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Abstract:

In this article, based on the homotopy analysis method (HAM), a new analytic technique
is proposed to solve systems of fractional integro-differential equations. Comparing with
the exact solution, the HAM provides us with a simple way to adjust and control the
convergence region of the series solution by introducing an auxiliary parameter 7 . Four
examples are tested using the proposed technique. It is shown that the solutions obtained
by the Adomian decomposition method (ADM) are only special cases of the HAM
solutions. The present work shows the validity and great potential of the homotopy
analysis method for solving linear and nonlinear systems of fractional integro-differential
equations. The basic idea described in this article is expected to be further employed to
solve other similar nonlinear problems in fractional calculus.

Keywords: Homotopy analysis method; Systems of fractional integro-differential

equations; Caputo fractional derivative

1. Introduction

The objective of this paper is to propose a new analytic technique, based on the
homotopy analysis method (HAM), to solve systems of fractional integro-differential

equations
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D& x,(t) = F,(t, X, (1)see ;" ()sers X (s X, (), X () x,, (D),
X, (t),...,xn(k)(t))+jGi(t,T,xl (), (@)oo x, (D)o x, (T dT, (1)
0
i=123,...n, k=0,l,.,m,
where D is the derivative of order ¢, in the sense of Caputo and

m—1<a;, <m, subject to the initial conditions

O =a,, j=0l..m-1, i=123...n. )

Fractional differential equations and fractional integro-differential equations have been
the focus of many studies due to their frequent appearance in various fields such as
physics, chemistry, biology, engineering, and other applications [1-5]. Most systems of
fractional integro-differential equations do not have exact analytic solutions, so
approximation and numerical techniques must be used. The homotopy perturbation
method [6-8], the Adomian decomposition method [9-11], the variation iteration method
[12], and other methods have been used to provide analytical approximation to linear and
nonlinear problems. However, the convergence region of the corresponding results is
rather small.

The homotopy analysis method (HAM) is proposed first by Liao [13] for solving linear
and nonlinear differential and integral equations. This method provides an effective
procedure for explicit numerical solutions of a wide and general class of differential
systems representing real physical problems. Based on homotopy of topology, the
validity of the HAM is independent of whether or not there exist small parameters in the
considered equation. HAM has been used to investigate a variety of mathematical and

physical problems [14-19]. HAM contains a certain auxiliary parameter 7%, which

provides us with a simple way to control and adjust the rate of convergence of the series
solutions.

The objective of the present paper is to modify the HAM to provide symbolic
approximate solutions for linear and nonlinear systems of fractional integro-differential
equations. Moreover, we illustrated for several examples that the Adomian

decomposition solution is a special case of the homotopy analysis solution when # =—1.
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2. Basic definitions

We give some basic definitions and properties of the fractional calculus theory which are

used further in this paper [1-3].

Definition 2.1: A real function f(x), x>0, is said to be in the space C 4> ME R if

there exists a real number p > such that f(x)=x"f (x), where f,(x)e C[0,).

Clearly C,c Cy if f<u.

Definition 2.2: A function f(x), x>0, is said to be in the space
m . (m)

C#,meNu{O}, if f eCﬂ.

Definition 2.3: The left sided Riemann-Liouville fractional integral operator of order

a =0, of afunction f € Cﬂ , 4 =—1,1s defined as

wa(x)—r(ajl (tt))la a>0, x>0,

JOf(x) = f(x).
Definition 2.4: Let fe C”, me N {0} then the Caputo fractional derivative of f(x)

is defined as

rermw],  m-1<a<m, men,
DI f(x)= d" f(x)
dx"

a=m.

Hence, we have the following properties
LJYI f=J""f, av=20, fe C,, uz-1.

— r(7/+1) xy+o:
I'a+y+1)

2.J%x7 , >0, y>-1, x>0.

m—1 k
3, J“fo(x)=f(x)—2f(")(0+)%, x>0, m—l<a<m.

3. Homotopy Analysis Method

3.1. Zeroth-order deformation equation:

Let ® denote auxiliary linear operators that satisfy ® (0)=0 and x,,(¢) are initial
guesses that satisfy the initial conditions (2). Following Liao [13], the zeroth-order
deformation equation for the system of fractional integro-differential equations (1) can be

constructed as follows:
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(1-@8l¢t:9—x, O =ah,[X 0 .9~-Ft. 4.9 4" .9, 4,9, 4, .9
N7 O T (07 WO X (7 W S (%))

-[Ger4@a). 4" @a).. 4@, 4" GaMrl, 3)
i=123..n, k=0L...m

subject to the initial conditions:
¢ 0;9)=a;, j=0l..m-1, i=123..n, 4)

where g e [0,1] is an embedding parameter, 7, # 0 are auxiliary parameters and ¢, (;q)
are unknown functions.
It should be emphasized that one has great freedom to choose the initial guesses x;, (),
the auxiliary linear operators ®,, and the auxiliary parameters 7, .
Obviously, when ¢ =0, since x,,(¢) satisfy the initial conditions (2) and ®,(0) =0, we
have

6.(t:0)=x,,(r), i =1,2,3,...,n, (5)
and when g =1, since 7%, #0, the zeroth-order deformation equation (3) and (4) are
equivalent to (1) and (2), respectively, provides

é.(:1)=x,(t), i=123,....n. (6)
Thus, as ¢ increases from O to 1, the solutions ¢, (t;q) continuously varies from the
initial approximations x,,(¢) to the exact solutions x, (t) of system (1). Define

19"¢,(1:9)

m! aq’” “1:0 ’ = 1,2,3,...,1’1 .

()= )

Expanding ¢ (t;q) in Taylor series with respect to the embedding parameter ¢, and by
using (5) and (7), we have
&) =x,(O+ Y x, Og", i=123...n. (8)
m=1

Assuming that the auxiliary parameters 7,, the initial approximations x (f) and the

auxiliary linear operators &, are properly chosen so that the series (8) converges at g =1.
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Then the series solution (8) becomes

> 9
X (O=x,O+ Y x,©), i=123,..n. &)
m=1
3.2 The mth-order deformation equation
Define the vectors
X, =120 (1), %, (1), X, (1) o0y X, (D). (10)

Differentiating equations (3) m times with respect to the embedding parameter ¢, and
then setting g = 0 and finally dividing them by m!, we have the so-called mth-order

deformation equations:

B[x,, ()= X Xiimry O1=H R, Gy @), =123, (11)
subject to the initial conditions
x(0)=a;, j=012..m-1, i=123..n, (12)
where
Ry (G )= D% (1,0) F 0y 1o, 1. @) (1)
(m—-1)!dgq
0 D00 () 80 (@), (1,9), 0, (1 0)
—jG,.<r,r,¢1<r,q>,...,¢l‘“<r,q),...,¢,,<aq>,...,¢n"”<r,q)>dﬂ\q_ 4
0 i=123,...n, k=01..m,
and

1, ow. (14)

Define ® to be operators such that

BO[x,()]=x,O+K. 1), @ =1, i=123,... 1, (15)
where [ is the identity operator then the mth -order deformation equations can be written

as:

Xin (D= X Xiompy O+, Y R, (X O+ K (1), i=123,...n, (16)

subject to the initial conditions

xP(O)=a,;, j=012,..m-1, i=123...n 17
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As long as the series solution (9), where x, (f), is governed by the high-order

deformation equation (11) under the definitions (13) and (14), it must be a solution of

system (1) (theorem 3.1 in [14]).

4. Numerical examples

To demonstrate the effectiveness of the proposed algorithm, four special cases of the
system of fractional differential equations (1) will be studied. All the results are
calculated by using the symbolic calculus software Mathematica

Example 4.1. Consider the following linear system of fractional integro-differential

equations:

DAx(t)=1+t+1>— y(t)— j [x(7) + y(2)]dT,

(18)
DX y(t)=—1—1t+ x(t) —j[x(r) —y(7)ldT, O<a,a, <1,
0
subject to the initial conditions
x(0)=1, y(0)=-1. (19)
The exact solution, when ¢, =&, =1, is [9]
x(t)=t+e', yt)=t—e'. (20)

To solve Egs. (18) and (19) by means of the standard HAM, we choose the initial

approximations [9]

[ o+l 2 o +2

Tl+e) TIQ+a) rG+a) 1)

X, =1+

1 a, 1 a,+1

2O ) TTeray

and the linear operators

®=D, & =J%, i=12. (22)
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Furthermore, we can construct the homotopy as follows

R, (X, ()=DIx ()—A+t+t)HA-g,)+y, )+ I[xm_l ) +y,,(0ldr,

, (23)
Ry, (3, (1) = DOy, () + 1+ D= 2,) = %, () +[[x,, (D)= ¥, (D)7,

and the mth-order deformation equations for m >1 become

X, ()=, % O +1, TR, (X, (tDN]+ K, (1),
Y, () = 2,30 () +T, TRy, (5, ()] + K, (1), (24)

The first few terms of the HAM series are given by

_ (hl -1 a 1 a+l 2 a+2 hl a+a,
x(t)=1- 9+ ¢
I'd+ea,) I'2+ea,) I'G+a,)) I'l+ea, +,)

2h1 o +a,+l1 + hl 204 +1 + hl 200 +2

TQ+a +a,) T(2+2a,) TG+2a,)

hl t(zl+az+2 Zhl 200+3

IG+a +a) T(4+2a,)

(25)

_ (h2+1) 1% 4 (th_l) ta2+l_ hz PLALCI hz t2a2

y()=-1
I'(d+a,) rQ2+a,) rd+e, +a,) r'2+2a,)

hz t2012+2 _h—zta]+a2+2 + 2h2

+— S —
I'G+2a,) I'G+o, +a,) I'd+a, +a,)

o +0,+3

t )

Setting 7, =h, =-1, and o, = o/, = & in Eqgs.(25), then we have the same Adomian
decomposition solutions given by Momani [9]. This illustrates that the Adomian
decomposition method (ADM) is a special case of the homotopy analysis method. Fig.1
shows that the HAM approximate solutions with 7,=-0.85, 7, =—0.8 are more
accurate than ADM solutions. So the homotopy analysis method provides us with a
simple way to adjust and control the convergence region of solution series by choosing
proper values for the auxiliary parameters 7, and 7, and by using the suitable

auxiliary liner operators ®,= D. Fig. 2 shows the HAM approximate solutions for

various values of ¢, and «,. It is to be noted that only four terms of the HAM series

solutions were used in evaluating the approximate solutions given in Figs.1-2. It is
evident that the efficiency of this approach can be dramatically enhanced by computing
further terms of x(¢)and y(z).
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Figure 1. Plots of system (18) when ¢, = &, =1

solid line : exact solution, dash — dotted line :h, =h, =—1, dotted line :h, =—-0.85,
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Figure 2. Plots of system (18) when 7, =-0.85,7, =-0.8.

solid lineo, = e, =1, dotted line :¢¢, = e, =0.75, dash— dotted line :0;, = ¢, =0.:

Example 4.2. Consider the following nonlinear fractional system of two integro-

differential equations

DI x(t) = 1—%Y'2 (1) + I[(f -7)y(7) + x(7) y(7)ld7,

, ' (26)
D& y(t) =2t + j[(t -7)x(7) - y*(7) + x*(7)]dT, O<a,a, <1,

0
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subject to the initial conditions
x(0)=0, y(0)=1.

When ¢, = &, =1, then the system (26) has the following exact solutions [6]

x(t) =sinht, y(t) =cosht.

To solve the above system using HAM, we choose the initial approximations

1
x,(t) = ——1%, =1,
o (D) Fi+a) Yo (1)

and the linear operators (22). So the homotopy can be constructed as follows:

m—1

— a, 1 ' '
R, (X, (0)=Ddx,  ()—(1-x,)+ 52 Y (DY s (1)

~[10-23,0 @+ Y 5 @y, Oz,

R,,(3,.()=D"y, )-2t1-x,)

~ (10 =02, /= 3 3,y O+ Y 5, (O, (DT,

0 i=

Consequently, the mth-order deformation equations become

X, ()= XX, O +h, TR, (X, (O)]+ K, (1),
Vu® =XV @ +1, TR, (¥, )]+ K, (@).

177

27)

(28)

(29)

(30)

€1y

The first three components of the homotopy analysis solution are derived as follows:
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Lo M0i+2) o B0+2) g B g
I'l+a,) I'G+a,) I'2+2a,) I'4+2a,)

2
hlhz ta1+az+3 + hl t3al+2

+F(4+al+a2) I'G+3e,)

+ i, IQ+a +a,) a2 | hih, £20+a 4
Ird+o)r2+a,)'G+2o, +a,) I'éS+20,+a,)

N hh, 2I'2ea,) N I'G+2a +a,) [
F(1+a)F(4+3a +a,) I'(e) I'G+a, +a,)

x(t) =

hh 4“1r( +a)I(2+3a, +a,)

t40/1+0/2 +2

"z ra(+a, )r(z +2a, +a,) T3 +4a, +a,)

2 32)
y(t) = _Mtam _2h—2t2“2+2 —Mtaﬁ%ﬂ
I'2+a,) r'G+2a,) TG+a, +a,)
hlhz o +a,+4

I'S+a,+a,)

7,49T( + )

hz 2F(1+2a1) 2 20+, +1
- + Je7
Id+o)rQ+2a,+a,) Tl+a,) N
226{1+3F +a
_ 2h22 o +2a,+3 h1h2 [ ( ) t2al+a1
I(4+a, +2a,) (4420, +a,) J—(2+al)r(1+al)

1
h 22 220ll+1 1—1(7 + al)
2 20 +20,+2

t

JaT(+a)TG+2a, +2a,)
2h h F(2+3a) t3al+0/2+2
F(1+a)F(2+2a T(3+3a, +a,) '

Similarly, as in the previous example, we can get the best HAM series solution by
choosing proper values for the auxiliary parameters 7, and 7 ,. Figs. 3 and 4 show the

HAM approximate solutions for system (26) obtained for different values of

h,, h,a,and a,.
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Fig.3. Plots of system (26) when &, =&, =1

solid line : exact, dash—dotted line: h, =h, =—1, dotted line :h, =—-0.2,h, =—1.
x(t) ¥t

4

a2t i

Fig. 4. Plots of system (26) when 7, =-0.2, 7, = -1

solid line: ¢, = &, =1, dotted line : o, = o, =0.75, dash—dotted line: o, = o, =0.5

Example 4.3. Consider the following nonlinear fractional system of two integro-

differential equations

. S R
DIx() =1-—t" =y (t)+§j[x2(2')+y2(f)]dz',

2
! (33)
D% y(t) = —1+1* —tx(t) +%J.[x2(r) -y’ (1)), l<a,a,<2,
0
subject to the initial conditions
x(0)=1, x'(0)=2, (34)

y(0)=-1, y'(0)=0.
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When ¢, =a, =2, system (33) becomes nonlinear integro-differential equations which

has the following exact solutions [6]

x(t)y=t+e', yt)=t—e". (35)

In view of the linear operators (22) and using the initial approximations

2 « (36)
X t=1+—t‘, t =—1,
N T(+a) Yo (1)
we can construct the following homotopy
- o 1 1 m_l 1 1
R, (%, () =Dx, ()-( —§t3><1 ) +52 Y @y, @)
i=0
1 t om—1 m—1
- x (D)x, ., (T)+ (T (D)]drt,
2][2 (D), (7) ;y,( )Yt (7] -

R, (3,.,®)=D"y, ()= (=1+)(1~g,) +1x,_, (1)
1 t om—1 m—1
- [Xx@x,  @=2 5@y, (@,
o i=0 i=0
Similar to the previous examples, we successfully obtain the first three components of the

HAM approximate solutions

(hlz -|-27l1 +2) 14 _hl(hl +2)ta]+1 + 2hl(hl +2)t0!1+3 _h1(3h_1 +4) t2a

x(t) =1+
I'd+a,) I'2+a,) T'4+a,) I'2+2a,)
a1y L
) 4, r(+2a,) M* F(2+0’1)]t3a1+1+
I'd+e)rQ2+3e,) T'l+a,) N
iy =14 1202t 0 Baa 4D g a(atD) g By
rl+a,) rQ+a,) I'G+a,) (2 +2a,)
_ hzz 2042 hzz (203 | h,(h, +2n, +4)(1+2a1)tal+a2+1 (38)
I3+ 2a,) L'(4+2a,) Q2+, +a,)
_ h1h2(3+2a1) t(zl+o:2+2+ h1h2(7+2a1)ta1+0/2+4
2U'G+a, +a,) I'S+a,+a,)
1
h+1,)2" ' T+«
2h2 F(1+20(1)+( ! 2) (2 l)]t2a1+a2+l+

T(+a)CQ+2e, +a,) T(+a,) Jz
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Figs. 5 and 6 show the HAM approximate solutions for system (33) obtained for
different values of «,, &,, %, and #,. Again, if we take /7, =%, =—1, then we obtain

the ADM solution.

H[t]

5L
1wk

S5k

R SR TS S TS S TS ST ST T "T.-QU:
n.an 0.5 1n L5 10 15 EAL

Fig.5. Plots of system (33) when &, =&, =2

solid line : exact, dash— dotted line: h, =h, =—1, dotted line :h, =—-0.45,h, =—0.9.

H[t]
s0r ;o Y[t]. S

aof
anl
0k

wfl

Fig. 6. Plots of system (33) when 7, =-0.45,7%, =—0.9

solid line : o, = &, = 2, dotted line: o, = o, =1.75, dash —dotted line : &, = o, =1.5.

Example 4.4. Consider the following nonlinear fractional system of three integro-

differential equations
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D& x(t)=1+2t> +2y (t) - j [y (1) + x(7)7" ()ld,

r (39)
D& y(t) =317 —tx(t) + .[[m' y(D)x'"'(r)+ 7' (7)ldT, I<a,,a,,0,<2,
0
D& z(1) =2 —%ﬁ +x" ()= 2x7 (1) + j[fz y(©)+x7 (1) + 777" (0)ld,
0
subject to the initial conditions
x(0)=x'(0) =0,
y(0)=0, y'(0)=1, (40)

z2(0)=z'(0)=0.
When ¢, = a, = a; = 2, the system (39) becomes nonlinear integro-differential equation

which has the following exact solutions [6]

x(t)y=1t*, y(t)=t, z(t) =3t 41)
According to the linear operators (22) and using the initial approximations
1 o (42)
X, (1) =0, y,(t) =——1t", z,(t) =0,
o () Yo (1) Fi+a,) o (1)
the homotopy can be constructed as follows
m—1
R, (%, ) =Dfx, ()= +20) 1A= 2,)=2> ¥ ()Y, ()
i=0
.| m—1
+ [y @y O+ Y x5, (), (D1,
o =0 i=0
R,, (3, ) =Dy, () =3t*(1-g,) +1x, ()
(& 43
Uy, @n, o @+ 2, (0l )
0 i=0
- a; 4 3 & " (K]
R3m (Zm—l (t)) = D* Lt (t) - (2 _gt )(1 _Im) - ZX i (I)X m—1-i (t)
i=0

+ ZMZ_I x;(Hx, (@)

! m—1
- j[fz Yt O+ D X (@)X, (0 +772", (D)d,
0 i=0
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and the mth-order deformation equations become

X, ()= X, %, O+h, TR, (X, (O)]+K, (1),
V(O = 20y s O +T, TR, (5, O]+ K, (1), (44)
2,0 =%,2,,O)+h, J®[R,, (Z, ,(O)]+ K, (@).

The first few components of the homotopy analysis solution of the above system are
derived as follows:

x(t) = _Mt“ﬁ'l _Mtal+3 _ Zhl(hl + th + 2>F(_1+ 2&2) tal"'zaz—'

rQR+a,) C4+a,) [(a,)’ T(-1+a, +2a,)
N B (h, +2h, +2)I(-1+2a,) JRCP 48h,h,T'2ar,) w20
C(a,)’ T(a, +2a,) (+a,)l(a,)’T(1+a, +2a,)
_ 24n,1,I'Ce,) a+2a 4
(+a,)(a,)’ TQR+a, +2a,) ’
()= (h,” +2h, +1) p 67, (h, +2) jas2 _ hh,TG+a,) a2
I'l+ea,) I'G+a,) I'2+a)I'G+o, +a,)
_ R2apIG+a) mrars oMy 2 6% 11, s
I'd+a)I'éS+a, +a,) I'd+2ea,) I'G+ao, +a;) 45)
hn,I'(a, +a,) a2a

I'a)I'(e,)I'2+a, +2a,)

0= hy(hy+2) L, 120,

ta3+2_ 6h2h3 ta2+2_ h1h3(a1+2) ta1+a3+2

I'l+ea,) I'G+a,) I'G+a,) I'G+o, +a;)
200G @) s O e B
I'S+o,+a;) I'G+2a,) I'l+ea, +a;)

N nnI'QC+a +a,)
(o, +o)'(a)'(a,)I'2+o,+a, + ;)
12h 0. T4+, + ;)
Q+o+a)IL+a)l'(a,)'4+a, +a, + ;)

) +a, +a+1

t(zl +0,+a;+3

In Figs. 7 and 8 we plot the numerical results for the 4th-order HAM approximate
solutions for different values of «,, «,, &;, i, h,, and 7,. The results in Figs. 7 and 8

clearly show the good accuracy of HAM. As the previous examples, if we take
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h,=h,=h,=-1, then we obtain the ADM solution. In addition, HAM avoids the need

for calculating Adomian polynomials which can be complicated.

(L]
a5

Fig.7. Plot of system (39) when , =, = o, =1
solid line : exact, dash—dotted line:h, =h, =h, =-1, dotted line:h, =-0.6, 1, =-0.01, h, =—1.i

- [_t]
10

I TR - A

h, =-0.6,1,=-001%,=-18

Fig. 8. Plots of system (39) when

solidlineo, = a, =,=2, dottedline:o;, =, = o, =1.75, dash—dottedline:o, =0, =, =1..
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Conclusions

In this paper, generally speaking, a powerful analytical technique is used for nonlinear
problems, namely the homotopy analysis method [13-19]. This method is applied to solve
linear and nonlinear systems of fractional integral-differential equations. The results of
the test examples show that the Adomian decomposition method is a special case of the
homotopy analysis method. The main advantage of this algorithm is to adjust and control
the convergence region of solution series by choosing proper values for auxiliary

parameter 7, initial guess x,(¢), and auxiliary linear operator . Finally, the proposed

approach can be further implemented to solve other nonlinear problems in fractional

calculus field.
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