
Neural, Parallel, and Scientific Computations 17 (2009) 291-316

A LINGUISTIC GEOMETRY MODEL FOR AN ARIMAA BOT

JOSÉ ROBERTO MERCADO VEGA AND ZVI RETCHKIMAN KÖNIGSBERG

Instituto Politécnico Nacional - CIC, Mexico
dragonslayking@yahoo.co.uk mzvi@cic.ipn.mx

ABSTRACT. Up to date, the strongest computer programs in some popular games like chess
use the alpha-beta search algorithm with advanced heuristics created for that particular game. In
1997, a computer defeated a chess world champion for the first time. This event inspired Omar Syed
to develop a game called Arimaa. He intended to make it difficult to solve under present search
approaches.

Linguistic Geometry is a technique that offers a formal method based on the expertise of human
chess masters, to make the development of complex heuristics easier. Linguistic Geometry works
through string processing. These strings represent in-game logic structures. The processing is made
through a kind of formal grammars called controlled grammars. A Linguistic Geometry based model
requires a grammar for each one of the essential components of Linguistic Geometry: trajectories,
zones, translations and searches.

This article introduces a Linguistic Geometry based model for the game of Arimaa. The
propposed model uses Linguistic Geometry’s default grammar of trajectories; two grammars of zones
particular to the game of Arimaa, original to this work; Linguistic Geometry’s default grammar of
translations with some changes; two grammars of searches, proposed in this work to be used in some
tests of the proposed model.

The model is tested through some test cases. These are used as input for a software implemen-
tation of the proposed model. The results given by the software are compared against the analysis
made by a human player.

Key Words Games, Arimaa, Linguistic Geometry, Modeling.

1. INTRODUCTION

Games have been a human entertainment activity since ancient times. Multiple

disciplines have studied games from various points of view: classical and combinatorial

game theory (in mathematics), computational search (in computer science).

In classical game theory, the formal mathematical basis was established by: von

Neumann-Morgenstern 1944 and John Nash 1950 (to mention some) while in com-

binatorial game theory, it was derived from the work of Conway 1976 and Conway,

Berlekamp and Guy 1982. The analysis of games in combinatorial game theory is

Received April 14, 2009 1061-5369 $15.00 c©Dynamic Publishers, Inc.

292 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

possible thanks to a representation of games through large trees. These trees include

every possible evolution of the game and are thus untractable.

In computer science, searching for a solution of a game through the game’s tree

is the current approach. For the sake of simplification of game search algorithms,

heuristics are used during the analysis of the game’s tree. A heuristic is an estimation

mechanism or a rule of thumb. Heuristics were first proposed by Claude Shannon

1950. The most popular search algorithms through general trees are: depth-first,

breath first and best first while for search in games trees are: minimax and alpha-

beta (Hart et al. 1963).

Games are an interesting area of study because of their complexity, it is believed

that techniques used for solving some of these games can be used to solve other

kind of problems. In particular, the study of chess has excelled. Rooting on the

defeat of Garry Kasparov against the supercomputer Deep Blue, Omar and Aamir

Syed created a new game which they called Arimaa. The game of Arimaa is a two

player complete information, zero-sum game with no random factors. Arimaa was

released in 2002 and it was designed to be complex to play well under traditional

game search algorithms. This with the purpose of fomenting the development of new,

ground breaking techniques. A challenge was published along the rules of the game,

it consists of a prize of $10,000 USD for anyone who creates a computer program

capable of defeating a human expert in a competition consisting of six games. Many

computer programs have participated in the Arimaa challenge but, the vast majority

of them, are based on conventional alpha-beta search algorithms. An example of

an Arimaa design is that of Fotland 2004. Fotland’s program was champion of the

Arimaa tournament in 2004, this is a tournament only for software. However, it was

defeated by a human expert (Omar Syed).

Haizhi Zhong published his master thesis in 2005 under the title: “Building a

Strong Arimaa-playing Program” (Zhong 2005). Zhong’s program is based on an

alpha-beta reduction with some optimizations on the evaluation function based on

some Arimaa tactics and selective generation of the movements. It also uses a trans-

position table and play ordering.

In 2006 Christian-Jan Cox published his master thesis: “Analysis and Imple-

mentation of the Game Arimaa” (Cox 2006). In this work Cox proposes a program

called Coxa. It is based on an alpha-beta search algorithm with some optimizations

along a transposition table. Cox tests multiple variations of the evaluation function

and registers the results. None of the variants of the heuristics represents notable

improvements over the search method.

A promising modeling technique that has its own potential is Linguistic Geom-

etry (LG). LG was created by Stilman 1993. LG has had a slow, though constant,

A LINGUISTIC GEOMETRY MODEL 293

development. From its origin LG was proposed in accordance to the way of think-

ing of some human chess experts. LG was developed around a class of games called

abstract board games (ABG’s). Processing along LG is done through a hierarchy of

formal grammars. The levels of this hierarchy are: trajectories, webs, translations

and searches.

This article presents a Linguistic Geometry based model for the game of Arimaa.

The tools of LG are used to create the model, with some variations to make them

adequate for the game of Arimaa. The model is used to implement some of the most

common tactics of the game of Arimaa. To test the model a software implementation

of the same is used and applied in some chosen positions of the game of Arimaa. Up

to date, there is no published work which mixes Arimaa and linguistic geometry.

1.1. Document Organization. This section has already introduced some historical

precedents and some basic concepts of game theory, combinatorial game theory and

search. Section 2 gives a general overview of the game of Arimaa. A brief explanation

of the rules of the game is given, followed by some tactics that are used to test

the proposed model. In section 3 the theory of Linguistic Geometry is recalled.

Section 4 introduces the proposed Arimaa model based on Linguistic Geometry. In

section 5 some test cases are presented along with a comparison between a human

player analysis vs the results obtained by a software implementation of the proposed

model. Finally, section 6 presents the conclusions of the present work.

2. ARIMAA

In this section, a general overview of the game of Arimaa is given. A brief

explanation of the rules of the game is addressed, followed by some tactics that are

used to test the proposed model.

2.1. The rules of Arimaa. The only two things needed in order to play Arimaa

are a chess board and game pieces. However, some changes to the rules have to be

made. First off, the 64 cells of the board are equal, except for the cells c3, f3, c6 and

f6 (according to chess algebraic notation). In Arimaa these are known as trap cells.

Instead of black and white pieces, in Arimaa gold and silver are used respectively.

Just as in chess, each player has 16 pieces of 6 different types. In strength order these

are: elephant, camel, two horses, two dogs, two cats and eight rabbits.

Remark 2.1. By convention, diagrams presented have gold player on the lower rows

(1 and 2) and silver on the upper rows (7 and 8). Also, gold pieces are shown facing

to the right, while silver pieces are facing to the left.

The main goal of an Arimaa game is to take any allied rabbit to the opposing final

row. A player loses if he has no more valid moves or if he repeats the same position

294 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

three times. The game is a draw if both players have no more rabbits. According

to the online Arimaa gameroom, the frequencies of these endings are 2.2%, 0.2% and

0.0% respectively. An Arimaa game starts with an empty board. The first move of

each player, starting gold, is to place his 16 pieces on the board in any desired order

on his first two rows. A possible starting configuration is shown in figure 1.

Figure 1. Starting positions (left) and basic movements (right).

After the initial positioning of pieces the game evolves through turns, each com-

posed of up to four moves. Every piece is capable of moving one square up, down,

left or right. Rabbits are not permitted to move backwards and in Arimaa there are

no diagonal moves. The four available moves in a turn can be distributed as desired

among all the allied pieces on the board.

An additional move in Arimaa is called a dislodge. A dislodge requires two moves.

It consists of an allied piece dislodging an opposing one of lower strength. A dislodge

can be a push or a pull. A push, pushes an opposing piece to an adjacent cell and

moves the dislodging piece to that cell. In figure 1, the gold elephant in d3 could

push the silver rabbit from d2 to e2 an move itself to d2. A pull moves the allied

piece to an adjacent cell and pulls the opposing one to the cell from where the allied

piece moved. In figure 1, the silver elephant on d5 could move to d4 and pull the gold

horse from d6 to d5.

A piece is frozen when a heavier opposing piece is adjacent to it as long as a non

allied piece is too (regardless of its strength). A frozen piece cannot be moved by his

owner, but it can be dislodged by the opponent. In figure 1, the silver rabbit in a7 is

frozen, but the one in d2 is not because it is adjacent to another silver piece.

A capture is made when a piece goes inside a trap cell and no allied pieces are

adjacent to it. When a piece is captured it is removed from the game. In figure 1,

being silver’s turn, it could capture the gold horse in d6 by dislodging it to c6 with

the silver elephant on d5.

A LINGUISTIC GEOMETRY MODEL 295

2.2. Value of pieces. In Arimaa unlike chess the advantage in pieces is not as

relevant as the differences between the available strategies. In general, a strong piece

is less valuable as the game progresses more. Closer to the end of the game it is

preferable to have lots of pieces instead of having fewer stronger ones.

In Arimaa there is no common agreement to measure the relative value of pieces.

Without a doubt, the most valuable piece is the elephant but, since it is impossible

to capture an elephant, considering it’s value is of no relevance. For the remaining

pieces, a mild approximation of the relative value of pieces is as follows:

• A cat is worth more than a rabbit, but not much more.

• A dog is worth about two rabbits.

• A horse is approximately worth a dog and a rabbit.

• A camel is worth more than a horse and a cat, but less than a horse and a dog.

2.3. Arimaa tactics. When playing board games, some tactics can be used. A

tactic has a short-term goal. A tactic is a sequence of moves in one or more turns

that can be calculated with precision to force a positive consequence to a player. In

general, tactics are no longer than two turns (eight moves).

The most basic tactics in Arimaa are to try to take a rabbit to the goal and to

try to capture an opposing piece.

2.3.1. The goal in one turn. The main goal of the game is to take a rabbit to the

goal hence, it is natural that the most basic tactic is to try to accomplish this.

Example: In figure 2, the gold rabbit on b5 can make it to the goal following b6, c6,

c7 and c8. The rabbit is safe on the trap thanks to the gold dog on c5 and it is never

frozen because it is always adjacent to an allied piece, either the dog on c5 or the cat

in b7.

Figure 2. Examples of the goal in one turn (left) and capture in one

turn (right).

296 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

2.3.2. Capture in one turn. Another natural tactic is to capture an opposing piece in

one turn. To do this, the easiest way is to dislodge a weaker piece to an uncovered

trap. This is possible if the piece we are about to capture is, at most, two cells away

from the trap and we have a heavier piece adjacent to it.

Example 1: In figure 2, the silver dog on b6 could pull the gold cat in b7 to c7 and

then push it to c6. This captures the cat in c6.

Example 2: If a piece is just a cell away from an unprotected trap, it is even more

vulnerable, since it can be captured by non-adjacent pieces. In figure 2, being gold’s

turn, the gold elephant in d5 could move to c5, b5 and use the remaining move to

push the silver dog from b6 to c6, capturing it.

3. LINGUISTIC GEOMETRY

Linguistic Geometry (LG) is a technique for mathematical model construction

which represents to a certain degree, reasoning of human experts about games. LG

focuses on a class of games called abstract board games (ABG). It was originally

based on the chess expertise of the chess ex-champion Mikhail Botvinnik.

Definition 3.1. An ABG is an eight-tuple defined as follows:

〈X, P,Rp, SPACE, v, S0, St, TR〉,

where: X = {xi} is a finite set of cells. P = {pi} is a finite set of pieces. The set P

is the union of two disjoint sets P1 and P2, which represent the pieces of each player.

Rp : X ×X → {T, F} is a family of reachability functions indexed by p ∈ P , where

{T, F} is the set of boolean values, if Rp(x, y) is true then y is reachable from x for

the piece p. SPACE = {S} is the set of possible states S of the game. S is composed

of a partial localization function ON : P → X and additional parameters; the value

ON(p) = x means that the element p is at cell x in the state S. Each state S in SPACE

is described by a list of well formed formulas (WFF): {ON(pj) = xk}. The additional

parameters may include, for example, for state S a function MT (S) ∈ {1, 2} that

determines if the turn is for the first or second player. v : P → R+ is a function,

where v(p) is the value of the piece p. S0 ∈ SPACE is the initial state of the game.

St = {Si} is the set of target states of the game. It represents the endgame conditions,

and can represent a victory for any player or a draw. TR = {tr} is the set of transitions

from one state to another of the game or valid moves. Each transition tr(p, x, y) is

described in terms of three lists of WFF: one contains WFF’s that will be added to

the state’s description; other contains WFF’s that will be deleted from the description

of the state; and the last one contains WFF’s that show the applicability restrictions

of the transition. In concrete, for a state S ∈ SPACE, the three lists of each transition

tr(p, x, y) are given by:

A LINGUISTIC GEOMETRY MODEL 297

add list: ON(p) = y

delete list: ON(p) = x

applicability list: (ON(p) = x) ∧Rp(x, y)

with p ∈ P and x, y ∈ X.

LG uses a formal language hierarchy to represent some of the relationships a

human expert would usually find over an ABG. The idea is to create a set of tools

that allows one to introduce heuristics in an abstract level. To do this, the LG

hierarchy uses some geometrical and spatial relationships among the pieces on the

board to create complex structures that are intuitive to the human player. This

structures can be used in the creation of heuristics.

The LG hierarchy of tools, in order of complexity, is comprised by: trajectories,

webs, translations and searches. Trajectories are presented through strings (generated

by the grammar of trajectories) which contain an ordered sequence of cells that a

piece needs to visit to reach a destination cell. Webs are presented through strings

(generated by the grammar of webs) which contain multiple trajectories, these keep

a relationship in function of pieces that attack (or intercept) others. Translations are

grammars that convert a web into another in base to a move made. Searches are

strings (generated by the grammar of searches) that represent search trees in LG, its

nodes are states and its children are generated through translations.

In LG, the hierarchy of subsystems is presented as a hierarchy of formal languages

(Hopcroft et al. 1979). These languages use symbols. A symbol is an abstract entity

not formally defined. Some examples of symbols are: a, t, a(xi), t(p2, t2, τ2), π(i5), etc.

An alphabet is a finite set of symbols. A string is a finite sequence of concatenated

symbols that belong to an alphabet; for example, a(x1)a(x2) . . . a(xn) is a string if

a(x1), a(x2), . . . , a(xn) are symbols of some alphabet. A formal language is a set of

strings of symbols of some alphabet; every language includes the empty string ε. In

the hierarchy of languages of LG each string of a low level is a symbol of the next

higher level. A formal grammar is a mechanism or description that characterizes a

language. Usually, a grammar is presented as a series of rules which generate the

strings of the language.

Each level of the hierarchy of subsystems of LG is composed of languages and/or

grammars. The strings of the languages are a way for information exchange between

the levels of the hierarchy. The grammars are the method for processing the infor-

mation given by those strings to get some result. Figure 3 shows the organization of

these elements in the hierarchy of LG.

The lowest level of the hierarchy of LG is the level of trajectories. A trajectory

t is a string of symbols of the form:

t = a(x1)a(x2) . . . a(xn).

298 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

Figure 3. LG hierarchy of subsystems.

The string is formed of values xi that represent the sequence of steps that takes a

piece to go from one cell to another. These values are linked through the special

symbol a. Figure 4 shows an example of a trajectory. LH
t (S) is the set of trajectories

of length less than H for a state S of the ABG, and is called language of trajectories.

The language of trajectories is generated through the grammar of trajectories.

Figure 4. Example of a trajectory.

The second level of the hierarchy of LG is the level of webs. A web w is a string

of the form:

w = t(p1, t1, τ1)t(p2, t2, τ2) . . . t(pk, tk, τk)

where pi is a piece, ti is a trajectory and τi ∈ PARAM is a list of domain specific

parameters. These are linked through the special symbol t. LW (S) is a set of webs

for a state S of the ABG, it is called language of webs. A kind of webs that are of

great importance are the zones. Zones define the set PARAM as the natural numbers.

In a zone, each value τi is a time restriction. A grammar that generates all the strings

of a language of zones is the grammar of zones. Figure 5 shows an example of a web

(in particular, a zone).

The next level of the hierarchy is the level of translations. The job of this level is

to transform a hierarchy of structures to match the present state, as shown in figure

A LINGUISTIC GEOMETRY MODEL 299

Figure 5. Example of a web.

6. The process generates a new hierarchy of structures, this is done in the grammar

of translations.

Figure 6. Example of a translation.

The highest level of the hierarchy of LG is the level of searches. A search is a

string of the form:

(π(i1)π(i2) . . . π(im), Child, Sibling, Parent, Other-functions),

300 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

where π has notational purposes, ik represents a state of the ABG. The parameters

Child, Sibling and Parent are functions that give information on the structure of

the tree. The parameter Other-functions is an n-tuple of domain specific parameters.

A search represents an LG search tree, as shown in figure 7.

Figure 7. Example of a search.

3.1. Controlled grammars. The tools used in LG for the generation of languages

are a kind of grammars called controlled grammars. Controlled grammars are rule

based, they transform input symbols into output symbols through the criteria cap-

tured in the rules. A general description of controlled grammars is shown on table

1. Each rule of a controlled grammar is called a production. Each production has a

label l, an applicability condition Q(, ,), a kernel of the form A(, ,) → B(, ,), a set

of formulas πk that operates over the kernel parameter symbols, a set of additional

formulas πn (that are not in the kernel) of the form C(, ,) = D(, ,) and two sets of

feasible tags FT and FF . The parameters (values and functions) are shown between

parenthesis. The values of the parameters change as productions are applied.

Remark 3.2. In table 1, the formulas πk are implicitly presented among the kernel

parameters, though formally, πk is an independent set.

Tag Condition Kernel, πk πn FT FF

l Q(, ,) A(, ,) → B(, ,) C(, ,) = D(, ,) LT LF

Table 1. Controlled grammar description.

A controlled grammar works in the following way. At the beginning of the gener-

ation of the string it starts with an initial symbol in the production with tag l. After

applying the production:

• If condition Q(, ,) holds, the production with tag l is applied making the sub-

stitution specified by the kernel, and goes to a production with tag in the set

LT .

A LINGUISTIC GEOMETRY MODEL 301

• If Q(, ,) does not hold or the string does not contain the symbol of the left side

of the kernel A(, ,), the production l is not applied, and goes to a production

with tag in the set LF .

The substitution specified by the kernel is carried over the string (generated at the

moment) by replacing the left-side symbol of the kernel A(, ,) for the right-side of

it. If the condition Q(, ,) holds, besides from making the kernel substitution, the

operations specified by πk and πn are also executed, updating corresponding values.

The sets LT and LF can be empty. The string generation ends if, when applying a

production, holds either (Q(, ,) = T) ∧ (LT = ∅) or (Q(, ,) = F) ∧ (LF = ∅).

Definition 3.3. A controlled grammar G is an eight-tuple:

G = (VT , VN , VPR, E, H, Param,L, R),

where: VT is the terminal symbol alphabet. VN is the non-terminal symbol

alphabet; I ∈ VN is the initial symbol. VPR is the first order predicate calculus

alphabet PR: VPR = Truth
⋃

Con
⋃

V ar
⋃

Func
⋃

Pred
⋃

LOG, where: Truth is

the set of truth values T and F ; Con is the set of constant symbols; V ar is the

set of variable symbols; Func = Fcon
⋃

Fvar is the set of functional symbols, with

constant symbols Fcon and variable functional symbols Fvar; Pred is the set of

predicate symbols; LOG is the set of logical operators. E is a numerable set called

problem’s domain. H is an interpretation of the predicate calculus PR over the set

E. Param is the function Param : VT

⋃
VN → 2V ar, that associates each symbol

of the alphabet VT

⋃
VN to a set of parameters. L is a finite set called tag set.

R is a finite set of productions, that is, a finite set of seven-tuples of the form:

(l, Q,A → B, πk, πn, FT , FF), where l ∈ L is the tag of the production; Q is the

applicability condition of the production, represented by a well formed formula of the

predicate calculus PR; A → B is an expression called kernel of the production, with

A ∈ VN and B ∈ (VT

⋃
VN)∗; πk is a set of functional formulas that are among the

parameters of the symbols of the kernel; πn is a set of functional formulas that are

not among the parameters of the kernel; FT ⊆ L is a set of permissible labels in case

of success (Q = T); FF ⊆ L is the set permissible labels in case of failure (Q = F).

4. ARIMAA MODEL

The Arimaa model is built using the LG tools as a base. An LG based model

must have the following elements:

1. An ABG modeling the essential characteristics of the problem.

2. A level of trajectories with a corresponding grammar of trajectories.

3. A level of webs with a corresponding grammar of zones.

4. A level of translations with an adequate grammar of translations.

302 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

5. A level of searches with a corresponding grammar of searches corresponding to

the heuristics of the problem.

The proposed model uses the same grammar of trajectories as the one presented

in Stilman 2000. The level of webs is composed of two new zones for the game

of Arimaa. The level of translations is composed of the grammar of translations

presented in Stilman 2000 with some changes to adapt to the new zones. Finally, the

level of searches is formed by two new searches which model some basic tactics for

the game of Arimaa.

4.1. The ABG for Arimaa. To model the game of Arimaa, it is necessary to

capture the most basic characteristics of the game, such as: cells, pieces, reachability

relationships, valid moves, etc. The corresponding ABG for the came of Arimaa is

the following 8-tuple:

< X, P, Rp, SPACE, v, S0, St, TR >,

where:

X = {1, 2, . . . , 64}
P = P1

⋃
P2

P1 = {G ELEPHANT, G CAMEL, G HORSE1, G HORSE2, G DOG1, G DOG2,

G CAT1, G CAT2, G RABBIT1, . . . , G RABBIT8, }
P2 = {S ELEPHANT, S CAMEL, S HORSE1, S HORSE2, S DOG1, S DOG2,

S CAT1, S CAT2, S RABBIT1, . . . , S RABBIT8, }

Rp(x, y) =

T if ((p /∈ S RABBITS) ∧ (x /∈ TOP BORDER) ∧ (y = x + 8))∨

((p /∈ G RABBITS) ∧ (x /∈ BOTTOM BORDER) ∧ (y = x− 8))∨

((x /∈ RIGHT BORDER) ∧ (y = x + 1))∨

((x /∈ LEFT BORDER) ∧ (y = x− 1))

F in other case

,

where:

S RABBITS = {S RABBITi}, with i = 1, 2, . . . , 8

G RABBITS = {G RABBITi}, with i = 1, 2, . . . , 8

TOP BORDER = {57, 58, 59, 60, 61, 62, 63, 64}
BOTTOM BORDER = {1, 2, 3, 4, 5, 6, 7, 8}
LEFT BORDER = {1, 9, 17, 25, 33, 41, 49, 57}
RIGHT BORDER = {8, 16, 24, 32, 40, 48, 56, 64}

SPACE is the set of every possible valid position in the game of Arimaa.

S0 = ∅
St = {Si},

such that the WFF ON(p) = x is in the state Si an either condition is

A LINGUISTIC GEOMETRY MODEL 303

fullfilled:

(p ∈ G RABBITS) ∧ (x ∈ TOP BORDER); victory for player P1

(p ∈ S RABBITS) ∧ (x ∈ BOTTOM BORDER); victory for player P2

TR = {tr}

v(p) =

3 if p ∈ {G RABBITi, S RABBITi}; i = 1, 2, . . . , 8

4 if p ∈ {G CAT1, G CAT2, S CAT1, S CAT2}

6 if p ∈ {G DOG1, G DOG2, S DOG1, S DOG2}

9 if p ∈ {G HORSE1, G HORSE2, S HORSE1, S HORSE2}

14 if p ∈ {G CAMEL, S CAMEL}

20 if p ∈ {G ELEPHANT, S ELEPHANT}

Remark 4.1. The construction of the set of transitions of the system (TR), the set

of valid moves, is done according to the rules of Arimaa. Here, such construction is

made under informal terms, the reader is referred to Stilman 2000 and subsection 2.1

for more information.

In the previous definition, the set of cells X is comprised simply by a numerical

sequence whose correspondence is presented in figure 8. The set of pieces P contains

silver and gold pieces each one containing itself the 16 pieces for the corresponding

player. The reachability relation Rp simply reflects the mobility of the pieces of

Arimaa. The function of value of the pieces is simply proposed with some values that

conform to the proposals of subsection 2.2. The initial state S0 is the empty board.

The set of final states St is formed by those states in which a rabbit is on the goal

row.

Figure 8. Cell distribution for the LG Arimaa model.

Some auxiliary definitions are given to simplify the notation for the remaining of

the paper.

Definition 4.2. The set of trap cells denoted by TRAPS is equal to the set {19, 22, 43, 46}
(see gray cells in figure 8).

304 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

Definition 4.3. The function HEAVIER : P × P → {T, F} is the function of piece

domination. It tells if a piece is heavier than other and, as a consequence, if it is

capable of freezing it. It is defined as follows:

HEAVIER(p1, p2) =

T if v(p1) > v(p2)

F if v(p1) ≤ v(p2)

4.2. Grammar of zones for the game of Arimaa. The grammar of zones pre-

sented in Stilman 2000 is not compatible with the characteristics of the game of

Arimaa. The main reason for this is that it assumes that pieces can attack and take

other pieces that are at the destination of the movement. This does not happen in

Arimaa.

Two grammars of zones are presented for the game or Arimaa. The first of them

is called grammar of CUT zones. Its main purpose is to model the interaction of

pieces around a trap square, so as to be used to model the capture in one turn tactic.

The second grammar of zones is the advance zone grammar. It has the purpose of

modeling interactions along the trajectory of a piece from one point to another, such

that it can be used to model the goal in one turn tactic.

4.3. Grammar of CUT zones. This grammar is based on the grammar of zones

presented in Stilman 2000, but has a completely different purpose. The zone includes

two cases of immediate capture, hence 2 cases (modeled by productions 2i and 3j)

are considered: the first one consists of capturing a piece adjacent to the trap square,

when its captor is at most, two moves away; the second being when that piece is

at most two moves away from the trap, and its captor is adjacent to it. In both

cases the base trajectories of the pieces to their destinations are included. Connected

trajectories are also included in a similar way as proposed in Stilman 2000.

L Q Kernel, πk πn (∀z ∈ X) FT FF

1 Q1 I(u, v, w) → A(u, v, w) ∅ two ∅
2i Q2 A(u, v, w) → t(h0

i (u
′), 4)t(po, a(ON(po)) TIME(z) = DIST (z, h0

i (u
′)) {4} three

a(x), 1)A((0, 0, 0), g(p0, h
0
i (u

′), w), zero) u′ = (ON(pa), ON(po), 4)

3j Q3 A(u, v, w) → t(h0
i (u

′), 4) TIME(z) = DIST (z, h0
i (u

′)) {4} ∅
t(pa, a(ON(pa))a(ON(po)), 1) u′ = (ON(po), x, 4)

A((0, 0, 0), g(p0, h
0
i (u

′), w), zero)

4 Q4 A(u, v, w) → A(f(u, v), v, w) NEXTTIME(z) = five {6}
init(u, NEXTTIME(z))

5k Q5 A(u, v, w) → t(hj(u), TIME(y)) NEXTTIME(z) = ALPHA(z, hj(u), {4} {4}
A(u, v, g(p, hj(u), w)) TIME(y)− l + 1)

6 Q6 A(u, v, w) → A((0, 0, 0), w, zero) TIME(z) = NEXTTIME(z) {4} {7}
7 Q7 A(u, v, w) → ε ∅ ∅ ∅

VT = {t} VN = {I, A}
VPR

A LINGUISTIC GEOMETRY MODEL 305

Con = {x0, y0, l0, p0}
V ar {x, y, l, p, τ, θ, v1, v2, . . . , vn, w1, w2, . . . , wn}, for short, it is denoted:

u = (x, y, l), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn),

zero = (0, 0, . . . , 0)

Func = Fcon
⋃

Fvar;

Fcon = {fx, fy, fl, g1, g2, . . . , gn, h1, h2, . . . , hM , h0
1, h

0
1, . . . , h

0
M , DIST,

init, ALPHA, CONTROLp},
for short, it is denoted:

f = (fx, fy, fl), g = (g1, g2, . . . , gn)

Fvar = {x0, y0, l0, p0, TIME, NEXTTIME}
Pred = {Q1, Q2, Q3, Q4, Q5, Q6, Q7},

Q1(u) = (¬∃p1, p2(CONTROLp1(x) ∧ CONTROLp2(x)∧
¬OPPOSSE(p0, p1) ∧ ¬OPPOSSE(p0, p2))

Q2(u) = (∃po, pa(CONTROLpo(x) ∧MAPON(pa),pa(ON(po)) ≤ 2)))

Q3(u) = (∃po, pa(CONTROLpa(ON(po)) ∧MAPON(po),po(x) ≤ 2)))

Q4(u) = (x 6= n) ∨ (y 6= n)

Q5(u) = (∃p((ON(p) = x) ∧ (l > 0) ∧ (x 6= x0) ∧ (x 6= y0))∧
((¬OPPOSSE(p0, p) ∧ (MAPx,p(y) = 1))∨
(OPPOSSE(p0, p) ∧ (MAPx,p(y) ≤ l)))

Q6(w) = (w 6= zero)

Q7 = T

E = Z+

⋃
X
⋃

P
⋃

Ll0
t (S)

Parm : {I, A, t} → 2V ar L = {1, 4, 6, 7}
⋃

two
⋃

three
⋃

five;

Param(I) = {u, v, w}, two = {21, 22, . . . , 2M},
Param(A) = {u, v, w}, three = {31, 32, . . . , 3M},
Param(t) = {p, τ, θ}; five = {51, 52, . . . , 5M}

At the beginning of derivation:

u = (x0, y0, l0), v = zero, w = zero, x0 ∈ TRAPS, y0 = 0, l0 = 0, p0 ∈ P ,

n = card(X), M = card(Ll0
t (S)), TIME(z) = NEXTTIME(z) = 2n ∀z ∈ X

CONTROLp : X → {T, F}
CONTROLp(x) = Rp(ON(p), x)

init : (X ×X × Z+)× Z+ → Z+

init(u, r) =

2n, if u = (0, 0, 0)

r, if u 6= (0, 0, 0)

f : (X ×X × Z+)× Zn
+ → (X ×X × Z+)

306 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

f(u, v) =

(x + 1, y, l), if ((x 6= n) ∧ (l > 0))∨

((y = n) ∧ (l ≤ 0))

(1, y + 1, TIME(y + 1)× vy+1), if (x = n) ∨ ((y 6= n)∧

(l ≤ 0))

DIST : X × P × Ll0
t (S) → Z+

Let t0 ∈ Ll0
t (S) be t0 = a(z0)a(z1) . . . a(zm), t0 ∈ tp0(z0, zm, m);

DIST (x, p0, t0) =

k + 1, ((zm = y0) ∧ (p = p0) ∧ (∃k(1 ≤ k ≤ m)∧

(x = zk))) ∨ (((zm 6= y0) ∨ (p 6= p0))∧

(∃k(1 ≤ k ≤ m− 1) ∧ (x = zk)))

2n, in other case

ALPHA : X × P × Ll0
t (S)× Z+ → Z+

ALPHA(x, p0, t0, k) =

max(NEXTTIME(x), k), if (DIST (x, p0, t0) 6= 2n)∧

(NEXTTIME(x) 6= 2n)

k, if (DIST (x, p0, t0) 6= 2n)∧

(NEXTTIME(x) = 2n)

NEXTTIME(x), if DIST (x, p0, t0) = 2n

gr : P × Ll0
t (S)× Zn

+ → Z+, with r ∈ X

gr(p0, t0, w) =

1, if DIST (r, p0, t0) < 2n

wr, if DIST (r, p0, t0) = 2n

g : P × Ll0
t (S)× Zn

+ → Zn
+

g(p0, t0, w) = (g1(p0, t0, w), g2(p0, t0, w), . . . , gn(p0, t0, w))

TRACKSp = {p} ×

(⋃
1≤k≤l

L
[
G

(2)
t (x, y, k, pa)

])
,

h0
i : (X ×X × Z+) → P × Ll0

t (S)

Let TRACKSpa = {(p0, t1), (p0, t2). . . . , (p0, tb)} with (b ≤ M),

h0
i (u) =

(p0, ti), if (TRACKSp0 6= ∅) ∧ (i ≤ b)

(p0, tb), if (TRACKSp0 6= ∅) ∧ (i > b)

ε, in other case

hi : (X ×X × Z+) → P × Ll0
t (S)

Let TRACKSp = {(p, t1), (p, t2). . . . , (p, tm)} with (m ≤ M),

hi(u) =

(p, ti), if (TRACKSp0 6= ∅) ∧ (i ≤ m)

(p, tm), if (TRACKSp0 6= ∅) ∧ (i > m)

ε, in other case

A LINGUISTIC GEOMETRY MODEL 307

Productions 2i and 3j are new, with respect to the grammar of zones presented

in Stilman 2000, and intend to reflect the characteristics of these new kind of zones.

Conditions Q1, Q2 and Q3 are new and reflect some characteristics of their respective

productions. Also, production 3j is analog to production 2i but it applies under

different circumstances. The function CONTROLp(x) was added to reduce notation;

it is true if piece p is adjacent to cell x.

Remark 4.4. The grammar does not include cases for which the piece to capture is

already inside the trap cell.

4.4. Advance zone grammar. This grammar is analog to the grammar of zones

presented in Stilman 2000 but, it has been modified for the game of Arimaa. The

most meaningful change is regarding mobility of Arimaa pieces. Two basic cases are

considered to determine if a piece is relevant for an advance zone. When a piece is

less heavy than the one to which trajectory it is to connect, it must step just in front

of the piece to stop it from advancing, or at least slow it down. If a piece is heavier

than the one to which trajectory it is to connect, it is enough to reach an adjacent

cell to a cell of the trajectory; this is because the piece would freeze if it steps in that

cell.

L Q Kernel, πk πn (∀z ∈ X) FT FF

1 Q1 I(u, v, w) → A(u, v, w) ∅ two ∅
2i Q2 A(u, v, w) → t(h0

i (u), l0 + 1) TIME(z) = DIST (z, h0
i (u)) three ∅

A((0, 0, 0), g(p0, h
0
i (u), w), zero)

3 Q3 A(u, v, w) → A(f(u, v), v, w) NEXTTIME(z) = four {5}
init(u, NEXTTIME(z))

4j Q4 A(u, v, w) → t(hj(u), TIME(y) + 1) NEXTTIME(z) = ALPHA(z, hj(u), {3} {3}
A(u, v, g(p, hj(u), w)) TIME(y)− l + 1)

5 Q5 A(u, v, w) → A((0, 0, 0), w, zero) TIME(z) = NEXTTIME(z) {3} {6}
6 Q6 A(u, v, w) → ε ∅ ∅ ∅

VT = {t} VN = {I, A}
VPR

Con = {x0, y0, l0, p0}
V ar {x, y, l, p, τ, θ, v1, v2, . . . , vn, w1, w2, . . . , wn}, for short, it is denoted:

u = (x, y, l), v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn),

zero = (0, 0, . . . , 0)

Func = Fcon
⋃

Fvar;

Fcon = {fx, fy, fl, g1, g2, . . . , gn, h1, h2, . . . , hM , h0
1, h

0
1, . . . , h

0
M , DIST,

init, ALPHA},
for short, it is denoted:

f = (fx, fy, fl), g = (g1, g2, . . . , gn)

Fvar = {x0, y0, l0, p0, TIME, NEXTTIME}

308 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

Pred = {Q1, Q2, Q3, Q4, Q5, Q6},
Q1(u) = (ON(p0) = x) ∧ (MAPx,p0(y) ≤ l ≤ l0)∧

(∃q((ON(q) = y) ∧ (OPPOSSE(p0, q))))

Q2(u) = T

Q3(u) = (x 6= n) ∨ (y 6= n)

Q4(u) = (∃p((ON(p) = x) ∧ (l > 0) ∧ (x 6= x0) ∧ (x 6= y0))∧
((¬OPPOSSE(p0, p) ∧ (HEAVIER(p, p0)) ∧ (MAPx,p(y) < l0))∨
((¬OPPOSSE(p0, p) ∧ (¬HEAVIER(p, p0)) ∧ (MAPx,p(y) = 1))∨
(OPPOSSE(p0, p) ∧ (HEAVIER(p, p0)) ∧ (MAPx,p(y) ≤ l)))∨
(OPPOSSE(p0, p) ∧ (¬HEAVIER(p, p0)) ∧ (MAPx,p(y) ≤ l − 1)))

Q5(w) = (w 6= zero)

Q6 = T

E = Z+

⋃
X
⋃

P
⋃

Ll0
t (S)

Parm : {I, A, t} → 2V ar L = {1, 3, 5, 6}
⋃

two
⋃

four;

Param(I) = {u, v, w}, two = {21, 22, . . . , 2M},
Param(A) = {u, v, w}, four = {41, 42, . . . , 4M}
Param(t) = {p, τ, θ};

At the beginning of derivation:

u = (x0, y0, l0), v = zero, w = zero, x0, y0 ∈ X, l0 ∈ Z+, p0 ∈ P ,

n = card(X), M = card(Ll0
t (S)), TIME(z) = NEXTTIME(z) = 2n ∀z ∈ X

init : (X ×X × Z+)× Z+ → Z+

init(u, r) =

2n, if u = (0, 0, 0)

r, if u 6= (0, 0, 0)

f : (X ×X × Z+)× Zn
+ → (X ×X × Z+)

f(u, v) =

(x + 1, y, l), if ((x 6= n) ∧ (l > 0))∨

((y = n) ∧ (l ≤ 0))

(1, y + 1, TIME(y + 1)× vy+1), if (x = n) ∨ ((y 6= n)∧

(l ≤ 0))

DIST : X × P × Ll0
t (S) → Z+

Sea t0 ∈ Ll0
t (S), t0 = a(z0)a(z1) . . . a(zm), t0 ∈ tp0(z0, zm, m);

DIST (x, p0, t0) =

k + 1, ((zm = y0) ∧ (p = p0) ∧ (∃k(1 ≤ k ≤ m)∧

(x = zk))) ∨ (((zm 6= y0) ∨ (p 6= p0))∧

(∃k(1 ≤ k ≤ m− 1) ∧ (x = zk)))

2n, in other case

ALPHA : X × P × Ll0
t (S)× Z+ → Z+

A LINGUISTIC GEOMETRY MODEL 309

ALPHA(x, p0, t0, k) =

max(NEXTTIME(x), k), if (DIST (x, p0, t0) 6= 2n)∧

(NEXTTIME(x) 6= 2n)

k, if (DIST (x, p0, t0) 6= 2n)∧

(NEXTTIME(x) = 2n)

NEXTTIME(x), if DIST (x, p0, t0) = 2n

gr : P × Ll0
t (S)× Zn

+ → Z+, with r ∈ X

gr(p0, t0, w) =

1, if DIST (r, p0, t0) < 2n

wr, if DIST (r, p0, t0) = 2n

g : P × Ll0
t (S)× Zn

+ → Zn
+

g(p0, t0, w) = (g1(p0, t0, w), g2(p0, t0, w), . . . , gn(p0, t0, w))

TRACKSp = {p} ×

(⋃
1≤k≤l

L
[
G

(2)
t (x, y, k, p0)

])
,

h0
i : (X ×X × Z+) → P × Ll0

t (S)

Let TRACKSp0 = {(p0, t1), (p0, t2). . . . , (p0, tb)} with (b ≤ M),

h0
i (u) =

(p0, ti), if (TRACKSp0 6= ∅) ∧ (i ≤ b)

(p0, tb), if (TRACKSp0 6= ∅) ∧ (i > b)

ε, in other case

hi : (X ×X × Z+) → P × Ll0
t (S)

Let TRACKSp = {(p, t1), (p, t2). . . . , (p, tm)} with (m ≤ M),

hi(u) =

(p, ti), if (TRACKSp0 6= ∅) ∧ (i ≤ m)

(p, tm), if (TRACKSp0 6= ∅) ∧ (i > m)

ε, in other case

This grammar, compared with the grammar of zones presented in Stilman 2000,

has only one relevant change. Condition Q4 has been modified to consider the above

mentioned restrictions. The grammar uses the function HEAVIER presented in the

previous subsection. It is also to note that a minor change has been made in produc-

tion 4j to the functional symbol which represents the time of trajectories.

4.5. Translation grammar for Arimaa. Some changes are needed in the grammar

of translations to reflect the changes made to the grammars of zones.

The grammar of translations for Arimaa is just like the one in Stilman 2000,

except for the definition of the function timerπ. This function controls the times

assigned to the translated versions of the trajectories. The modified version of the

function timerπ is denoted y timerA
π and it is defined as follows:

Definition 4.5. Let πT0(Z1) = Z2 be a translation from the zone Z1 ∈ LZ(S1) to

the zone Z2 ∈ LZ(S2), and let Z1 = t(p0, t0, τ0)t(p1, t1, τ1) . . . t(pr, tr, τr). A time

310 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

distribution function timerA
π is the function:

timerA
π : ConΠT0

(Z1) → Z+

To build timerA
π three cases are considered:

1. If ΠT0(t0) 6= t0; that is, if transition T0 occurs over the main trajectory t0 of the

zone Z1, then:

timerπ(t(pc, tc, τc)) = τ − 1

for every symbol t(pc, tc, τc) ∈ ConΠT0
.

2. If ΠT0(tk) 6= tk for some tk 6= t0; that is, if transition T0 occurs over a trajectory tk

of the zone Z1 which is not the main trajectory, then timerA
π is defined recursively

as:

timerA
π (t(pi, ti, τi)) =

τi if (i = 0) ∨ (C(ti, t0) = T)

max
tc∈CA(ti)

TNEW (tc, ti) in other case
,

where:

CA(ti) =
{
tc|C(tc, ti) = T, for some t(pc, tc, τc) ∈ ConΠT0

(Z1)
}
,

TNEW (tc, ti) =

timerπ(t(pc, tc, τc))− len(tc), if C1

timerπ(t(pc, tc, τc))− len(tc) + 1, if C2

timerπ(t(pc, tc, τc))− len(tc) + 2, if C3

C1 = tc 6= tk ∧ ¬HEAVIER(tc, ti)

C2 = (tc 6= tk ∧HEAVIER(tc, ti)) ∨ (tc = tk ∧ ¬HEAVIER(tc, ti))

C3 = (tc = tk) ∧HEAVIER(tc, ti)

3. If ΠT0(tm) = tm ∀tm ∈ TA(Z1); that is, if transition T0 does not affect any of

the trajectories of the zone Z1, then:

timerA
π (t(pm, tm, τm)) = τm

for every t(pm, tm, τm) ∈ ConΠT0
.

4.6. Grammars of searches for Arimaa. It is possible to model heuristics that

represent common tactics for the game of Arimaa using the proposed grammars of

zones and the modified version of the grammar of translations. The formal model of

the grammar that must capture those heuristics is the same as in Stilman 2000. In

this model, the parts labeled with PH have to be substituted with the rules presented

in the following subsections.

Remark 4.6. A general description of the heuristics used to direct the search process

is shown. An exhaustive description of the corresponding formal model would be too

large and of limited utility.

A LINGUISTIC GEOMETRY MODEL 311

4.6.1. Capture in one turn. The main goal of this tactic is to capture an opponent’s

piece. To achieve this, a CUT zone is used along the following rules to direct the

search:

• The goal is to capture an opposing piece.

• A CUT zone is to be generated in each of the board traps.

• The attacking player will prefer to dislodge an opponent piece towards a trap.

• Defensive player will prefer to move the attacked piece away from the zone.

• Attacking player shall try to move obstacles away from its trajectory.

• Defensive player shall try to dominate the trap to avoid capture.

• Defensive player shall try to block the main trajectory of the zone.

The first rule presents the halt criteria; that is, if a capture can be forced, the search

halts successfully and, if the capture is unreachable, the search halts with a failure.

4.6.2. The goal in one turn. The objective of this tactic is to win the game by taking

an allied rabbit to the goal. In order to evaluate its possibility an advance zone is

used along with the following rules to direct the search:

• The main goal of the attacking player is to take an allied rabbit to the goal.

• An advance zone is generated.

• Attacking player shall prefer to advance the rabbit, every time it is possible.

• Attacking player shall try to cover the cell where the rabbit is intercepted.

• The defending player will try to intercept the main trajectory of the zone.

• Defending player prefers moves that freeze the opposing rabbit.

• Search is ended in case of loss of pieces or if the zone is unmade.

The first rule presents a halt criteria; in this case, if it is possible to take the rabbit

to the goal, the search ends with success and, in case it is not possible to make this,

the search ends with failure.

5. TEST CASES AND RESULTS

Some test cases are proposed in order to test the introduced model. These test

cases are human analyzed and the results are compared to those given by a software

implementation of the model. It must be clarified that through computing strength

it is possible to consider some positions that are usually not considered by human

players; though, at the same time, some possibilities that the human player would

take into account are excluded due to weaknesses in the heuristics proposed. It is

possible to reduce this effect by means of modifying the heuristics.

Two test cases are presented: the first one is based on the capture in one turn

tactic; the second is based on the goal in one turn tactic. The introduced examples are

academic and could or could not come from actual Arimaa games. The figures shown

312 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

present simplified versions of the generated zones. The straight lines represent the

main trajectories of the zones, while the arcs represent second or superior negation

trajectories. The figures show, in some cases, multiple options for a single trajectory.

This in strict sense converts the representation in a set of zones.

Figure 9. Test case 1 - starting board position.

5.1. Test case 1. The first example is shown on figure 9. It is actually divided in

two parts. The first part is a zone associated to the trap square c6. Here the gold

horse in e6 can capture the silver dog in c5 if gold is to move. To achieve this, gold

would move the gold horse from e6 to e5 (or d6) and then to d5, here it is adjacent to

the silver dog hence, with the following two moves it can dislodge it to the uncovered

trap c6. If silver were to move, he can simply move the silver dog from c5 to c4 or

cover the trap with the silver horse in f7; to do this, only 3 moves are required, from

f7 to e7, d7 and c7. With this, gold’s attempts would be halted.

The second part of the example is related to the trap f3. In case it is gold’s turn,

the gold elephant in h4 can capture, in one turn, the silver horse in h3; to achieve this

he only needs to push it twice to g3 and f3. The situation is a little more complicated

if it is silver’s turn since the silver horse is frozen and cannot come out of the dominion

of the gold elephant. To cover the silver horse, silver has the following options: take

the silver dog from c5 to f4 (following c4, d4, e4, and f4) to cover the trap square f3,

in this case the gold elephant could capture the silver dog instead of the silver horse

(moving from h4 to g4 and then pushing the silver dog from f4 to f3); silver could also

move the silver cat from e2 to f2 as a mean to cover f3; or take the silver cat from

e2 to g3 (following f2, g2, and g3), where the silver cat covers the trap, unfreezes the

silver horse in h3 and blocks g3 to avoid a dislodge of the silver horse to the trap.

It can be seen that silver has options to avoid the capture of the silver horse only if

silver is to move first.

The proposed model captures with fidelity the part concerning the trap c6; the

corresponding CUT zone is shown in figure 10. This zone includes all the relevant

A LINGUISTIC GEOMETRY MODEL 313

Figure 10. Test case 1 - CUT zones for the trap squares c6 (left) and

f3 (right).

pieces for the shown position. If it is gold’s turn the execution of the software gives

the following solution: gold horse from e6 to e5, d5 and push the silver horse to c6.

The first move of the silver horse could have been e5 (instead of c6); the program

chooses the first option it finds. If silver were to move the solution proposed by the

software is: silver dog from c5 to c4. In this case, the software gives preference to a

move that undoes the zone by taking the silver dog out of the main trajectory.

The CUT zone around f3 is shown in figure 10. It includes all the pieces in the

figure except from the silver horse in f7 since it has no active action. The inclusion of

the silver dog in c5 and the silver cat in e2 is direct due to the possibility of controlling

trap f3 in four or less moves. The gold horse in e6 is included in the zone because of

the possibility of blocking or freezing the silver dog in c5 (when it crosses e4). The

same happens with the gold rabbit in f1 and the gold cat in e3, but these do not have

relevance over the trajectory of the silver cat in e2.

When gold plays first, the sequence of movements needed to capture the silver

horse are direct and, given the priorities of the heuristics (subsection 4.6.1), it is the

first sequence to be generated. The solution generated is: gold elephant in h4 pushes

silver horse from h3 to g3 and f3.

When silver plays first, the software’s proposed solution is: move the silver cat

from e2 to f2, this avoids immediate capture of the silver horse. The program returns

this solution for being the first to fulfill the requirements. Hence, for this case, the

proposed model is also satisfactory.

5.2. Test case 2. The test case of figure 11 presents a gold rabbit in d3 that has a

relatively free trajectory to the goal. Here the gold player can push forward the gold

rabbit using the gold elephant. The silver player has only the silver dog to defend

the position, though it can still obstruct the trajectory of the gold rabbit.

314 J. R. MERCADO VEGA AND Z. R. KONIGSBERG

Figure 11. Test case 2 - Starting position (left) and advance zone (right).

If the gold player is to play the most natural play is to move the gold rabbit as

forward as possible (from d3 to d7). To this, silver can respond moving the silver dog

from b7 to c7, this freezes the gold rabbit. Additionally, the silver player can dislodge

the silver rabbit to e7, c7 or d6. None of these alternatives prevent the rabbit from

reaching the goal in the next turn. In case the rabbit is only frozen in d7, the gold

player can use three moves to unfreeze it (moving the gold elephant from e4 to d6

or e7) the last move would be the gold rabbit from d7 to d8, winning the game. In

case silver chooses to dislodge the gold rabbit to e7, the gold elephant can unfreeze

it moving from e4 to e5 and e6, moving then the rabbit to e7 and e8. If the gold

rabbit is dislodged to c7, the gold dog can unfreeze it moving inside the trap square

c6, following the gold rabbit can move to c8. Finally, if the gold rabbit is dislodged to

d6, the game would continue with gold elephant from e4 to e5, d5, gold rabbit from

d6 to e6 and gold elephant from d5 to d6. In the next turn, the silver dog would be

frozen just as the silver cat, hence silver can make no moves. In the next turn gold

would move the gold rabbit from e6 to e7, gold elephant from d6 to e6 and, finally

gold rabbit from e7 to e8. The victory of the gold player is inevitable if he plays first.

When silver plays first, his best play is to stop the gold rabbit as soon as possible.

To this end, the only free piece is the silver dog in b7. This piece has to move from

b7 to c7, d7, d6, d5. This blocks the path of the gold rabbit in d3. this can be easily

solved by the gold player by moving the gold elephant from e4 to e5 and pulling the

silver dog to e5 while moving itself to e6, hence silver can not move in his next turn.

Then gold would continue to capture the silver dog in the trap f6 with this having no

move to prevent it.

The simplified advance zone corresponding to the test case 2 is shown in the

figure 11. In this case, when the gold player moves first, the software generates as a

solution the following sequence: gold rabbit from d3 to d4, d5, d6, d7; silver dog, b7

A LINGUISTIC GEOMETRY MODEL 315

c7, b7 (dislodging the gold rabbit from d7 to c7) and b8; gold dog from b6 to c6, gold

rabbit from c7 to c8. The software predicts the advantage of gold.

When the silver player plays first, the software brings the following solution:

silver dog from b7 to c7, d7, d6, d5, then the gold rabbit from d3 to d4, c4 and c5,

gold elephant from e4 to d4, followed by a lost turn of the silver player. In the next

turn, gold would move the gold elephant from d4 to c4, gold rabbit from c5 to c6, c7,

c8. Gold wins the game.

6. CONCLUSIONS

The proposed Arimaa model is adequate for modeling some of the most common

tactics of the game of Arimaa. The model simplifies the formulation of heuristics with

particular objectives. The zones and heuristics proposed in this work (level of webs

and searches) are very restrictive. The modeling of a greater number of tactics results

in a greater number of zones and a greater complexity on the level of searches. In

the test cases shown in this work, the results are in accordance to the analysis of the

positions. There are some cases where the results are not optimal and the proposed

model shows some weaknesses. To correct them to some degree, an it is proposed to

extend the level of searches by using the tools proposed in this work.

REFERENCES

[1] E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways for your Mathematical Plays,
A. K. Peters, 1982.

[2] J. H. Conway, On Numbers and Games, Academic Press, 1976.
[3] C. Cox, Analysis and Implementation of the Game Arimaa, MICC-IKAT, 2006.
[4] On-line Arimaa book, http://en.wikibooks.org/wiki/Arimaa.
[5] D. Fotland, Building a World-Champion Arimaa Program, Computers and Games, Springer

Berlin / Heidelberg, 175–186, 2004.
[6] Arimaa gameroom server, http://arimaa.com/arimaa/gameroom/.
[7] T. Hart and D. Edwards, The Alpha-Beta Heuristic, Massachusetts Institute of Technology,

Cambridge, MA, USA, 1963.
[8] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, 1979.
[9] J. F. Nash, Non-cooperative games, Princeton University, 1950.

[10] C. E. Shannon, Programming a Computer for Playing Chess, Philosophical Magazine Vol 41,
256–275, 1950.

[11] B. Stilman, A Linguistic Approach to Geometric Reasoning, Computers and Mathematics with
Applications Vol 26, 7:29–58, 1993.

[12] B. Stilman, Linguistic geometry: from search to construction, Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

[13] J.von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton
University Press, 1944.

[14] Haizhi Zhong, Building a Strong Arimaa-playing Program, University of Alberta, 2005.

