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ABSTRACT. In this paper, we consider a Boundary Value Problem(BVP) for a weakly coupled

system of two singularly perturbed ordinary differential equations of reaction-diffusion type with

discontinuous source term. The solution of this type of problem exhibits boundary and interior

layers. A numerical method based on finite element method on Shishkin and Bakhvalov-Shishkin

meshes is presented. We derive an error estimate of order O(N−2 ln2 N) in the maximum norm.

Numerical experiments are also presented to support our theoretical results.
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1. INTRODUCTION

Differential equations with a small parameter (0 < ε ≪ 1) multiplying the high-

est order derivatives, termed as Singularly Perturbed Differential Equations (SPDEs),

arise in diverse areas of applied mathematics, including linearized Navier - Stokes

equations of high Reynolds number, heat transfer problem with large Peclet number,

drift diffusion equations of semiconductor device modelling, chemical reactor theory,

etc., In general, this type of equations exhibit boundary and/or interior layers. Stan-

dard numerical methods like finite difference and finite element methods on uniform

mesh for solving this type of euations fail to produce good approximations to exact

solutions. Many authors [1, 2, 3, 6, 14] have developed efficient numerical methods

to resolve boundary and interior layers. A good number of articles have been ap-

pearing in the past three decades on non-classical methods which cover mostly single

second order equation. But, a few authors only have considered system of SPDEs

[9, 11, 12, 13].

In this paper, we consider the following system of singularly perturbed second or-

der ordinary differential equations of reaction-diffusion type with discontinuous source
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term:

L1ū := −εu′′1(x) + a11(x)u1(x) + a12(x)u2(x) = f1(x), x ∈ Ω− ∪ Ω+,

L2ū := −εu′′2(x) + a21(x)u1(x) + a22(x)u2(x) = f2(x), x ∈ Ω− ∪ Ω+,
(1.1)

(1.2) u1(0) = 0, u1(1) = 0, u2(0) = 0, u2(1) = 0,

with conditions on coefficients

a12(x) ≤ 0, a21(x) ≤ 0,(1.3)

a11(x) > |a12(x)|, a22(x) > |a21(x)|, ∀x ∈ Ω̄,(1.4)

and for the matrix A = [aij ]

(1.5) ξAξT ≥ αξξT for every ξ = (ξ1, ξ2) ∈ R
2.

Here ε > 0 is a small parameter, α > 0, Ω = (0, 1), Ω− = (0, d), Ω+ = (d, 1), d ∈ Ω,

and u1, u2 ∈ C0(Ω̄)∩C1(Ω)∩C2(Ω− ∪Ω+), ū = (u1, u2)
T . Further it is assumed that

the source terms f1, f2 are sufficiently smooth on Ω̄ \ {d}; both the functions f1(x)

and f2(x) are assumed to have a single jump discontinuity at the point d ∈ Ω. That

is fi(d−) 6= fi(d+), i = 1, 2. In general this type of discontinuity gives rise to interior

layers in the solution of the problem. Because fi, i = 1, 2 are discontinuous at d the

solution ū of (1.1)–(1.2) does not necessarily have a continuous second derivative at

the point d. That is u1, u2 /∈ C2(Ω). But the first derivative of the solution exists

and is continuous.

Systems of this kind have applications in electro analytic chemistry when in-

vestigating diffusion processes complicated by chemical reactions. The parameters

multiplying the highest derivatives characterize the diffusion coefficient of the sub-

stances. Other applications include equations of prey-predator population dynamics.

As mentioned above, in general, classical numerical methods fail to produce good ap-

proximations to singularly perturbed equations. Hence various methods are proposed

in the literature in order to obtain numerical solution to singularly perturbed system

of second order differential equations subject to Dirichlet type boundary conditions

when the source terms are smooth [9]. Motivated by the works of H-G. Roos et al.[8],

in the present paper we suggest a numerical method for the above BVP. This method

is based on Finite Element Method (FEM) with layer adapted meshes like Shishkin

and Bakhvalov-Shishkin meshes. For this method we derive an error estimate of or-

der O(N−2 ln2N) for Shishkin mesh, O(N−2) for Bakhvalov-Shishkin mesh, in the

maximum norm. In order to capture a boundary layer with a numerical method, it

is essential that the approximate solutions generated by the numerical method are

defined globally at each point of the domain of the exact solution. The numerical

solution obtained from a finite element method defined only at the mesh points, is

extended it to the whole domain by a simple interpolation process such as piecewise



AN ALMOST SECOND ORDER FINITE ELEMENT METHOD 149

linear interpolation. Because we want our technique to be capable of extension to

complex problems in higher dimensions, we only consider the finite element subspaces

by piecewise polynomial basis functions.

In this connection we wish to state that the authors from [13] proved almost first

order convergence with respect to ε on a Shishkin mesh of the finite difference method

with special discretization at the point d. When we compute numerical solutions, it

is not desirable to obtain error estimates in L1 or L2 norm, as they do not detect the

local phenomena such as boundary or interior layer. Therefore the most appropriate

norm for the study of singular perturbation problem is the maximum norm [6]. The

main significance of this paper is that the error estimate for numerical solution is given

in terms of the maximum norm. Now we define the maximum norm of ū = (u1, u2)

as

‖ ū ‖∞ = max{‖ u1 ‖∞, ‖ u2 ‖∞}, ‖ u1 ‖∞= max
x∈[0,1]

|u1(x)|,

‖ u2 ‖∞ = max
x∈[0,1]

|u2(x)|, ‖ ū ‖∞[xi−1,xi]= max{‖ u1 ‖∞[xi−1,xi], ‖ u2 ‖∞[xi−1,xi]},

‖ u1 ‖∞[xi−1,xi] = max
x∈[xi−1,xi]

|u1(x)|, ‖ u2 ‖∞[xi−1,xi]= max
x∈[xi−1,xi]

|u2(x)|.

Further we define

|ū(x)| = |(u1(x), u2(x))| = max(|u1(x)|, |u2(x)|).

Remark 1.1. Through out this paper, C denotes generic constant that is independent

of the parameter ε and N , the dimension of the discrete problem.

Lemma 1.2. [13] The solution ū of the problem (1.1)–(1.2) can be decomposed of

smooth part v̄ and layer part w̄ as ū = v̄ + w̄, v̄ = (v1, v2), w̄ = (w1, w2). Then, for

each k, 0 ≤ k ≤ 3, we have

|v(k)
i (x)| ≤







C(1 + ε(1−k/2)e1(x)), x ∈ Ω−,

C(1 + ε(1−k/2)e2(x)), x ∈ Ω+, i = 1, 2,

|w(k)
i (x)| ≤







C(ε(−k/2)e1(x)), x ∈ Ω−,

C(ε(−k/2)e2(x)), x ∈ Ω+, i = 1, 2.

where e1(x) = e−x
√

γ
ε + e−(d−x)

√
γ
ε , e2(x) = e−(x−d)

√
γ
ε + e−(1−x)

√
γ
ε and γ =

minx∈Ω̄{a11(x) + a12(x), a21(x) + a22(x)}.

This paper is organized as follows. Section 2 presents a weak formulation of

the BVP (1.1)–(1.2) and describes a finite element discretization of the problem.

Section 3 presents a role of projection operator on approximation space and error

representation. It also includes an analysis of the corresponding scheme on Shishkin

and Bakhvalov-Shishkin meshes and an interpolation error in the maximum norm. In
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Section 4 we present a detailed error analysis of the projection operator, consistency

part and other error terms. The paper concludes with numerical examples.

2. ANALYTICAL RESULTS

A standard weak formulation of (1.1)–(1.2) is: Find ū = (u1, u2) ∈ (H1
0 (Ω))2 such

that

(2.1) B(ū, v̄) = f ∗(v̄), ∀v̄ ∈ (H1
0 (Ω))2,

with

B(ū, v̄) := (B1(ū, v̄), B2(ū, v̄)) and f ∗(v̄) := (f ∗
1 (v̄), f ∗

2 (v̄)),

where

B1(ū, v̄) := ε(u′1, v
′
1) + (a11u1 + a12u2, v1),(2.2)

B2(ū, v̄) := ε(u′2, v
′
2) + (a21u1 + a22u2, v2),(2.3)

and

f ∗
1 (v̄) = (f1, v1),

f ∗
2 (v̄) = (f2, v2).

Here H1
0 (Ω) denotes the usual Sobolev space and (·, ·) is the inner product on L2(Ω).

Now we define a norm on (H1
0 (Ω))2 associated with the bilinear form B(·, ·), called

energy norm as

|||ū||| = [ε(|u1|21 + |u2|21) + α(‖u1‖2
0 + ‖u2‖2

0)]
1/2,

where ‖u‖0 := (u, u)1/2 is the standard norm on L2(Ω), while |u|1 := ‖u′‖0 is the

usual semi-norm on H1
0 (Ω). We also use the notation ‖ū‖0 = (‖u1‖2

0 + ‖u2‖2
0)

1/2 for

the norm in (L2(Ω))2. B is a bilinear functional defined on (H1
0 (Ω))2. We now prove

that it is coercive with respect to |||.|||, that is

| B(ū, ū) |≥ 1

2
|||ū|||2,

where |B(ū, ū)|2 = B1(ū, ū)
2 +B2(ū, ū)

2.

Lemma 2.1. A bilinear functional B satisfies the coercive property with respect to

|||.|||.

Proof. Let ū ∈ (H1
0 (Ω))2. Then

|B(ū, ū)| =
√

B1(ū, ū)2 +B2(ū, ū)2

≥ 1

2
[|B1(ū, ū)| + |B2(ū, ū)|]

=
1

2
[ε(u′1, u

′
1) + ε(u′2, u

′
2) + (a11u1 + a12u2, u1) + (a21u1 + a22u2, u2)]
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≥ 1

2
[ε(|u1|21 + |u2|21) +

∫ 1

0

α(u2
1 + u2

2)dx]

=
1

2
[ε(|u1|21 + |u2|21) + α(u1, u1) + α(u2, u2)]

|B(ū, ū)| ≥ 1

2
[ε(|u1|21 + |u2|21) + α(‖u1‖2

0 + ‖u2‖2
0)].

Therefore we have

|B(ū, ū)| ≥ 1

2
|||ū|||2.

Also we observe that B is continuous in the energy norm, that is, | B(ū, v̄) |≤
β|||ū||| · |||v̄||| for some β > 0. Further f ∗ is a bounded linear functional on (H1

0 (Ω))2.

By Lax-Milgram Theorem [14] we conclude that the problem (2.1) has a unique

solution.

2.1. Discretization of Weak Problem. Let Ω̄N
ε = {x0, x1, . . . , xN} to be the set of

mesh points xi, for some positive integer N . For i ∈ {1, 2, . . . , N} we set hi = xi−xi−1

to be the local mesh step size, and for i ∈ {1, 2, . . . , N} let h̄i = (hi + hi+1)/2. We

use linear finite elements with a lumping process. That is, for discretization of (2.2)

and (2.3)

B1h(ū, v̄) := ε(u′1, v
′
1) +

N−1
∑

i=1

h̄ia11(xi)u1,iv1,i +
N−1
∑

i=1

h̄ia12(xi)u2,iv1,i,

B2h(ū, v̄) := ε(u′2, v
′
2) +

N−1
∑

i=1

h̄ia21(xi)u1,iv2,i +

N−1
∑

i=1

h̄ia22(xi)u2,iv2,i

and f ∗
k (v̄) is replaced by

∑N−1

i=1,i6= N
2

h̄ifk,ivk,i +
1
2
(hN

2

fk, N
2
−1vk, N

2
−1 +hN

2
+1fk, N

2
+1vk, N

2
+1)

for k = 1, 2. and uk,i = uk(xi). Then we have

Bh(ū, v̄) := (B1h(ū, v̄), B2h(ū, v̄)),

and f ∗
h(v̄) := (f ∗

1h(v̄), f
∗
2h(v̄)).

Now the discrete problem of (2.1) is: Find ūh ∈ V 2
h such that

(2.4) Bh(ūh, v̄h) = f ∗
h(v̄h), ∀v̄h ∈ V 2

h ,

where V 2
h = Vh × Vh, Vh is a finite dimensional subspace of H1

0 (Ω) and the basis

functions of Vh are given by

φi(x) =



















x−xi−1

hi
, x ∈ [xi−1, xi]

xi+1−x
hi+1

, x ∈ [xi, xi+1]

0, x /∈ [xi−1, xi+1].
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Then {Φ̄i}2N−2
i=1 where Φ̄i = (φi, 0) for i = 1(1)N − 1 and Φ̄i = (0, φN−i+1) for

i = N(1)2N − 2, is a basis function of V 2
h . Here we define a discrete energy norm on

V 2
h associated with a bilinear form Bh(·, ·) as

|||ūh|||Vh
= [ε(|u1h|21 + |u2h|21) + α(‖u1h‖2

0,ΩN
ε

+ ‖u2h‖2
0,ΩN

ε
]1/2

where ‖uh‖2
0,ΩN

ε
:=

∑N−1
k=1 h̄ku

2
h,k and ‖ūh‖0,ΩN

ε
:= [‖u1h‖2

0,ΩN
ε

+ ‖u2h‖2
0,ΩN

ε
]1/2 is a dis-

crete norm on V 2
h . Bh is a bilinear functional defined on V 2

h and it is coercive with

respect to |||.|||Vh
. That is, |Bh(ūh, ūh)| ≥ ς|||ūh|||2Vh

, for some ς > 0. We can also

prove that it is continuous and f ∗
h is bounded linear functional on V 2

h . By Lax-Milgram

Theorem, we conclude that the discrete problem (2.4) admits a unique solution [14].

The difference scheme corresponding to the discrete problem (2.4) is

(2.5) L̄N (Ūi) :=



























(LN
1 Ūi, L

N
2 Ūi) = (h̄if1,i, h̄if2,i), i = 1(1)N − 1, i 6= N

2
,

(LN
1 ŪN

2

, LN
2 ŪN

2

) = (1
2
[hN

2

f1, N
2
−1 + hN

2
+1f1, N

2
+1],

1
2
[hN

2

f2, N
2
−1 + hN

2
+1f2, N

2
+1]),

Ū0 = ŪN = 0̄ = (0, 0),

where

LN
1 Ūi = −ε(U1,i+1 − U1,i

hi+1

− U1,i − U1,i−1

hi

) + h̄ia11(xi)U1,i + h̄ia12(xi)U2,i

LN
2 Ūi = −ε(U2,i+1 − U2,i

hi+1
− U2,i − U2,i−1

hi
) + +h̄ia21(xi)U1,i + h̄ia22(xi)U2,i

and Ūi = (U1,i, U2,i), U1,i = U1(xi), f1,i = f1(xi) and similarly for U2,i, f2,i, i =

1(1)N − 1.

3. ERROR ANALYSIS - I

Now the given discrete problem is: Find ūh ∈ V 2
h ⊂ (H1

0 (Ω))2 such that

(3.1) Bh(ūh, v̄h) = f ∗
h(v̄h), ∀v̄h ∈ V 2

h .

Since the above discrete problem admits a unique solution and some interpolant

ūI ∈ V 2
h of ū is well defined. We define a biorthogonal basis of V 2

h with respect to Bh

to be the set of functions {Λ̄j}2N−2
j=1 where Λ̄j = (λj

1, λ
j
2) for j = 1(1)2N − 2, which

satisfies the condition

Bh(Φ̄i, Λ̄
j) = (δij, δij) for i, j = 1(1)2N − 2.(3.2)

In otherwords

B1h(Φ̄i, Λ̄
j) = δij for i, j = 1(1)2N − 2,

B2h(Φ̄i, Λ̄
j) = δij ,
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where δij is the Kronecker symbol. Then the components u1h and u2h can be uniquely

represented as

u1h =

N−1
∑

i=1

B1h((u1h, u2h), (λ
i
1, λ

i
2))φi

and u2h =

N−1
∑

i=1

B2h((u1h, u2h), (λ
N+i−1
1 , λN+i−1

2 ))φi.

Define linear transformations P1, P2 : (H1
0 (Ω))2 −→ Vh such that

P1ū :=
N−1
∑

i=1

B1h((u1, u2), (λ
i
1, λ

i
2))φi

and P2ū :=
N−1
∑

i=1

B2h((u1, u2), (λ
N+i−1
1 , λN+i−1

2 ))φi.

Let P̄ = (P1, P2) and ūh ∈ V 2
h . Then

P̄ ūh = (P1ūh, P2ūh)

=
(

N−1
∑

i=1

B1h((u1h, u2h), (λ
i
1, λ

i
2))φi,

N−1
∑

i=1

B2h((u1h, u2h), (λ
N+i−1
1 , λN+i−1

2 ))φi

)

= (u1h, u2h).

That is, P̄ ūh = ūh, ∀ūh ∈ V 2
h .

Hence P̄ is a projection operator on V 2
h . Now, the error ū− ūh can be written as,

(3.3) ū− ūh = ū− ūI + P̄ (ūI − ū) + P̄ ū− ūh.

We estimate this error in the rest of this section.

3.1. Shishkin and Bakhvalov-Shishkin Meshes. For the discretization described

above we shall use meshes of the general type introduced in [5], but here adapted for

the boundary layers at x = 0 and x = 1 and the interior layers at x = d. Let N > 8

be a positive even integer and

σ1 = min{d
4
, τ

√

ε

γ
lnN}, σ2 = min{1 − d

4
, τ

√

ε

γ
lnN}, τ ≥ 2.

Our mesh will be equidistant on Ω̄S , where

ΩS = (σ1, d− σ1) ∪ (d+ σ2, 1 − σ2)

and graded on Ω̄0 where

Ω0 = (0, σ1) ∪ (d− σ1, d) ∪ (d, d+ σ2) ∪ (1 − σ2, 1).
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We choose the transition points to be

xN/8 = σ1, x3N/8 = d− σ1, xN/2 = d, x5N/8 = d+ σ2, x7N/8 = 1 − σ2.

Because of the specific layers, here we have to use four mesh generating functions

ϕ1, ϕ2, ϕ3 and ϕ4 which are all continuous and piecewise continuously differentiable,

with the following properties: ϕ1 and ϕ3 are monotonically increasing, ϕ2 and ϕ4 are

monotonically decreasing functions and

ϕ1(0) = 0, ϕ1(1/8) = lnN,

ϕ2(3/8) = lnN, ϕ2(1/2) = 0,

ϕ3(1/2) = 0, ϕ3(5/8) = lnN,

ϕ4(7/8) = lnN, ϕ4(1) = 0.

The mesh points are

xi =



























































2
√

ε
γ
ϕ1(ti), i = 0(1)N/8,

σ1 + 4
N

(d− 2σ1)(i−N/8), i = N/8 + 1(1)3N/8,

d− 2
√

ε
γ
ϕ2(ti), i = 3N/8 + 1(1)N/2,

d+ 2
√

ε
γ
ϕ3(ti), i = N/2 + 1(1)5N/8,

d+ σ2 + 4
N

(1 − d− 2σ2)(i− 5N/8), i = 5N/8 + 1(1)7N/8,

1 − 2
√

ε
γ
ϕ4(ti), i = 7N/8 + 1(1)N,

where ti = i/N . We define new functions ψ1, ψ2, ψ3 and ψ4 by

ϕi = − lnψi, i = 1(1)4.

There are several mesh-characterizing functions ψi in the literature, but we shall

use only those which correspond to Shishkin mesh and Bakhvalov-Shishkin mesh with

the following properties

max |ψ′| = C lnN for Shishkin mesh,

max |ψ′| = C for Bakhvalov-Shishkin mesh.

For Shishkin mesh we take

ψ1(t) = e−8t ln N , ψ2(t) = e−4(1−2t) ln N ,

ψ3(t) = e−4(2t−1) ln N , ψ4(t) = e−8(1−t) lnN ,

whereas for Bakhvalov-Shishkin mesh

ψ1(t) = 1 − 8(1 −N−1)t, ψ2(t) = 1 − 4(1 −N−1)(1 − 2t),

ψ3(t) = 1 − 4(1 −N−1)(2t− 1), ψ4(t) = 1 − 8(1 −N−1)(1 − t).
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The set of interior mesh points is denoted by ΩN
ε = Ω̄N

ε \ {x0, xN/2, xN}. Also, for the

both meshes, on the coarse part ΩS we have

hi ≤ CN−1.

It is well known that on the layer part [8]

hi ≤ C
√
εN−1 lnN for Shishkin mesh

and

hi ≤ C(
√
ε+N−1) for Bakhvalov-Shishkin mesh.

In the later analysis, the following estimates of e1(x) and e2(x) will be used [8]:

(3.4) e1(x) ≤







C, x ∈ Ω− ∩ Ω0

CN−τ , x ∈ Ω− ∩ ΩS.
e2(x) ≤







C, x ∈ Ω+ ∩ Ω0

CN−τ , x ∈ Ω+ ∩ ΩS.

3.2. Interpolation Error. To derive an error estimate, we consider the interpolation

error in the maximum norm. Let f ∈ C2[xi−1, xi] be arbitrary and f I a piecewise

linear interpolant to f on Ω. Then from the classical theory, we have

|(f I − f)(x)| ≤ 2

∫ xi

xi−1

|f ′′(t)|(t− xi−1)dt, x ∈ [xi−1, xi].

Now we compute the interpolation error for ui, i = 1, 2 seperately.

Lemma 3.1. If
√
ε ≤ CN−1 and for the Shishkin mesh, we have

|ui(x) − uI
i (x)| ≤







CN−2 ln2N, x ∈ Ω0

CN−2, x ∈ ΩS

and for the Bakhavalov-Shishkin mesh it holds

|ui(x) − uI
i (x)| ≤ CN−2, x ∈ Ω− ∪ Ω+, i = 1, 2.

Proof. We now give a proof for the case i = 1 for the Shishkin mesh. To prove the

estimate we use the decomposition of solution as smooth and layer components and

triangle inequality

(3.5) |(u1 − uI
1)(x)| ≤ |(v1 − vI

1)(x)| + |(w1 − wI
1)(x)|.

On Shishkin mesh, let x ∈ [xi−1, xi] ⊂ Ω− ∩ ΩS. Then by using (3.4) we have to

compute the first term of (3.5)

|(v1 − vI
1)(x)| ≤ 2

∫ xi

xi−1

|v′′1(t)|(t− xi−1)dt

≤ 2C

∫ xi

xi−1

(t− xi−1)dt+ 2C

∫ xi

xi−1

| e1(t) | (t− xi−1)dt

≤ C
h2

i

2
+ CN−τ h

2
i

2
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|(v1 − vI
1)(x)| ≤ CN−2.

Again the second term of (3.5) will be

|(w1 − wI
1)(x)| ≤ 2‖w1(x)‖L∞[xi−1,xi]

≤ CN−τ

|(w1 − wI
1)(x)| ≤ CN−2.

Now let x ∈ [xi−1, xi] ⊂ Ω− ∩ Ω0 we have

|(v1 − vI
1)(x)| ≤ 2

∫ xi

xi−1

|v′′1(t)|(t− xi−1)dt

≤ 2C

∫ xi

xi−1

(t− xi−1)dt+ 2C

∫ xi

xi−1

| e1(t) | (t− xi−1)dt

≤ C
h2

i

2

|(v1 − vI
1)(x)| ≤ CN−2,

and also the layer component will be

|(w1 − wI
1)(x)| ≤ 2

∫ xi

xi−1

|w′′
1(t)|(t− xi−1)dt

≤ 2Cε−1

∫ xi

xi−1

| e1(t) | (t− xi−1)dt

≤ Cε−1h
2
i

2

≤ Cε−1(
√
εN−1 lnN)2

|(w1 − wI
1)(x)| ≤ CN−2 ln2N.

Similarly we can obtain a similar estimate for x ∈ Ω+.

To prove estimates on Bakhvalov-Shishkin mesh, we follow the above procedure.

If x ∈ [xi−1, xi] ⊂ ΩS then hi ≤ CN−1 and if x ∈ [xi−1, xi] ⊂ Ω0 then hi ≤ C(
√
ε +

N−1). Using the fact that max |ψ′| = C and
√
ε ≤ CN−1 we can arrive the required

result.

Then the interpolation error of ū in maximum norm is

(3.6) ‖ū− ūI‖∞ ≤







CN−2 ln2N, for Shishkin mesh,

CN−2, for Bakhalov-Shishkin mesh.

4. ERROR ANALYSIS - II

Let xk ∈ Ω̄N
ε be a mesh point. From equation (3.3), the second term at the points

of the mesh is

P̄ (ūI − ū)(xk) = (P1(ū
I − ū)(xk), P2(ū

I − ū)(xk)).
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Each of the components of the above will be estimated seperately. We have

P1(ū
I − ū)(xk) = B1h(((u

I
1 − u1), (u

I
2 − u2)), (λ

k
1, λ

k
2))

= ε((uI
1 − u1)

′, (λk
1)

′) +
N−1
∑

i=1

h̄ia11(xi)(u
I
1 − u1)(xi)λ

k
1,i

+

N−1
∑

i=1

h̄ia12(xi)(u
I
2 − u2)(xi)λ

k
1,i.

Using integration by parts and the fact that (λk
1)

′′ = 0, uI
1(xi) = u1(xi), uI

2(xi) =

u2(xi) for i = 1(1)N − 1, we have P1(ū
I − ū)(xk) = 0. Similarly P2(ū

I − ū)(xk) = 0.

Therefore, we have

(4.1) P̄ (ūI − ū)(xk) = 0̄.

The remaining part of this section is devoted for the estimation of the third term

of the error representation (3.3). For this representation, we first need the following

L1− estimates of discrete Green’s functions λj
1 and λj

2.

Lemma 4.1. On an arbitrary mesh, the discrete Green’s functions (λj
1, λ

j
2) for Bh

satisfy ‖λj
1‖L1(Ω) ≤ C and ‖λj

2‖L1(Ω) ≤ C, where ‖λj
1‖L1(Ω) =

∑N
i=1

∫ xi

xi−1
|λj

1|dx and

‖λj
2‖L1(Ω) =

∑N
i=1

∫ xi

xi−1
|λj

2|dx.

Proof. Following the procedure adopted in [8, 10], we can prove this theorem.

Let K̄ = (K1, K2) = P̄ ū−ūh = ((P1ū−u1h), (P2ū−u2h)). That is, K1 = P1ū−u1h

and K2 = P2ū− u2h. Now,

K1 = P1ū− u1h

=

N−1
∑

i=1

B1h((u1, u2), (λ
i
1, λ

i
2))φi −

N−1
∑

i=1

B1h((u1h, u2h), (λ
i
1, λ

i
2))φi

=

N−1
∑

i=1

B1h((u1, u2), (λ
i
1, λ

i
2))φi +

N−1
∑

i=1

f ∗
1 ((λi

1, λ
i
2))φi −

N−1
∑

i=1

B1((u1, u2), (λ
i
1, λ

i
2))φi

−
N−1
∑

i=1

B1h((u1h, u2h), (λ
i
1, λ

i
2))φi

=
N−1
∑

i=1

(B1h − B1)((u1, u2), (λ
i
1, λ

i
2)) −

N−1
∑

i=1

f ∗
1h((λ

i
1, λ

i
2))φi +

N−1
∑

i=1

f ∗
1 ((λi

1, λ
i
2))φi.

K1 =
N−1
∑

i=1

(B1h − B1)((u1, u2), (λ
i
1, λ

i
2)φi +

N−1
∑

i=1

(f ∗
1 − f ∗

1h)((λ
i
1, λ

i
2))φi,

where u1(xi) = u1,i, u2(xi) = u2,i and a12(xi) = a12,i. Then we have

K1(xk) = (B1h −B1)((u1, u2), (λ
k
1, λ

k
2)) + (f ∗

1 − f ∗
1h)((λ

k
1, λ

k
2))

= B1h((u1, u2), (λ
k
1, λ

k
2))
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− B1((u1, u2), (λ
k
1, λ

k
2)) + f ∗

1 ((λk
1, λ

k
2)) − f ∗

1h((λ
k
1, λ

k
2))

= ε(u′1, (λ
k
1)

′) +

N−1
∑

i=1

h̄ia11,iu1,iλ
k
1,i +

N−1
∑

i=1

h̄ia12,iu2,iλ
k
1,i − ε(u′1, (λ

k)′)

−
∫ 1

0

a11(x)u1(x)λ
k(x)dx−

∫ 1

0

a12(x)u2(x)λ
k(x)dx

+

∫ 1

0

f1(x)λ
k
1(x)dx−

N−1
∑

i=1

h̄if1,iλ
k
1,i

K1(xk) = (
N−1
∑

i=1

h̄ia11,iu1,iλ
k
1,i −

∫ 1

0

a11(x)u1(x)λ
k(x)dx) + (

N−1
∑

i=1

h̄ia12,iu2,iλ
k
1,i

−
∫ 1

0

a12(x)u2(x)λ
k
1(x)dx) + (

∫ 1

0

f1(x)λ
k
1(x)dx−

N−1
∑

i=1

h̄if1,iλ
k
1,i).

Similarly we get

K2(xk) = (
N−1
∑

i=1

h̄ia21,iu1,iλ
N+k−1
2,i −

∫ 1

0

a21(x)u1(x)λ
N+k−1
2 (x)dx) + (

N−1
∑

i=1

h̄ia22,iu2,iλ
N+k−1
2,i

−
∫ 1

0

a22(x)u2(x)λ
N+k−1
2 (x)dx) + (

∫ 1

0

f2(x)λ
N+k−1
2 (x)dx−

N−1
∑

i=1

h̄if2,iλ
N+k−1
2,i ).

Now we define

K∗
1 (xk) =

N−1
∑

i=1

h̄ia11,iu1,iλ
k
1,i −

N
∑

i=1

∫ xi

xi−1

(a11(x)u1(x))
Iλk

1(x)dx+
N−1
∑

i=1

h̄ia12,iu2,iλ
k
1,i

−
N

∑

i=1

∫ xi

xi−1

(a12(x)u2(x))
Iλk

1(x)dx+
N

∑

i=1

∫ xi

xi=1

f I
1 (x)λk

1(x)dx−
N−1
∑

i=1

h̄if1,iλ
k
1,i.

Then we can write K1(xk) as

K1(xk) = K∗
1 (xk) +

N
∑

i=1

∫ xi

xi−1

((a11(x)u1(x))
I − (a11(x)u1(x)))λ

k
1(x)dx

+
N

∑

i=1

∫ xi

xi−1

((a12(x)u2(x))
I − (a12(x)u2(x)))λ

k
1(x)dx

−
N

∑

i=1

∫ xi

xi−1

((f1(x))
I − f1(x))λ

k
1(x)dx.

(4.2)

The later sums of K1(xk) can be bounded by

|
N

∑

i=1

∫ xi

xi−1

((a11(x)u1(x))
I − (a11(x)u1(x)))λ

k
1(x)dx |

≤ C(‖u1 − uI
1‖∞‖a11‖∞ + ‖aI

11 − a11‖∞‖u1‖∞)‖λk
1‖L1(Ω)

≤ C(‖u1 − uI
1‖∞ +N−2‖u1‖∞)‖λk

1‖L1(Ω)
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≤ C(‖u1 − uI
1‖∞ +N−2)

≤ CN−2 max |ψ′|2,

|
N

∑

i=1

∫ xi

xi−1

((a11(x)u1(x))
I − (a11(x)u1(x)))λ

k
1(x)dx| ≤ CN−2 max |ψ′|2,(4.3)

|
N

∑

i=1

∫ xi

xi−1

((a12(x)u2(x))
I − (a12(x)u2(x)))λ

k
1(x)dx| ≤ CN−2 max |ψ′|2,(4.4)

and

(4.5) |
N

∑

i=1

∫ xi

xi−1

(f1 − f I
1 )λk

1(x)dx | ≤ CN−2‖λk
1‖L1(Ω) ≤ CN−2.

If we define K∗
2 (xk) similar to K∗

1(xk), then we can write

K2(xk) = K∗
2 (xk) +

N
∑

i=1

∫ xi

xi−1

((a21(x)u1(x))
I − (a21(x)u1(x)))λ

N+k−1
2 (x)dx

+

N
∑

i=1

∫ xi

xi−1

((a22(x)u2(x))
I − (a22(x)u2(x)))λ

N+k−1
2 (x)dx

−
N

∑

i=1

∫ xi

xi−1

((f2(x))
I − f2(x))λ

N+k−1
2 (x)dx.

(4.6)

We can also estimate the later sums of K2(xk) as done for K1(xk). In the pointwise

errors, K1(xk) and K2(xk) it remains only to estimate the expressions K∗
1 (xk) and

K∗
2 (xk). First we write K∗

1(xk) and K∗
2 (xk) in the form

K∗
1(xk) = 〈(a11u1)

I , λk
1〉h + 〈(a12u2)

I , λk
1〉h − 〈f I

1 , λ
k
1〉h,(4.7)

K∗
2(xk) = 〈(a21u1)

I , λN+k−1
2 〉h + 〈(a22u2)

I , λN+k−1
2 〉h − 〈f I

2 , λ
N+k−1
2 〉h,(4.8)

where

〈g, ωk〉h =
N−1
∑

i=1

h̄ig(xi)ω
k
i −

N
∑

i=1

∫ xi

xi−1

g(x)ωk(x)dx,

for a piecewise linear function g, not neccessarily continuous. For integrals in the

previous formula, we use Simpson’s rule

(4.9) 〈g, ωk〉h =
1

6

N−1
∑

i=1

(hi(g
−
i − g+

i−1) − hi+1(g
−
i+1 − g+

i ))ωk
i .

In order to estimate K∗
1 (xk) and K∗

2 (xk), we start with the decomposition of the

solution ū. Hence we seperately analyze smooth part v̄ and the layer part w̄. Now

the equation (4.7) can be rewritten as

(4.10) K∗
1 (xk) = 〈(εv′′1)I , λk

1〉h + 〈(a11w1 + a12w2)
I , λk

1〉h.
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The first term in the above expression containing the regular component v1 can be

easily estimated. In fact,

| 〈(εv′′1)I , λk
1〉h |≤ ε

6

N−1
∑

i=1

(hi(v
′′
1,i −−v′′+

1,i−1) − hi+1(v
′′−
1,i+1 − v

′′+
1,i ))λk

1,i.

Then we have

| 〈(εv′′1)I , λk
1〉h | ≤ ε

6

N−1
∑

i=1

(h2
i ‖v

′′′

1 ‖L∞[xi−1,xi] + h2
i+1‖v

′′′

1 ‖L∞[xi,xi+1]λ
k
1,i

≤ ε

3
(CN−1)‖v′′′

1 ‖L∞(Ω)

N−1
∑

i=1

(
hi + hi+1

2
)λk

1,i

≤ C
√
εN−1

N−1
∑

i=1

h̄iλ
k
1,i

≤ C
√
εN−1‖λk

1‖L1(Ω),

by using (1.2), hi ≤ CN−1, i = 1(1)N − 1 and ‖λk
1‖L1(Ω) ≤ C. Finally, we get

(4.11) | 〈(εv′′1)I , λk
1〉h |≤ C

√
εN−1.

Let us denote the coefficient in < (a11w1 + a12w2)
I , λk

1 >h corresponding to λk
1,i by

mi. Depending on the values of index i, we consider different cases. In general, g±i
denotes right-limit and left-limit of a function g at a mesh point xi.

Case 1: When N
8

+ 1 ≤ i ≤ 3N
8

− 1 or 5N
8

+ 1 ≤ i ≤ 7N
8

− 1. That is,

[xi−1, xi+1] ⊂ ΩS . The coefficient mi can be estimated by

|mi| = | hi(a
−
11,iw

−
1,i − a+

11,i−1w
+
1,i−1) − hi+1(a

−
11,i+1w

−
1,i+1 − a+

11,iw
+
1,i) |

+ | hi(a
−
12,iw

−
2,i − a+

12,i−1w
+
2,i−1) − hi+1(a

−
12,i+1w

−
2,i+1 − a+

12,iw
+
2,i) |

≤ Ch̄i[‖w1‖L∞[xi−1,xi+1] + ‖w2‖L∞[xi−1,xi+1]]

≤ Ch̄i[max
x∈ΩS

|e1(x)| + max
x∈ΩS

|e2(x)|], from (1.2) and (3.4).

(4.12) | mi |≤ Ch̄iN
−τ .

Case 2: When 1 ≤ i ≤ N
8
− 1 or 3N

8
+ 1 ≤ i ≤ N

2
− 1 or N

2
+ 1 ≤ i ≤ 5N

8
− 1 or

3N
8

+ 1 ≤ i ≤ N − 1. That is, the subinterval [xi−1, xi+1] ⊂ Ω0. The layer part will be

calculated by estimating mi. We have

mi = hi(a
−
11,iw

−
1,i − a+

11,i−1w
+
1,i−1) − hi+1(a

−
11,i+1w

−
1,i+1 − a+

11,iw
+
1,i)

+ hi(a
−
12,iw

−
2,i − a+

12,i−1w
+
2,i−1) − hi+1(a

−
12,i+1w

−
2,i+1 − a+

12,iw
+
2,i)

= hi(−a11,i+1w1,i+1 + 2a11,iw1,i − a11,i−1w1,i−1)

+ (hi − hi+1)(a11,i+1w1,i+1 − a11,iw1,i)

+ hi(−a12,i+1w2,i+1 + 2a12,iw2,i − a12,i−1w2,i−1)
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+ (hi − hi+1)(a12,i+1w2,i+1 − a12,iw2,i)

= a11,i(hi(−w1,i+1 + 2w11,i − w1,i−1) + (hi − hi+1)(w1,i+1 − w1,i))

+ hi(a11,i − a11,i−1)

(w1,i−1 − w1,i) + hi+1(a11,i+1 − a11,i)(w1,i − w1,i+1)

+ w1,i(−hi+1a11,i+1 + (hi + hi+1)

a11,i − hia11,i−1)a12,i(hi(−w2,i+1 + 2w21,i − w2,i−1) + (hi − hi+1)(w2,i+1 − w2,i))

+ hi(a12,i − a12,i−1)(w2,i−1 − w2,i) + hi+1(a12,i+1 − a12,i)(w2,i − w2,i+1)

+ w2,i(−hi+1a12,i+1 + (hi + hi+1)a12,i − hia12,i−1).

Using the Taylor’s expansion for each of the terms in the previous expression yields

hia11,i(−w1,i+1 + 2w1,i − w1,i−1) = hi(hi − hi+1)a11,iw
′
1,i

− h3
i

2
a11,iw

′′
1(θi) −

hih
2
i+1

2
a11,iw

′′
1(θi+1),

hia12,i(−w2,i+1 + 2w2,i − w2,i−1) = hi(hi − hi+1)a12,iw
′
2,i

− h3
i

2
a12,iw

′′
2(θi) −

hih
2
i+1

2
a12,iw

′′
2(θi+1),

(hi − hi+1)a11,i(w1,i+1 − w1,i) = hi+1(hi − hi+1)a11,iw
′

1(ξi+1),

(hi − hi+1)a12,i(w2,i+1 − w2,i) = hi+1(hi − hi+1)a12,iw
′

2(ξi+1),

hi(a11,i − a11,i−1)(w1,i−1 − w1,i) = −h3
i a

′

11(ρi)w
′

1(ξi),

hi(a12,i − a12,i−1)(w2,i−1 − w2,i) = −h3
i a

′

12(ρi)w
′

2(ξi),

hi+1(a11,i+1 − a11,i)(w1,i − w1,i+1) = −h3
i+1a

′

11(ρi+1)w
′
1(ξi+1),

hi+1(a12,i+1 − a12,i)(w2,i − w2,i+1) = (h2
i − h2

i+1)a
′

12,iw2,i

− 1

2
(h3

i a
′′
12(ηk) + h3

i+1a
′′
12(ηi+1))w2,i,

where θi, ξi, ρi, ηi ∈ [xi−1, xi].

To derive an estimate for |mi|, we need the following lemma.

Lemma 4.2. For the points xi−1, xi, xi+1 ∈ Ω0, xi 6= d = xN
2

of the mesh with τ ≥ 2

the following holds

| (hi − hi+1)(w1,i+1 − w1,i) | ≤ Chi+1N
−2,

| (hi − hi+1)(w2,i+1 − w2,i) | ≤ Chi+1N
−2,

| (hi − hi+1)w
′

1,i | ≤ CN−2

and | (hi − hi+1)w
′

2,i | ≤ CN−2.



162 A. R. BABU AND N. RAMANUJAM

Proof. Let xi−1, xi, xi+1 ∈ Ω̄0 ∩ Ω− and xi 6= d = xN
2

| hi − hi+1 |= 2

√

ε

γ
N−1 | φ′

(ρi) − φ
′

(ρi+1) |

for ρi, ρi+1 ∈ (ti−1, ti+1). Also | w1,i+1 − w1,i |= hi+1 | w′

1,i(αi+1) |, αi+1 ∈ (xi, xi+1)

| (hi − hi+1)(w1,i+1 − w1,i) | ≤ C
√
εhi+1N

−2 | φ′′
1(ψi) || w

′

1(αi+1) |

≤ C
√
εhi+1N

−2(
ψ

′

(xi)

ψ1(xi)
)2e1(αi+1)ε

−1

2

≤ Chi+1N
−2(

maxψ
′

ψ1(xi)
)2e1(αi+1)

≤ Chi+1N
−2(ψ1(ti+1))

−2e1(αi+1).

Using the fact that max | ψ′

1 | = C and e1(αi+1) ≤ ψ1(ti)
2 +N−τ , we have

| (hi − hi+1)(w1,i+1 − w1,i) | ≤ Chi+1N
−2(ψ1(ti)

2 +N−τ )(ψ1(ti+1))
−2

| (hi − hi+1)(w1,i+1 − w1,i) | ≤ Chi+1N
−2,

since τ ≥ 2. When [xi−1, xi+1] ⊂ [d, d + σ2] and [xi−1, xi+1] ⊂ [1 − σ2, 1], the above

estimate is also true for these intervals. From the previous analysis, we get

hia11,i(−w1,i+1 + 2w1,i − w1,i−1) ≤ ChiN
−2 + ChiN

−2 max | ψ′

1 |,
hia12,i(−w2,i+1 + 2w2,i − w2,i−1) ≤ ChiN

−2 + ChiN
−2 max | ψ′

1 |,

and

(hi − hi+1)a11,i(w1,i+1 − w1,i) ≤ Chi+1N
−2,

(hi − hi+1)a12,i(w2,i+1 − w2,i) ≤ Chi+1N
−2.

Applying the above Lemma 4.2 to each of the terms in mi of Case 2, we have

(4.13) |mi| ≤ Ch̄iN
−2 max |ψ′|2.

Now it remains to prove the estimates at the transition points.

Case 3: When xi, i ∈ {N
8
, 3N

8
, 5N

8
, 7N

8
} and i 6= N

2
. At these points w1,i, w1,i±1

and w2,i, w2,i±1 are bounded by CN−τ . Then, using the expression for |mi| given in

Case 2,

(4.14) | mi |≤ Ch̄iN
−τ .

Case 4: When i = N
2
. That is, xi = d

mi = hi(a
−
11,iw

−
1,i − a+

11,i−1w
+
1,i−1) − hi+1(a

−
11,i+1w

−
1,i+1 − a+

11,iw
+
1,i)

+ hi(a
−
12,iw

−
2,i − a+

12,i−1w
+
2,i−1) − hi+1(a

−
12,i+1w

−
2,i+1 − a+

12,iw
+
2,i)

= hi(−a11,i+1w1,i+1 + a+
11,iw

+
1,i + a−11,iw

−
1,i − a11,i−1w1,i−1)
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hi(−a12,i+1w2,i+1 + a+
12,iw

+
2,i + a−12,iw

−
2,i − a12,i−1w2,i−1)

|mi| ≤ hi|(a+
11,i − a11,i+1)w

+
1,i + (a−11,i − a11,i−1)w

−
1,i| + hi|a11+1,i(w

+
1,i − w1,i+1)

+ a11,i−1(w
−
1,i − w1,i−1)| + hi|(a+

12,i − a12,i+1)w
+
2,i + (a−12,i − a12,i−1)w

−
2,i|

+ hi|a12+1,i(w
+
2,i − w2,i+1) + a12,i−1(w

−
2,i − w2,i−1)|

≤ Chihi+1|w+
1,i| + Ch2

i |w−
1,i| + Chi(hi(a11,i−1 − a−11,i)w̄

′
1,i −

1

2
h2

i+1a
−
11,iw̄

′′
1(ϑi)

+
1

2
h2

i a11,i−1w̄
′′
1(ϑi) +R1) + Chihi+1|w+

2,i| + Ch2
i |w−

2,i| + Chi(hi(a12,i−1 − a−12,i)w̄
′
2,i

− 1

2
h2

i+1a
−
12,iw̄

′′
2(ϑi) +

1

2
h2

i a12,i−1w̄
′′
2(ϑi) +R2), ϑi ∈ [xi−1, xi].

We use the asymptotic expansion of the layer components w1 = w̄1 + R1 and w2 =

w̄2+R2, that can be derived using the technique from [4]. It can be concluded that the

leading part w̄′
1 of w′

1 and w̄′
2 of w′

2 are continuous at x = d, enabling us to use Taylor’s

expansions for estimating w+
1,i − w1,i+1, w

−
1,i − w1,i−1 and w+

2,i − w2,i+1, w
−
2,i − w2,i−1.

Since R1, R2 contain lower order terms, we have

(4.15) | mi |≤ Ch̄i

√
εN−1 + Ch̄i

√
εN−2 max |ψ′|2 + Ch̄iN

−2 max |ψ′|2,

and we use the estimate of max |ψ′| in the above result to obtain

| mi |≤







Ch̄i(
√
ε+N−1)N−1 ln2N, for Shishkin mesh,

Ch̄i(
√
ε+N−1)N−1, for Bakhalov-Shishkin mesh.

Collecting estimates (4.12)–(4.15) from the previously analyzed cases and using
√
ε ≤

CN−1, we have

|< (a11w1 + a12w2)
I , λk

1 >h| ≤ 1

6

N−1
∑

i=1

|mi|λk
1,i

≤ C(N−τ +N−2 max |ψ′|)
N−1
∑

i=1

h̄iλ
k
1,i

≤ CN−2 max |ψ′|‖λk
1‖L1(Ω)

≤ CN−2 max |ψ′|,

since τ ≥ 2 and ‖λk
1‖L1(Ω) ≤ C.

From (4.10), (4.11) and the above estimate, we have

(4.16) K∗
1(xk) ≤ C

√
εN−1 + CN−2 max |ψ′|.

A similar estimate is also hold for K∗
2 (xk), from (4.8). Therefore from equations

(4.2)–(4.6), (4.16) and max |ψ′| = C lnN (in case of Shishkin mesh), for p = 1, 2 we

have

Kp(xk) ≤ C
√
εN−1 + CN−2 ln2N.
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Since |K̄(xi)| = max(|K1(xi)|, |K2(xi)|), we have

|P̄ ū(xi) − ūh(xi)| = |K̄(xi)| ≤ C
√
εN−1 + CN−2 ln2N.

Therefore we conclude

Lemma 4.3. Let ū and ūh be solution of the BVP (1.1)–(1.2) and (2.5) respectively.

Then for Shishkin mesh, the pointwise maximum norm of the error satisfies

|ū(xi) − ūh(xi)| = |P̄ ū(xi) − ūh(xi)| ≤ C
√
εN−1 + CN−2 ln2N, xi ∈ ΩN

ε . �

Now, since Vh uses linear Lagrange elements, we can easily derive a bound for

the error uj − ujh on each element [xi−1, xi], i = 1(1)N, j = 1, 2. For arbitrary

i ∈ {1, 2, ..., N} and x ∈ [xi−1, xi], the triangle inequality implies

|uj(x) − ujh(x)| ≤ |uj(x) − uI
j (x)| + |uI

j(x) − ujh(x)|, j = 1, 2.

The difference between the piecewise linear function uI
j and ujh at the point x is

estimated by

|uI
j(x) − ujh(x)| = |uj(xi−1)φi−1(x) + uj(xi)φi(x) − ujh(xi−1)φi−1(x) − ujh(xi)φi(x)|

≤ |uj(xi−1) − ujh(xi−1)|φi−1(x) + |uj(xi) − ujh(xi)|φi(x)

≤ C
√
εN−1 + CN−2 ln2N, by Lemma 4.3 for i = 2(1)N − 1,

where φi are functions defined in Section 2.1. The same bound holds for i = 1 and

i = N . Therefore for each interval [xi−1, xi] we finally obtain the error estimate

(4.17) |uj(x) − ujh(x)| ≤ ‖ū− ūI‖∞[xi−1,xi] + C
√
εN−1 + CN−2 ln2N, j = 1, 2

where ‖ū− ūI‖∞[xi−1,xi] = max(‖u1 − uI
1‖∞[xi−1,xi], ‖u2 − uI

2‖∞[xi−1,xi]).

5. ERROR ESTIMATE

The following theorem gives us the result on the maximum norm of the error

ū− ūh not just on the mesh points, but on the whole domain [0, 1].

Theorem 5.1. Let ū and ūh be solution of BVP (1.1)–(1.2) and (2.5) respectively,√
ε ≤ CN−1 and τ ≥ 2. Then we have

‖ū− ūh‖∞ ≤







CN−2 ln2N, for Shishkin mesh,

CN−2, for Bakhalov-Shishkin mesh.

Proof. For Shishkin mesh, the theorem follows from the inequality (4.17) and the

results on interpolation error (3.6). Similarly we can prove for Bakhalov-Shishkin

mesh.

Remark 5.2. All the results in this paper also hold in case when the functions f1

and f2 have more than one point of discontinuity.
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6. NUMERICAL EXPERIMENTS

In this section we experimentally verify our theoretical results proved in the

previous section.

Example 6.1. Consider the BVP

−εu′′1(x) + 2u1(x) − u2(x) = f1(x), x ∈ Ω− ∪ Ω+,

−εu′′2(x) − u1(x) + 2u2(x) = f2(x), x ∈ Ω− ∪ Ω+,
(6.1)

(6.2) u1(0) = 0, u1(1) = 0, u2(0) = 0, u2(1) = 0,

where

f1(x) =







1, 0 ≤ x ≤ 0.5,

0.8, 0.5 ≤ x ≤ 1
and f2(x) =







2, 0 ≤ x ≤ 0.5,

1.8, 0.5 ≤ x ≤ 1.

Example 6.2. Consider the BVP

−εu′′1(x) + 2(x+ 1)2u1(x) − (1 + x3)u2(x) = f1(x), x ∈ Ω− ∪ Ω+,

−εu′′2(x) − 2cos(πx/4)u1(x) + 2.2e1−xu2(x) = f2(x), x ∈ Ω− ∪ Ω+,
(6.3)

(6.4) u1(0) = 0, u1(1) = 0, u2(0) = 0, u2(1) = 0,

where

f1(x) =







2ex, 0 ≤ x ≤ 0.5,

1, 0.5 ≤ x ≤ 1
and f2(x) =







10x+ 1, 0 ≤ x ≤ 0.5,

2, 0.5 ≤ x ≤ 1.

For our tests, we take ε = 2−18, which is sufficiently small to bring out the

singularly perturbed nature of the problem. We measure the accuracy in maximum

norm and the rates of convergence rN are computed using the following formula:

rN = log2(
EN

E2N
),

where

EN =‖ ūh − ūI
2h ‖∞,

and ūI
h denotes the piecewise linear interpolant of ūh. In Table 1, we present values

of EN , rN for the solution of the BVPs (6.1)–(6.2) and (6.3)–(6.4) for Shishkin and

B-Shishkin meshes respectively. The Figures 1 and 2 depict the numerical solution

of the BVP (6.1)–(6.2) for Shishkin mesh with N = 512. We compare the values

of EN , rN for the solution of the same BVP (6.1)–(6.2) for Shishkin mesh using

the standard upwind scheme adopted [13]. From these tables, it is obvious that

the method presented in this paper performs well. The numerical results are clear

illustrations of the convergence estimates derived in the present paper for both the

type of meshes.
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Table 1. Values of EN and rN for the solution of the BVPs (6.1)-(6.2)

and (6.3)-(6.4) respectively.

N Shishkin mesh B-Shishkin mesh Shishkin mesh B-Shishkin mesh

EN rN EN rN EN rN EN rN

32 7.5324e-03 0.0542 6.8353e-02 2.4161 4.5727e-03 0.0788 1.0557e-01 2.3448

64 7.2545e-03 0.4497 1.2807e-02 2.1880 4.3295e-03 0.1207 2.0782e-02 2.1671

128 5.3117e-03 0.9314 2.8106e-03 2.0923 3.9818e-03 0.5378 4.6273e-03 2.0866

256 2.7851e-03 1.2331 6.5912e-04 2.0460 2.7426e-03 1.1084 1.0894e-03 2.0447

512 1.1848e-03 1.2217 1.5961e-04 2.0230 1.2723e-03 1.1524 2.6405e-04 2.0226

1024 5.0802e-04 - 3.9272e-05 - 5.7236e-04 - 6.4986e-05 -
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Figure 1. Graphs of

the first component u1 of

the Example 6.1
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Figure 2. Graphs of

the second component u2

of the Example 6.1
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Figure 3. Graphs of

the first component u1 of

the Example 6.2
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Figure 4. Graphs of

the first component u2 of

the Example 6.2
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