938 1.175 0.907 1.039 1.713 1.026

65,536 4.356E-05 6.831E-06 7.835E-05 7.572E-10 9.634E-09 7.704E-10

0.933 1.120 0.912 0.994 1.6861 1.019

1,31,072 2.282E-05 3.144E-06 4.163E-05 3.802E-10 2.594E-09 3.802E-10

– – – – – –
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Table 6. EN
ǫ,δ=0.5∗ǫ,η=0.5∗ǫ for Ex:4.2 using Lh

up with N/2 nodes for each subinterval

N

162 322 642 1282 2562 5122

ǫ2 256 1,024 4,096 16,384 65,536 2,62,144

10−1 2.642E-02 7.405E-03 1.865E-04 4.672E-04 1.169E-04 2.922E-05

10−2 6.995E-02 2.210E-02 6.566E-03 1.888E-03 5.324E-04 1.478E-04

10−3 8.398E-02 2.692E-02 8.056E-03 2.326E-03 6.574E-04 1.832E-04

10−4 8.732E-02 2.814E-02 8.440E-03 2.440E-03 6.902E-04 1.924E-04

10−5 8.824E-02 2.849E-02 8.552E-03 2.473E-03 6.998E-04 1.951E-04

10−6 8.851E-02 2.860E-02 8.586E-03 2.483E-03 7.027E-04 1.957E-04

10−7 8.860E-02 2.863E-02 8.597E-03 2.486E-03 7.036E-04 1.957E-04

10−8 8.863E-02 2.865E-02 8.600E-03 2.487E-03 7.039E-04 1.965E-04

10−9 8.863E-02 2.865E-02 8.601E-03 2.488E-03 7.040E-04 1.963E-04

10−10 8.864E-02 2.865E-02 8.602E-03 2.488E-03 7.041E-04 1.963E-04

Table 7. EN
ǫ,δ=0.5∗ǫ,η=0.5∗ǫ for Ex:4.2 using Lh

mp with N/2 nodes for each subinterval

N

ǫ2 256 1,024 4,096 16,384 65,536 2,62,144

10−1 1.367E-02 3.873E-03 9.802E-04 2.458E-04 6.150E-05 1.538E-05

10−2 3.112E-02 1.032E-02 3.156E-03 9.263E-04 2.652E-04 7.448E-05

10−3 3.767E-02 1.259E-02 3.862E-03 1.134E-03 3.247E-04 9.139E-05

10−4 3.979E-02 1.332E-02 4.089E-03 1.201E-03 3.440E-04 9.680E-05

10−5 4.045E-02 1.355E-02 4.162E-03 1.223E-03 3.501E-04 9.846E-05

10−6 4.066E-02 1.362E-02 4.185E-03 1.229E-03 3.520E-04 9.889E-05

10−7 4.072E-02 1.364E-02 4.192E-03 1.232E-03 3.527E-04 9.909E-05

10−8 4.074E-02 1.365E-02 4.194E-03 1.232E-03 3.528E-04 9.932E-05

10−9 4.075E-02 1.365E-02 4.195E-03 1.232E-03 3.529E-04 9.931E-05

10−10 4.075E-02 1.366E-02 4.195E-03 1.233E-03 3.529E-04 9.931E-05
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Table 8. EN
ǫ,δ=0.5∗ǫ,η=0.5∗ǫ for Ex:4.2 using Lh

hy with N/2 nodes for each subinterval

N

ǫ2 256 1,024 4,096 16,384 65,536 2,62,144

10−1 1.389E-03 4.279E-04 1.068E-04 2.669E-05 6.671E-06 1.670E-06

10−2 3.273E-03 2.200E-03 7.663E-04 2.094E-04 5.327E-05 1.327E-05

10−3 1.765E-03 2.840E-04 2.361E-04 1.343E-04 4.432E-05 1.198E-05

10−4 1.901E-03 1.882E-04 2.236E-05 1.909E-05 1.976E-05 9.121E-06

10−5 1.959E-03 1.925E-04 1.744E-05 1.722E-06 1.147E-06 2.114E-07

10−6 1.977E-03 1.943E-04 1.755E-05 1.498E-06 1.322E-07 1.899E-08

10−7 1.983E-03 1.949E-04 1.761E-05 1.501E-06 1.286E-07 1.449E-08

10−8 1.985E-03 1.951E-04 1.762E-05 1.503E-06 1.412E-07 1.210E-08

10−9 1.985E-03 1.952E-04 1.763E-05 1.505E-06 1.157E-07 1.203E-08

10−10 1.986E-03 1.952E-04 1.763E-05 1.503E-06 1.174E-07 1.195E-08
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