
Neural, Parallel, and Scientific Computations  17  (2009)  205 - 214 

 

AN ESTIMATION OF STRUCTURE PARAMETERS OF 

ROTATIONALLY AND TIDALLY DISTORTED 

POLYTROPIC MODELS OF STARS IN THE PRESENCE 

OF CORIOLIS FORCE 
 

A. K. Lal, Ankush Pathania and C. Mohan* 
 

School of Mathematics and Computer Applications, 
Thapar University, Patiala, Punjab 

*Professor of Mathematics (Retd.), IIT Roorkee, Uttarakhand, India 
(Present Address: Ambala College of Engineering & Applied Research, 

Devasthali, Ambala Cantt., Haryana) 

 

ABSTRACT 

In this paper we propose suitable modifications in the concept of Roche equipotential to 

account for the effects of Coriolis force on its equipotential surface besides the usual 

effects of gravitational and centrifugal forces and use this in conjunction with 

Kippenhahn and Thomas, 1970 approach in a manner earlier used by Mohan et al, 1990 

to incorporate the effects of Coriolis force in the equations of stellar structures. The 

proposed method has been used to compute the equilibrium structures, shapes and other 

observable parameters of rotationally and tidally distorted polytropic models of stars. The 

results thus obtained have been compared with the corresponding results earlier available 

in literature in which the effects of Coriolis force had not been taken into account. 

Keywords: Binary systems – Rotating stars – Roche equipotentials – Coriolis force – 

Equilibrium structures 

 

1. INTODUCTION 

The mathematical problem of determining the effect of rotational and tidal forces on the 

equilibrium structure of a star is quite complex. Therefore, attempts have been made in 

literature to carry out the study of such problems in some approximate way. In one such 

approximation (Mohan and Saxena, 1983; Mohan et al, 1990 and Lal et al 2006) the 

actual equipotential surface of a rotationally and tidally distorted star is approximated by 

equivalent rotationally and tidally distorted Roche equipotential. In this approximation 

Kippenhahn and Thomas, 1970 averaging approach and results of the Roche 

equipotentials obtained by Kopal, 1972 are used to incorporate the rotational and tidal 

effects upto second order of smallness in the stellar structure equations. 

 In 1933, Chandrasekhar developed a theory of distorted polytropes. Since then 

several  authors  such  as James,  1964;  Monaghan,  1967;  Kopal,  1972;  Linnell,  1981;  
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Mohan and Saxena, 1983; Mohan et al, 1990 and Lal et al, 2006 have addressed 

themselves to these problems. Kopal, 1972 discussed the Roche equipotential of 

rotationally and/or tidally distorted stars by taking into account the effect of gravitational 

potential which arises due to primary and secondary components of binary system and 

centrifugal force due to rotation of binary system. However the effect of Coriolis force 

was ignored completely while determining the Roche equipotential surface of rotationally 

and tidally distorted stellar models. Later Mohan and Saxena, 1983, Mohan et al, 1990 

and Lal et al, 2006 used the Kopal’s results of Roche equipotentials in conjunction with 

the averaging technique as discussed by Kippenhahn and Thomas, 1970 to incorporate 

the rotational and tidal effects in the stellar structure equations. The method has then been 

used to compute the equilibrium structures and periods of small oscillations of certain 

rotationally and tidally distorted stellar models. While computing the eigenfrequencies of 

g – modes of nonradial oscillations of rotationally and tidally distorted stellar models, 

Mohan and Saxena, 1985 and Mohan et al, 1998 observed that eigenfrequencies of g – 

modes decreases in presence of rotation which is contrary to the results earlier obtained 

by some other authors (Clement, 1984). We suspect that the discrepancy in the 

eigenfrequencies of g – modes might be due to Coriolis force which has not been taken 

into account by the authors. Therefore, it will be of our interest to see how the 

equilibrium structures of rotationally and tidally distorted stars get affected with the 

inclusion of Coriolis force in the earlier studies.    

 In this paper we propose to introduce the effects of Coriolis force in addition to that 

of centrifugal and gravitational forces to study the equilibrium structures and various 

shapes of Roche equipotential surfaces of rotationally and tidally distorted primary 

components of binary systems. The methodology thus developed has been used to 

determine the equilibrium structures of rotationally and tidally distorted polytropic 

models of stars. 

 The paper is organized as follows: The expression for the modified Roche 

equipotential of the rotationally and tidally distorted stars is obtained in section 2. The 

modified Roche equipotential is next used in section 3 to develop second order 

differential equation governing the equilibrium structures of rotationally and tidally 

distorted polytropic models of stars. In section 4, the numerical results for the inner 

structure and shapes of rotationally and tidally distorted polytropic models are obtained 

for the polytropic indices N =1.5 and 3.0. Analysis of the results and discussion are 

finally presented in section 5. 

 

2. MODIFIED ROCHE EQUIPOTENTIAL 

Following Kopal, 1972, let 0M and 1M  be the masses of the two components of a close 

binary  system  separated  by a  distance D.  The primary  component of mass 0M  of this  
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binary system is supposed to be very large than its companion star of mass 1M  which is 

regarded as a point mass )( 10 MM >>> . Suppose that the position of the two components 

is referred to a rectangular system of cartesian coordinates with origin at the center of 

gravity of mass 0M , the X −  axis along the line joining the mass centers of the two 

components and Z − axis perpendicular to the plane of the orbit of the two components 

(Fig. 1). For such a system, the total potential ψ  due to gravitational and centrifugal 

forces (here the Coriolis force has been ignored), acting at an arbitrary point 

P (x, y, z ) which lie inside the primary component is given by: 
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which in cartesian coordinate form can be written as: 
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) of the system respectively. Also 

Ω  denotes the angular velocity of rotation of the system about an axis perpendicular to 
the XY - plane and passing through the center of gravity of the system and G is the 

constant of gravitation. It has been assumed that 1 kΩ = Ω = Ω
r r r

 (where 1Ω
r

 is the angular 

velocity of rotation of primary component of the system and kΩ
r

 is the keplerian angular 

velocity). 
 

 The first, second and third terms on the right hand side of Eqn 1 represents the 

potential arising due to the mass 0M  of the primary component, the disturbing potential 

of  its  companion  of  mass  1M   and   the  potential  arising  from  the  centrifugal   force  
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respectively. Here the potential due to Coriolis force has not been considered. So in order 

to find out the expression for potential at point P (x, y, z) which also includes the effect of 

Coriolis force we start from the basic equation of motion in corotating frame of reference. 

 Following Kruszewski, 1966 the equation of motion for a system as described above 

is given by: 

 
2 22

1 1 1
12 2 2

( ) 2
d r d R drd r

r
dtdt dt dt

= − − Ω × Ω × − Ω ×

r
r r rr

                          (3) 

which on simplification finally changes to 
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which is potential at point P (x, y, z) due to gravitational force and centrifugal force only 

and is same as Eqn (2). Here 1dr
V

dt
=

r
r

 is the velocity of unit mass at point P (x, y, z) in 

rotating frame of reference whose origin is fixed at the centre of primary component with 

X  - axis along the line joining the centre of two components of the system and Z - axis 

is parallel to the axis of rotation of orbital plane of the system. Clearly Eqn 5 does not 

include the factor due to Coriolis force because the term 12
dr

dt
Ω ×

r
r

 which arises due to 

Coriolis force in equation of motion has not been included in potential function in Eqn 

(4). Now to obtain the factor due to Coriolis force in potential function in Eqn (4), we 

proceed as follows: 

Since 1r x i y j z k
∧ ∧ ∧

= + +
r

 so V x i y j
∧ ∧

= +
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 (as the rate change along z-axis is zero). 
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Using Eqn (7) in (4), we get 
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which can be also written as 

 2 2 2 20 1
1

1 2
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ψ = + − Ω + Ω +                         (8) 

 

is the potential at point P(x, y, z) which also includes the effect of Coriolis force. In 

vector form, Eqn (8) can be represented as: 
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where  

 2 2 2( ) ( )V r x y⋅ Ω × = Ω +
r r r

                           (10) 

is the potential at point P due to Coriolis force.  

 Following Kopal, 1972, Eqn (8) in nondimensional form can be expressed as: 

 2 2

1 1
2

1 1 1

1 1
[ ] 3 (1 )

1 2
M

q r nr v
r r r

ψ λ
λ

∗ ∗ ∗

∗ ∗ ∗
= + − + −

− +
                     (11) 

where 
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is the nondimensional form of the total potential Mψ  which includes gravitational force, 

centrifugal force and Coriolis force. Here 1 1r r D
∗ =  is nondimensional form of 1r , 

sin cos , sin sin , cosλ θ ϕ µ θ ϕ υ θ= = =  ( 1 , ,r θ ϕ  being the polar spherical coordinates 

of the point P). Also 01 MMq =  is a nondimensional parameter representing the ratio of 

the mass of the secondary over primary and n22 =ω  represents the square of the 

normalized angular velocity Ω . For a binary system in synchronous rotation, the angular 

velocity Ω  is identical with Keplerian angular velocity so that 3

10

2 )( DMMG +=Ω  

which in nondimensional variables becomes ( 1) 2n q= + .  

 The surfaces generated by setting 
M

ψ ∗  = constant on the left hand side of Eqn (11) 

are referred to as Roche equipotentials. In general we can represent the above equation as 
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where α  and β  are positive real constants. For the synchronous binary systems, we take 

the value α = 1 and β = 3 whereas for uniformly rotating stars we substitute the values 

0q =  and 3β = . On substituting α = 1 and β = 1, Eqn (12) reduces to the expression for 

Roche equipotential earlier used by Kopal, 1972 and other authors.  
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3. EQUILIBRIUM STRUCTURES OF ROTATIONALLY AND TIDALLY 

DISTORTED POLYTROPIC MODELS OF STARS 

Following the approach of section 2 and assuming primary component of a binary system 

as a uniformly rotating polytropic model, the equilibrium structure of a primary 

component will be rotationally and tidally distorted model. If ψP  denotes the pressure 

and ψρ  the density on the equipotential surface 
Mψ ∗  = constant, then ψρ  and  ψP  are 

connected through the polytropic relations  

 
1+

=
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c ψψψ θρρ =                      (13) 

where N is the polytropic index, ψcP  and ψρ c are the values of ψP   and ψρ at the 

center and ψθ represents some average value of the parameter θ on the equipotential 

surface 
Mψ ∗  = constant. Following Mohan and Saxena, 1983 the differential equation 

governing the equilibrium structure of a rotationally and tidally distorted primary 

component with polytropic structure which incorporates the effects of Coriolis force can 

be written in nondimensional form as: 
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In above expressions terms up to second order of smallness in n , q  and upto 10

0r  in 0r  

are retained. The dimensionless constant K  in Eqn (14) is the ratio of the undistorted 

radius ψR  of the primary to the separation D  between the centers of the primary and 

secondary star. Also, we can write 
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and uξ  is the value of ξ at the outer surface of the undistorted polytropic model. The 

boundary conditions which Eqn (14) has to satisfy are 

 ,0,1
0

==
dr

d ψ

ψ

θ
θ at the center 00 =r                (16a)  

 0,ψθ =  at the surface 0 0s
r r=                          (16b) 

where 0s
r  is the value of 0r  at surface. Eqn (14) subject to these boundary conditions 

determines the equilibrium structures of rotationally and tidally distorted polytropic 

models incorporating the effects of Coriolis force on its equipotential surfaces. On setting 

0=q  and 1,K =  Eqn (14) can be used to determine the equilibrium structure of a 

polytropic model distorted by rotation alone. Also, by setting ( 1) 2n q= + , Eqn (14) can 

be used to determine the equilibrium structures of synchronously rotating primary 

components of binary systems. 

 To obtain the inner structure, the shape, volume and surface area of a rotationally and 

tidally distorted polytropic model, Eqn (14) has been integrated numerically for specified 

values of the parameters , , ,
u

N n qξ and K . Starting with a series solution near the 

centre, the integration is carried outward numerically using a fourth order Runge –Kutta 

routines with a step size of 0.005. The integration is continued till ψθ  first becomes zero 

and finally the value of 0r  at surface, that is, 
os

r  is obtained. This value of 
os

r  is further 

used to determine the volume, surface area and shapes of rotationally and tidally distorted 

polytropic models.  

 

4. COMPUTATION OF VOLUMES, SURFACE AREAS AND SHAPES OF 

ROCHE EQUIPOTENTIAL SURFACES OF ROTATIONALLY AND TIDALLY 

DISTORTED POLYTROPIC MODELS OF STARS 

Following Kopal, 1972 and Mohan et al, 1990, the explicit expressions for volume ψV  

and surface area ψS  of rotationally and tidally distorted polytropic models which 

incorporates the effects of Coriolis force are:  
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The distance r of a point on the equipotential surface from the centre of the star is given 

by 
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where 2

0 2 3 (1 )a q P n υ= + −  and ( )j jP P λ=  are Legendre polynomials. Again, in the 

above expressions terms up to second order of smallness in n , q  and upto 10

0sr  in 0sr  are 

retained. The relation (19) can be used to obtain the various shapes of Roche 

equipotential surfaces.  

5. COMPARISON AND ANALYSIS OF RESULTS 

The results of volume and surface area obtained for different values of the input 

parameters are tabulated in Table 1. We have taken the value of parameter 1α =  

and 3β = . The value of parameter K  has been taken as one for the rotationally distorted 

model and 0.5 for the tidally distorted or rotationally and tidally distorted models (this 

value of K  provides the outer-most surfaces of the models well within Roche lobe for 

each considered case).  

 Table 1 shows that with the inclusion of Coriolis force, there is increase in the values 

of volume and surface area of polytropic models in all the cases (uniformly rotating, 

synchronously and non – synchronously rotating binaries). Among all the cases, 

rotational distortion shows maximum percentage increase in the values of volume and 

surface area. Polytropic models with indices 0.3=N  shows more percentage increase 

than polytropes with 5.1=N . Also, the percentage increase in the values of volume is 

more than the values of surface area in both the cases of 5.1=N   and 0.3=N .  

 In Table 2 we have considered rotational case for different values of the rotation 

parameter 2 (2 )cv Gπ ρ= Ω  which is connected with our nondimensional parameter n  

through the relation )3(4 cnv ρρ= , where ρ   is the mean density and cρ  is the central 

density of the undistorted polytropic model. We have compared our present results with 

the results earlier obtained by Mohan and Saxena, 1983; Chandrasekhar, 1933; James, 

1964 and Linnell, 1981. 

 From Table 2, it is clear that when the effect of Coriolis force is taken into account 

then with increase in the value of n  the value of volume and surface area of polytropic 

model of star increases and also these values are greater than the values earlier obtained 

by Mohan and Saxena, 1983; Chandrasekhar, 1933; James, 1964 and Linnell, 1981.  

 Thus, our present study has shown that the volume and surface area of rotating stars 

and stars in binary stars increases in the presence of Coriolis force.  
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Table 1 Volume and Surface area of rotationally and tidally distorted polytropic 

models 

 

 

Table 2 Comparison of the volumes and surface areas of uniformly rotating 

polytropes  

 

v  

 

Volumes Surface areas 

Prese

nt 

value

s 

Mohan et 

al (1983) 

Chandra 

sekhar 

(1933) 

Linnell 

(1981) 

James 

(1964) 

Present 

values 

Mohan  

et al 

(1983) 

Chandra 

sekhar 

(1933) 

Linnell 

(1981) 

Polytropic index 5.1=N  

0.000 2.04 2.04 2.04 2.04 2.04 1.68 1.68 1.68 1.68 

0.008 2.31 2.13 2.13 2.14 2.14 1.82 1.73 1.72 1.73 

0.016 2.58 2.23 2.21 2.26 2.25 1.98 1.78 1.77 1.79 

0.024 2.80 2.33 2.30 2.41 2.40 2.11 1.83 1.82 1.87 

0.032 2.96 2.44 2.39 2.62 2.59 2.22 1.89 1.86 1.97 

0.040 3.08 2.55 2.47 2.91 2.92 2.30 1.95 1.91 2.11 

Polytropic index 0.3=N  

0.0000 1.37 1.37 1.37 1.37 1.37 5.98 5.98 5.98 5.98 

0.0008 1.62 1.45 1.44 1.45 1.45 6.67 6.19 6.17 6.19 

0.0016 1.91 1.53 1.51 1.54 1.54 7.52 6.44 6.36 6.44 

0.0024 2.22 1.63 1.57 1.65 1.66 8.39 6.71 6.55 6.76 

0.0032 2.50 1.74 1.64 1.80 1.83 9.24 7.02 6.74 7.17 

 

 

 

 

Type of 

model 

 
n  

 
q  

Volume    
210−×ψV  Surface Area  

210−×ψS  

Present 

values 

Mohan et al 

(1983) 

% 

Increase 

Present 

values 

Mohan et 

al (1983) 

% 

Increase 

Polytropic index 5.1=N  

Undistorted 0.0 0.0 2.043 2.043 0 1.678 1.678 0.0 

Uniformly  
rotating 

0.02 0.0 2.188 2.090 4.7 1.756 1.704 3.1 

Synchronous 
Binary 

0.525 0.05 2.537 2.203 15.2 1.950 1.765 10.5 

0.55 0.1 2.560 2.221 15.3 1.964 1.774 10.7 

Nonsynchronou
s 

Binary 

0.05 0.2 2.089 2.062 1.3 1.702 1.688 0.8 

0.1 0.2 2.135 2.077 2.8 1.727 1.696 1.8 

Polytropic index  0.3=N  

 Volume    
310Vψ

−×  Surface Area  
210Sψ

−×  

Undistorted 0.0 0.0 1.374 1.374 0.0 5.977 5.977 0.0 

Uniformly 
rotating 

0.02 0.0 1.516 1.419 6.8 6.382 6.106 4.5 

Synchronous 
Binary 

0.525 0.05 1.921 1.530 25.6 7.535 6.424 17.3 

0.55 0.1 1.952 1.549 26.0 7.622 6.475 17.7 

Nonsynchronou
s 

Binary 

0.05 0.2 1.417 1.391 1.9 6.101 6.026 1.2 

0.1 0.2 1.462 1.405 4.1 6.229 6.066 2.7 
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