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CONSTRAINED MULTIOBJECTIVE CONTROL PROBLEMS:
APPLICATION TO SOCIAL NETWORKS
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ABSTRACT. Social networks involve studying how relations form between individuals in a group
based on their shared preferences and attributes. This research addresses a very difficult question
involving how social networks arise and evolve over time. Historically, some researchers have ad-
dressed this issue using loglinear modeling, continuous time Markov theory or rational choice theory.
In this work, social force theory is used to model social interaction and overall network dynamics
while multiobjective control theory provides a basis for predicting network structural formation. Us-
ing computer simulations, we numerically analyze the evolution and long-term behavior of optimal
network structures based on the demographics of a small dataset. We pay special attention to the
effect that memory has on friendship choices and clique formation.
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1. INTRODUCTION

Social network analysis focuses on relationships among social entities and the

implications from such relationships. In recent decades, social network analysis has

received a lot of attention from social and behavioral scientists, who leverage it to

answer standard research questions about politics, economics and society at large

[9]. Apparently, being able to organize separate entities into networks and groups is

very important in determining social and economic outcomes. For instance, personal

contacts provide valuable job information; networks are important to “trade and

exchange of goods in non-centralized markets”; and finally, organizing societies into

groups allows the proper distribution of public good and services. The applications

do not stop there; the literature on social networks is vast and covers a variety of

topics with recent applications even extending to national defense.

In Section 2, we formulate the multiobjective control problem, and provide a nu-

merical algorithm which generates a set of Pareto-optimal solutions to the problem.

In Section 3, we define key terminology for studying social networks followed by a

detailed explanation of the social forces model for network dynamics. The model ex-

plains social interaction and basis for friendship choice. Section 4 provides a computer
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simulation in which the optimal solution of multiobjective control problem is used to

form a social matrix; the resulting analysis shows that our social forces model yields

realistic network behavior. In addition, Section 5 adds a memory effect to the social

forces model to show the impact that long-term memory has on actors’ friendship

choices. Finally, we explore the model’s capability to answer questions concerning

clique connection and network destabilization in Section 6.

2. MULTIOBJECTIVE OPTIMAL CONTROL

The goal when solving multiobjective optimal control problems (MOCPs) is to

optimize a set of conflicting objectives simultaneously while satisfying constraints

on the system under consideration. MOCPs have garnered great attention from re-

searchers in recent years since many real-world problems tend to possess multiple,

conflicting objectives which must be optimized yet there seems to be no single ac-

cepted definition for “optimum” in this case as with the single objective optimal

control problem. We describe the multiobjective control problem in detail as follows.

2.1. Problem Formulation. The general form of the control problem without mem-

ory is (see Section 2.2)

min
u∈U

J = [J1(u), . . . , Js(u)]T

such that

ẋ = f(x(t),u(t))

x(t0) = x0

and

hi(x,u) = 0 (equality constraints), i = 1, . . . , r

hi(x,u) ≤ 0 (inequality constraints), i = r + 1, . . . , k

where

Jl(x
0,u(t),x(t)) = Φl(x(tf )) +

∫ tf

0

Ll[x(t),u(t)]dt, l = 1, . . . , s

2.2. Optimality Condition. When there are multiple and conflicting objectives,

usually there is no one solution that minimizes all of them at once. Therefore, we

must define what we mean by “optimal” for the multiobjective control problem. A

solution u∗ ∈ U is a Pareto-optimal solution [5], [6] to the MOCP if there does not

exist any other u ∈ U for which

1. Ji(u) ≤ Ji(u
∗) for all i and

2. Jj(u) < Jj(u
∗) for at least one j.
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Pareto-optimal solutions are also referred to as noninferior, nondominated or

efficient solutions. Pareto-optimal solutions are not unique. Instead, we get a whole

set of alternative solutions, one no better than the other.

2.3. Algorithm: Differential Evolution. Differential Evolution (DE) is a population-

based search method created by Storn and Price [8] to handle problems with multiple

objectives over continuous domains. DE is an appealing approach for solving MOCPs

because it eliminates the need to consider function continuity, convexity, or concavity

unlike some traditional search techniques where such complexities must be given great

attention. In addition, DE is capable of providing a complete set of Pareto-optimal

solutions in a single run [7].

2.3.1. Steps for Differential Evolution (DE) Algorithm.

• Step 1: Random Population Initialization

In this step, ug
j,i means the i-th entry of the vector ug

j . We initialize the popu-

lation as follows:

ug
j,i = ug

j,imin
+ rand() ∗ (ug

j,imax
− ug

j,imin
), j = 1, 2, . . . , NP,

g is the current generation and rand() is a random number in [0, 1). The i-th

component of the vector ug
j , j = 1, 2, . . . , NP , has a lower bound, ug

j,imin
, and

an upper bound, ug
j,imax

.

• Step 2: Mutation

For each j = 1, 2, . . . , NP , pick j1, j2, j3 ∈ {1, 2, . . . , NP} randomly and form

the vector ẑg
j according to the formula:

ẑg
j = ug

j1
+ W ∗ (ug

j2
− ug

j3
), j = 1, 2, . . . , NP

where j1, j2, j3 are mutually different and not equal to j. The parameter W is a

scaling factor for mutation and is usually a value between 0 and 1.

• Step 3: Crossover

As in Step 1, we denote the i-th component of the vector zg
j by zg

j,i. The operation

crossover is implemented as follows:

zg
j,i =

ug
j1,i + W ∗ (ug

j2,i − ug
j3,i) if rand() < CR or i = î,

ug
j,i otherwise

where î is a randomly selected index from {1, 2, . . . , D}.
• Step 4: Selection

ug+1
j =

zg
j if J(zg

j ) ≤ J(ug
j ),

ug
j otherwise
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• Step 5: Termination criteria in the literature often includes running the algo-

rithm for some maximum number of generations or until some desired objective

function value is reached.

3. SOCIAL NETWORKS

Several key concepts [9] form the basis of social network analysis and are funda-

mental to our study of social networks.

3.1. Methodology for Social Networks. Nodes form the basis of social networks

and are often referred to as actors, actors or points depending on the context of

discussion. Nodes in a social network can be social entities such as people, businesses,

organizations, cities, nations, etc. An edge is a line connecting nodes. Edges are

also referred to as links, ties, lines or arcs, representing a relationship or connection

between a pair of nodes. In network analysis, there are many types of ties to include

behavioral interaction ties (i.e., conversing or emailing), physical movement ties (i.e.,

migration) and individual evaluation ties (i.e., friendship among actors which is the

focus of this paper). Network ties are often made based on some type of individual

or entity attributes. Attributes describe characteristics of actors in a group. For

example, for a friendship network, such attribute variables might include income

potential, gender, race, sex, education level, political tendency, religious affiliation,

marital status, etc. In fact, measurements on actors’ attributes often constitute the

make-up of social data and social networks.

There are two tools in particular which are often seen in the literature to represent

social networks: matrices and graphs. In this work, we’ll use both in illustrative

examples of friendship networks. A sociomatrix is the primary matrix used in social

network analysis and is denoted by X. If there are N actors in a social group, then the

sociomatrix for the group would be an N × N matrix of binary entries representing

the relations between the actors. Each actors in the sociomatrix has a row and

column both indexed 1, 2, . . . , N . The entries in the sociomatrix, xij, represent which

nodes are linked. For our friendship model, relations in the sociomatrix may be

directional and nondirectional which will lead to both symmetric and nonsymmetric

sociomatrices. For symmetric sociomatrices, if two actors are friends, there will be a

1 in the ij-th and ji-th cells and a 0 if they’re not friends. The ii-th cells will contain

a value of 0 since actors do not befriend themselves. For nonsymmetric sociomatrices,

while the ij-th cells may contain a 1, this may not be the case for the ji-th cell if the

relation is not reciprocated.

A graph (often referred to as digraph) has a set of nodes representing the actors in

the network and a set of lines to represent the existence of ties or links between pairs of

actors. The graph can be drawn directly from the sociomatrix. Since relations in our
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model may or may not be symmetric, lines are both directional and nondirectional.

In essence, if a directional line exists from actor i to j, it may not exist from j to i.

We exclude any loops, which are lines between actors and themselves since actors do

not befriend themselves.

3.2. Social Forces Model for Social Networks. Different modeling approaches

have been developed to model social networks and social interaction. In this work,

we take a more physical approach inspired by Helbing’s social forces model for pedes-

trian walking behavior. We adapt Helbing’s model to describe social interaction and

ultimately, formulate a friendship model mathematically using the notion of social

forces. In essence, actors interact as though they were subject to acceleration and

repulsive forces when making their friendship choices. This approach assumes that

individuals behave according to a set of rules in a manner that promotes their util-

ity minimization, i.e, they choose courses of action with the most benefit and least

cost. In the context of friendship networks, social forces theory assumes that each

actor possesses a specific attitude toward making friends, a desire to befriend those

who share their preferences and attributes and that they respect the private space of

others. Consequently, following Helbing and Molnar’s theory, these rules describing

social interaction can be placed into a set of equations of motion [4].

3.2.1. Assumptions. We start with a fixed set of actors, denoted Λ, consisting of N

actors, who begin as mutual strangers and enter into social relationships with other

actors as time evolves. We make the following assumptions [3] in our model of network

dynamics:

• All actors consider the same attributes when attempting to make friends.

• Actors do not change categories within a particular attribute.

• Relationships between actors depend on shared preferences for attributes and

categories.

• Reciprocity for numerical preference levels is automatic by virtue of using the

Euclidean distance as a measurement of closeness but this is not so for categorical

preferences.

• Each actor attempts to maximize his status in the social group, i.e, he wishes

to form as many relationships as possible.

• Finally, the objective functional of each actor decreases with an increase in

shared attribute preferences and categories.

3.2.2. Data. The following data is required to run our model of network dynamics:
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Data:

N − total number of actors in a social environment

m− total number of attributes under consideration

l − total number of categorical attributes under consideration

k − number of categories in a particular categorical attribute

ri(t)− position vector describing actor i’s preference for each attribute, 1, . . . ,m

yi − vector identifying various attribute categories to which actor i belongs

wi − vector containing actor i’s preferences for similar attribute categories

v0
i − vector describing actor i’s initial rate of change of attribute preferences at time t = 0

vi(t)− vector describing actor i’s rate of change of attribute preferences at time t

ui(t)− vector describing actor i’s control for each attribute, 1, . . . ,m

Parameters:

lij − constant value set to ensure that actor j respects the private space of actor i

τi − relaxation time taken by each actor to return to his v0
i

Ni − reflects an actor’s desire to stick to his belief system

Now that we have formally stated what each data variable represents, we can

describe a few variables in more detail. For instance, v0
i is meant to reflect how quickly

a person intends to change their preference on a certain attribute in order to make

friends; it is represented by a ”velocity” vector in the social forces model described in

Section 3.3 and hereafter, we will call it intended social velocity. Therefore, if a person

intends to change their attribute preference levels rapidly, we’d expect to see a larger

v0
i compared to those who intend to change less rapidly. Similarly, ui(t) controls how

much actors vary their attribute preferences within a given set of bounds in order

to make friends. The control variables of people who desire to make many friends

will fluctuate greatly when compared to those actors who desire fewer relationships,

reflected by control variables which are greatly restricted. Similarly, since lij controls

how close actors allow others to get to them, those actors who desire to make many

friends will have a larger value for lij than those who desire to keep others at a

distance. Further, a large Ni is meant to penalize an actor for deviating from his

belief system and thus results in an increase in an actor’s performance index. Finally,

τi will be small for those who are more reluctant to change their attribute preferences

permanently.

3.3. The Model. It is well documented that individuals tend to behave in ways

that maximize a utility function of interest. Thus, we can formulate a multiobjective
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optimal control problem (MOCP) involving a set actors who wish to make as many

individual relations as possible while minimizing the associated costs and maintaining

their core beliefs. We use the optimal solution of the MOCP to form the social matrix

of the social group. The problem can be stated as follows.

3.3.1. Problem Formation.

min
u

∑
j 6=i

‖ri(tf )− rj(tf )‖2 +
∑
j 6=i

∥∥wi(tf ) · (yi(tf )− yj(tf ))
∥∥2

(1a)

+Ni

∫ tf

t0

‖ui(t)‖2 dt

such that

ṙi = vi(1b)

v̇i =
1

τi

(v0
i − vi)−∇ri

∑
j 6=i

‖ui − uj‖2(1c)

·(1 + ((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)

· exp{−(lij((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))}

and

(ri(0)− ~δimin
) ≤ ri(t) ≤ (ri(0) + ~δimax)(1d)

~δimin
≤ ui(t) ≤ ~δimax(1e)

Before stating exactly how to form the social matrix using the optimal solution,

we describe the MOCP in detail.

3.3.2. The Performance Index. When forming friendships, the goal of each actor is

to form as many ties as possible by minimizing the social distance between himself

and others but not at the expense of his belief system. This desire is described in

the following performance index (also referred to as the objective, cost, or payoff

function):

Ji =
∑
j 6=i

‖ri(tf )− rj(tf )‖2 +
∑
j 6=i

∥∥wi(tf ) · (yi(tf )− yj(tf ))
∥∥2

+Ni

∫ tf

t0

‖ui(t)‖2 dt.

We examine each term of the objective function separately. The first term∑
j 6=i

‖ri(tf )− rj(tf )‖2

is a component of social distance which represents the vector distance between actors

i and j on their levels of preference for the various attributes under consideration.
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The second term ∑
j 6=i

∥∥wi(tf ) · (yi(tf )− yj(tf ))
∥∥2

is the final component of social distance; it represents the weighted categorical dis-

tance between actors i and j. The categorical distance, yk
ij, between the two actors

on attribute k is calculated as follows:

yk
ij =

∣∣yk
i − yk

j

∣∣ =

{
1 if yk

i 6= yk
j ,

0 if yk
i = yk

j .

The vector wi holds actor i’s weighting factors for each categorical attribute. This

weighting factor, 0 ≤ wk
i ≤ 1, describes the actor’s attitude toward similarity on

attributes when making friends. A larger wk
i reflects that making friends with actors

from similar attribute categories is of utmost importance to actor i while not as im-

portant for smaller wk
i . Essentially, the weighting factor describes an actor’s tolerance

for diversity.

The third term

Ni

∫ tf

t0

‖ui(t)‖2 dt

represents the desire of each actor to stay as true to his beliefs as possible over time.

Ni is a weight that actor i uses to express how strongly he desires to stick to his belief

system. A large Ni reflects that actor i is less willing to deviate from his core values

while a small Ni means that he does not care as much to stick to his beliefs .

3.3.3. Social Network Dynamics. People are very likely familiar with the situations

they normally encounter. When reacting to issues that arise in their immediate envi-

ronment, they usually choose the best decision based on past experience. Therefore,

we can say that their reactions are somewhat automatic and predictable. This allows

us to describe how they react or behave using the below set of equation of motions.

Specifically, these equations form a system of nonlinear ordinary differential equations

which describe the state dynamics and constraints for our multiobjective optimization

problem.

Consider a set of actors Λ = {1, 2, . . . , N}. Each actor, i ∈ Λ, is described by a

position vector, denoted by ri(t) = [r1
i (t), r

2
i (t), . . . , r

m
i (t)]T and an associated social

velocity vector, denoted by vi(t) = [v1
i (t), v

2
i (t), . . . , v

m
i (t)]T . Each quantity, rk

i , in the

position vector describes the actor’s preference for particular attributes, k=1, . . . ,m

while vk
i describes the intentions or motivation an actor has regarding making friends

based on a particular attribute preference.

First, an actor changes his position according to the following differential equa-

tion:

ṙi = vi.
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Each actor’s level of preference for the various attributes is allowed to fluctuate by

some amount δk
i so that we have the following constraint on the position vector:

(ri(0)− ~δimin
) ≤ ri(t) ≤ (ri(0) + ~δimax)

Each actor has a vector of controls, ui = [u1
i , u

2
i , . . . , u

m
i ]T used to vary his attribute

preferences within the fixed attribute limits. The constraints on the control vector

are represented as:

− ~δimin
≤ ui ≤ ~δimax .

Next, to describe the actor’s change in social velocity over time, we use

v̇i =
1

τi

(v0
i − vi)−∇ri

∑
j 6=i

‖ui − uj‖2

·(1 + ((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))

· exp{−(lij((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))}.

This equation is of utmost importance to our model since it explains how each actor

moves through time. Therefore, we explain each component of this term in careful

detail.

The first term in the acceleration equation reflects an actor’s desire to move as

efficiently as possible and in a desired direction, ei, toward his next destination (or

friend) with a certain speed or enthusiasm, v0
i . Yet, when an actor deviates from

his intended social velocity, v0
i , within a specified relaxation time, τi, he has a strong

tendency, g0
i , to approach his intended social velocity again. In practical terms, this

means that having a larger τi will allow actors to deviate from their initial attitude

toward changing attributes for longer periods of time in order to make many friends.

Those actors with smaller τi values will be forced back to their initial attitudes quickly

and will acquire fewer relationships. This effect is modeled by a social velocity term,

g0
i :

g0
i (vi,v

0
i ) :=

1

τi

(v0
i − vi).

The second term in the acceleration equation stems from the fact that the be-

havior of an actor, i, can be influenced by other actors, j, in his social group. While

interacting with others, each actor generally respects the private space of other ac-

tors and tries not to get too close too fast. We can model these territorial effects, gij,

using a repulsive potential, Vj(β):

gij(ri − rj) = −∇ri
Vj[β(ri − rj)].
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The interaction potential which is affected by each actor’s behavior is defined by the

sum of the repulsive potentials, Vj:

Vint(r, t) :=
∑

j

Vj[β(ri − rj)]

where

β = (‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2

As previously mentioned, actors require space to make their next move, which is

respected by other actors. Therefore, for Vj(β) we use a monotonic decreasing function

in β. Since the previously mentioned effects or forces, all influence an actor’s behavior

simultaneously, their total effect equals the sum of all these forces. Therefore, the

total motivation to act or the social force, gi is:

gi(t) := g0
i (vi,v

0
i ) +

∑
j 6=i

gij(ri − rj)

=
1

τi

(v0
i − vi)−∇ri

Vint(ri, t)

where

Vint(ri, t) =
∑
j 6=i

‖ui − uj‖2 (1 + ((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))

· exp{−(lij((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − (‖vj∆t‖2))}

Hence, we have successfully described how an actor’s attributes or preferences evolve

through time when attempting to make friends and now we are able to state defini-

tively that the equations 1 make up our social forces model for friendship dynamics

[3].

3.4. The Social Matrix. We use the optimal solution from the MOCP described

in the previous section to identify the group structure of a social network. First, we

calculate the total social distance between two actors, i and j, by using

social distance = numerical distance + weighted categorical distance

dij =
∑
j 6=i

‖ri(t)− rj(t)‖2 +
∑
j 6=i

∥∥wi(t) · (yi(t)− yj(t))
∥∥2

(2)

Before determining whether or not relationship ties exist using our model, we need

to calculate the average social distance between the actors:

davg =

∑N
i=1

∑
j 6=i dij

N2 −N
, j = 1, 2, . . . , N.(3)
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Now, we are ready to determine whether or not two actors are connected. We decide

the entries of the social matrix X using the rule

xij =

{
1 if dij ≤ .8davg ,

0 otherwise.

So, if the social distance between two actors is less that the average social distance

between actors, then we say that two actors are friends.

4. COMPUTER SIMULATION OF A SOCIAL NETWORK

Using the aforementioned performance index along with the nonlinear time vary-

ing dynamical system described by the social forces model from the previous section,

we next provide an application to illustrate the features of the model more clearly as

well as the usefulness of applying a multiobjective optimal control approach to study

social networks.

In this example, we use our model to illustrate solving a multiobjective problem

with numerous conflicting objectives. We’ll show by computer simulation of inter-

acting actors that our model is capable of producing realistic effects of friendship

formation in a social network.

4.1. Problem Statement. Consider our model in Section 3.3.3 with N = 25.

Specifically, we have the following objective functions to be minimized:

J1 = ‖r1(tf )− r2(tf )‖2 + ‖r1(tf )− r3(tf )‖2 + · · ·+ ‖r1(tf )− r25(tf )‖2

+ ‖w1 · (y1(tf )− y2(tf ))‖
2 + ‖w1 · (y1(tf )− y3(tf ))‖

2

+ · · ·+ ‖w1 · (y1(tf )− y25(tf ))‖
2 +N1

∫ tf

t0

‖u1(t)‖2 dt

J2 = ‖r2(tf )− r1(tf )‖2 + ‖r2(tf )− r3(tf )‖2 + · · ·+ ‖r2(tf )− r25(tf )‖2

+ ‖w2 · (y2(tf )− y1(tf ))‖
2 + ‖w2 · (y2(tf )− y3(tf ))‖

2

+ · · ·+ ‖w2 · (y2(tf )− y25(tf ))‖
2 +N2

∫ tf

t0

‖u2(t)‖2 dt

...

J25 = ‖r25(tf )− r1(tf )‖2 + ‖r25(tf )− r2(tf )‖2 + · · ·+ ‖r25(tf )− r24(tf )‖2

+ ‖w25 · (y25(tf )− y1(tf ))‖
2 + ‖w25 · (y25(tf )− y2(tf ))‖

2

+ · · ·+ ‖w25 · (y25(tf )− y24(tf ))‖
2 +N25

∫ tf

t0

‖u25(t)‖2 dt

where t0 = 0 and tf = 1 which we try to minimize subject to the social forces model

and constraints defined in Section 3.3.3.
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4.2. Data Sets Defined. In order to simulate our model, we take N = 25 actors

and m = 5 attributes (education level, age, income, political tendency, and religious

affiliation). All of our attributes will serve as both quantitative and qualitative data

in the sense that for each particular attribute, an actor must first state his level of

preference for the attribute then describe the attribute category to which he belongs.

We construct a dataset to illustrate the capabilities of our model using a random

sample, that is, we take 25 observations from a larger demographic dataset and derive

numerical data needed for our model variables (see Tables 2, 3, 4 and 5). Specifically,

the collection method involved poll responses to phone survey questions for the 2004

presidential election [1]. Questions covered demographics on education, age, income,

political and religious preferences, etc. The overall demographics of the data set are

presented in Table 1.

Table 1. Data Demographics

Attributes Categories

Education Level 48% - Some College

28% - Grad School

24% - Grad School

Age Group 44% - 18 to 24

36% - 25 to 36

12% - 37 to 49

8% - 50+

Income Level 52% - < $20K

28% - $20K to $40K

20% - $50K to $70K

Political Affiliation 36% - Changes

36% - Democrat

20% - Republican

8% - Other

Religious Affiliation 12% - None

64% - Protestant

12% - Other

12% - Catholic

Challenges with data included missing data so to handle this, we chose only

observations with complete data. Scale also presented a problem so we initialized

data within the interval [0, 1] for comparison purposes.
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Table 2. Model parameters for each actor: i = 1, . . . , 25

Actor lij τi Ni

1 0.05 1/15.0 1.0

2 0.05 1/15.0 1.0

3 0.15 1/10.0 1.0

4 0.25 1/10.0 1.0

5 0.25 1/5.0 1.0

6 0.25 1/5.0 1.0

7 0.25 1/5.0 1.0

8 0.05 1/15.0 1.0

9 0.05 1/15.0 1.0

10 0.05 1/15.0 1.0

11 0.15 1/15.0 1.0

12 0.25 1/5.0 1.0

13 0.15 1/10.0 1.0

14 0.25 1/5.0 1.0

15 0.25 1/5.0 1.0

16 0.05 1/15.0 1.0

17 0.05 1/15.0 1.0

18 0.25 1/5.0 1.0

19 0.15 1/10.0 1.0

20 0.05 1/15.0 1.0

21 0.25 1/5.0 1.0

22 0.15 1/10.0 1.0

23 0.15 1/10.0 1.0

24 0.15 1/10.0 1.0

25 0.25 1/5.0 1.0

4.3. Implementation. We use Differential Evolution (DE) to solve the multiobjec-

tive optimization problem:

min
u

J = [J1, J2, . . . , J25](4)

subject to the constraints described in 3.3.3. Using this approach, we successfully

generate a whole set of Pareto-optimal solutions, which are all equally good.

There were several computational challenges which have to be overcome to solve

this problem. A system of 250 nonlinear ODEs must be solved and 25 nonlinear cost

functions must be minimized. Using parameter recommendations for DE from [8]

leads to a system that has approximately 12, 500 parameters and a population size of
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Table 3. Level of Preference, ri, for each attribute by actor: i = 1, . . . , 25

Actor Education Age Income Politics Religion

1 0.3915 0.5731 0.7367 0.7782 0.212

2 0.2664 0.4418 0.2583 0.3758 0.6072

3 0.7879 0.4397 0.6925 0.279 0.7069

4 0.3396 0.2403 0.3989 0.5451 0.2821

5 0.7207 0.3976 0.4928 0.4589 0.3563

6 0.7949 0.7931 0.5 0.7846 0.6355

7 0.5995 0.5 0.6016 0.5498 0.7485

8 0.693 0.2967 0.5079 0.6066 0.7232

9 0.5896 0.5544 0.5 0.6246 0.7602

10 0.6875 0.5166 0.6212 0.5906 0.5457

11 0.1618 0.5007 0.2875 0.3353 0.1646

12 0.3512 0.2325 0.1104 0.105 0.3839

13 0.1884 0.509 0.1929 0.1027 0.1104

14 0.1869 0.1797 0.6236 0.14 0.3878

15 0.5904 0.0353 0.6234 0.3037 0.1729

16 0.732 0.7485 0.5955 0.6788 0.7345

17 0.5101 0.7571 0.7048 0.7406 0.7753

18 0.6164 0.6416 0.5264 0.7775 0.7035

19 0.6923 0.7988 0.6499 0.629 0.7488

20 0.535 0.6796 0.5664 0.6196 0.5903

21 0.2634 0.2945 0.5018 0.745 0.7073

22 0.2981 0.5209 0.5135 0.274 0.2819

23 0.5783 0.7112 0.2296 0.2082 0.7626

24 0.5232 0.7223 0.2125 0.6331 0.2592

25 0.6909 0.2533 0.5626 0.7021 0.5726

at least NP = 25, 000. The problem is computationally expensive to solve given very

limited computing resources (time and memory). Therefore, the problem requires a

modified algorithm to generate a solution.

4.4. Algorithm: Parallel Differential Evolution. There are several variations of

Parallel Differential Evolution [2] found in the literature and here we have modified

and merged the different ones into one suitable for our problem. We implement our

version as follows:

• Step 1: Request K nodes (or processors) taking one node to be the master

node.
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Table 4. Measures for Similarity wi for each attribute by actor: i = 1, . . . , 25

Actor Education Age Income Politics Religion

1 0.25 0.5 0.0 0.0 0.0

2 0.25 0.5 0.5 0.0 0.25

3 0.85 0.5 0.25 0.0 0.25

4 0.85 0.5 0.25 0.0 0.0

5 0.85 0.5 0.0 0.5 1.0

6 0.85 0.5 0.25 0.5 1.0

7 0.85 0.5 0.25 0.85 0.25

8 0.5 0.85 0.0 0.0 0.5

9 0.5 0.85 0.0 0.0 0.25

10 0.5 0.5 0.25 0.5 0.25

11 0.5 0.85 0.0 0.5 0.25

12 0.5 0.5 0.5 0.5 1.0

13 0.5 0.85 0.0 0.25 0.0

14 0.5 0.85 0.0 0.85 0.25

15 0.25 0.85 0.0 1.0 0.25

16 0.25 0.85 0.0 0.0 0.25

17 0.25 0.85 0.0 0.0 0.5

18 0.85 0.5 0.5 0.85 0.25

19 0.25 0.85 0.0 0.5 0.5

20 0.25 0.5 0.25 0.5 0.25

21 0.25 0.5 0.5 0.5 0.25

22 0.25 0.85 0.0 0.85 0.25

23 0.25 0.85 0.5 0.0 0.25

24 0.25 0.5 0.25 0.5 0.25

25 0.25 0.85 0.0 0.85 0.25

• Step 2: At the master node, create K-1 populations and send one to each of

the remaining K-1 nodes.

• Step 3: At each of the K-1 nodes, each population evolves toward a nondomi-

nated set using DE.

• Step 4: As the termination criteria is met, each node sends its nondominated

set to the master node.

• Step 5: At the master node, compare the K-1 nondominated sets to get the

final Pareto-optimal set.

4.5. Numerical Results and Analysis. To solve our problem, we used the follow-

ing criteria:
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Table 5. Initial rate of change, v0
i , for each attribute preference by

actor: i = 1, . . . , 25

Actor Education Age Income Politics Religion

1 0.1216 0.1158 0.1144 0.1116 0.1049

2 0.112 0.1276 0.129 0.129 0.1162

3 0.0394 0.1114 0.1235 0.102 0.1277

4 0.0412 0.1192 0.1123 0.1095 0.1131

5 0.015 0.1052 0.1287 0.1038 0.0054

6 0.0878 0.1236 0.1059 0.1035 0.007

7 0.0022 0.111 0.1159 0.0164 0.1001

8 0.1277 0.0777 0.1151 0.1028 0.1251

9 0.119 0.0342 0.1145 0.116 0.1267

10 0.102 0.1232 0.1113 0.1229 0.1006

11 0.119 0.0148 0.1156 0.1125 0.103

12 0.1226 0.001 0.1245 0.1251 0.0037

13 0.1231 0.0639 0.1063 0.1241 0.129

14 0.1242 0.001 0.1117 0.0009 0.001

15 0.1163 0.0929 0.1014 0.0064 0.1201

16 0.1146 0.0485 0.001 0.1034 0.1137

17 0.001 0.0163 0.1244 0.1065 0.1251

18 0.0626 0.1083 0.1205 0.0909 0.1247

19 0.1023 0.0131 0.1265 0.1043 0.1163

20 0.1163 0.1007 0.1025 0.1062 0.1028

21 0.1063 0.1069 0.1148 0.1255 0.1089

22 0.1081 0.0845 0.1129 0.0713 0.1181

23 0.1088 0.0726 0.1104 0.1024 0.1055

24 0.1247 0.1208 0.1274 0.1246 0.122

25 0.1123 0.0383 0.1048 0.0349 0.1165

• Requested number of nodes: 61

• DE parameters: NP = 50 per node, W = .5, and Cr = .5

• Termination Criteria:∑25
i=1

∣∣∣J
(k)
i (u(1))+···+J

(k)
i (u(NP ))

NP
− J

(k−1)
i (u(1))+···+J

(k−1)
i (u(NP ))

NP

∣∣∣ < 10−5

The parameters for DE are based on suggestions from [8] and we created a stopping

criteria that drives the problem toward convergence to ensure a good solution.

We use a Pareto optimal trajectory of the MOCP to form our social matrix in

Figure 1. By analyzing the relations between actors, we identify two disjoint cliques

as shown in Figure 2: Clique 1 = {5, 6, 12} and Clique 2 = {9, 11, 16, 22, 23, 25}.
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Figure 1. Sociomatrix with Interaction Potential, Vint (N = 25)

Figure 3 shows that the social distance between members of Clique 1 is less than the

average distance between them. In Figure 4, we see the evolution of the preferences

for members in the smaller clique and it is clear that they share similar preferences.

Using this preference information along with the model parameters, we can determine

the basis for the cliques. For instance, if we look at Clique 1, we conclude that the

basis for friendship between actors actors 5, 6, and 12 stems from the fact that

their chosen parameters are very repulsive. They have the smallest τi, and large

weights, wi for most categories and their v0
i is small for several attribute preferences

indicating the lack of motivation to make lots of friends. In fact, they even share

similar attribute preferences and demographics. Actors 5 and 6 share four out of five

attribute categories; actor 12 shares three out of five attribute categories with actors

5 and 6. All three members of the clique are democrats, college educated ranging in

age from 25 − 36 with religion “other”. Now that we know the basis for Clique 1’s

formation, is it possible to break it? Table 6, suggests that the answer is ’yes’. By

definition, a clique requires three mutually friendly actors. From Table 6, we see that

if the criteria for friendship becomes slightly stricter, actor 6 no longer perceives that

he has two friends and thus the clique is broken. This fact is confirmed in Figure 5

where the social distance between actors 6 and 12 clearly exceeds the average distance

between actors. We will explore the possibility of breaking cliques more in Section 6.

5. MEMORY EFFECT

An attractive potential is added to the model that has the same form as the

repulsive potential but with opposite sign. With memory effect [3], actors will consider

the entire history when deciding to make friends. We expect memory effect to bring
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Figure 2. Cliques 1 and 2

Figure 3. Clique 1: Social distance (dij ≤ .8avg)

actors who are close together closer making cliques stronger; it also maintains distance

between actors who are far apart. Next, we illustrate the impact of the memory

potential in the model using a similar multiobjective control approach.

5.1. Problem Formulation. The Multiobjective Optimal Control problem becomes:

Find the Pareto-optimal set which minimizes J = [J1, . . . , JN ] where

Ji =
∑
j 6=i

‖ri(tf )− rj(tf )‖2 +
∑
j 6=i

∥∥wi(tf ) · (yi − yj)
∥∥2

+

∫ tf

t0

‖ui(t)‖2 dt
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Figure 4. Clique 1: Evolution of Preferences

Table 6. Number of friends per actor

such that

ṙi = vi

v̇i =
1

τ
(v0

i − vi)−∇ri
Vint −∇ri

Vm

where Vint and Vm are repulsive and attractive potentials respectively. Simple

bounds on state and controls must also be satisfied as before.
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Figure 5. Clique 1: Social distance (dij ≤ .7avg)

The repulsive potential for the model has the form:

Vint =
∑
j 6=i

‖ui − uj‖2

·(1 + ((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2))

· exp{−lij((‖ri − rj‖+ ‖ri − rj − vj∆t‖)2 − ‖vj∆t‖2)}

The attractive potential for the model has the form:

Vm(ri, t) =

∫ t

0

∑
j 6=i

G(r, s) exp
{t− s

T

}
ds

where

G(r, s) = −γ(1 + ((‖ri(t)− rj(s)‖+ ‖ri(t)− rj(s)− vj(s)∆t‖)2 − ‖vj(s)∆t‖2)

· exp
{
− lij((‖ri(t)− rj(s)‖+ ‖ri(t)− rj(s)− vj(s)∆t‖)2 − ‖vj(s)∆t‖2)

}
Notice the addition of two more parameters with this new model: γ and T . The

parameter, γ, belongs to [0, 1] and reflects how much effect memory has on an actors

friendship choice. Large γ indicates that memory has a greater effect when making

friends while smaller γ means that the interaction potential plays a greater role in

the friendship choice. Memory effect decays at a rate of 1/T in the model.

5.2. Numerical Results and Analysis. To solve the multiobjective optimal con-

trol problem with memory, we choose γ = .2, T = .7 and use the same criteria as

before:

• Requested number of nodes: 61

• DE parameters: NP = 50 per node, W = .5, and Cr = .5
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• Termination Criteria:∑25
i=1

∣∣∣J
(k)
i (u(1))+···+J

(k)
i (u(NP ))

NP
− J

(k−1)
i (u(1))+···+J

(k−1)
i (u(NP ))

NP

∣∣∣ < 10−5

To illustrate the effect of adding memory to the model, we examine what happens

when actor 25 changes his attribute preferences drastically at some point in time. In

Figure 6, we see that without memory effect, social distance between actors 25

and 9, 11, 16, 22 fluctuates. Actor 11 is no longer a friend to actor 25 near the end of

the time period; in fact, actor 25 is actually out of the clique. Then in Figure 7, we

see that with memory effect, actors 9, 11, 16, and 22 get even closer to actor 25

after the change. Memory effect enables actors to remember the long-term history of

their friends. Clearly, from the graph, 25 is back in the clique with memory effect

in the model.

Figure 6. Social Distance for Clique 2 w/o Memory Effect

Figure 7. Social Distance for Clique 2 with Memory Effect

It is important to note that memory effect can also have the opposite effect of

that just discussed. Suppose we assume that at some point in time, actor 12 of Clique

1 changes his attribute preferences drastically. Well without memory effect, the social

distance between actors 12, 5, and 6 fluctuates as shown in Figure 8. However, with

memory effect, actor 5 remembers that he and actor 12 were friends while actor 6

remembers that they were not friends as indicated in Figure 9. In this case, clearly
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memory effect brings those who are friends together while keeping those who are not

friends apart.

Figure 8. Social Distance for Clique 1 w/o Memory Effect

Figure 9. Social Distance for Clique 1 with Memory Effect

6. “BREAKING THE TIES THAT BIND”

In this section we explore how our model can address questions of how to bring

cliques together and how to break them apart. The answer to such questions could

prove crucial to our national security. Suppose we start by addressing the question:

is there a way to connect the two cliques? The answer is ’yes’. Since actors 9 and

11 from Clique 2 consider actor 12 from Clique 1 a friend, we should start there. Of

course, the fact that actor 12 does not reciprocate their friendship keeps the cliques

apart. However, if there was some way to get actor 12 to reciprocate, then the two

cliques could connect totally.

We reviewed the model data and parameters used to construct the social matrix

over time and determined that changing actor 12’s preferences and parameters alone

is not enough to connect the cliques. Actor 12 will have to change his preference

for diversity, wi. If he relaxes his weights for categorical similarity on the various

attributes, then he will be able to reciprocate the friendship of actors 9 and 11 thus
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connecting the two cliques (see Figure 10). Figure 11 shows the social distance be-

tween these individuals after their preferences/parameters have been altered; clearly,

this change enables mutually reciprocated friendship between the actors.

In recent years, the topic of breaking cliques has become even more intriguing

than connecting cliques for various reasons. For instance, such a topic appeals to

military leaders for its potential to aid in the war on terror. Knowing how to split

terror cells would be crucial to our nation’s defense. In the example above, we were

able to model connecting cliques by changing model parameters and preferences. In

the process, we discover valuable information on how to keep the cliques apart. Since

the connection of the two cliques centered around actors 9,11, and 12, these actors are

indeed potential “targets” for disrupting communication between the two cliques.

So using our model, not only have we discovered ways to connect the cliques, but

we have identified key nodes to focus on when trying to break ties between cliques

within a social network. This techniques could prove useful when trying to destabilize

a network.

Figure 10. Connecting Cliques 1 and 2

Figure 11. Altered social distance between actors 9,11, and 12
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7. CONCLUSION AND FUTURE DIRECTIONS

From our work, we conclude that multiobjective optimal control theory provides

a suitable framework for the design and prediction of network evolution. Differential

Evolution was successfully employed in solving the associated MOCPs with reasonable

results. Social force theory with and without memory effect adequately models clique

formation as well as suggests potential targets for network destabilization. Since this

work focused primarily on cooperative networks like friendships, it will be interesting

to research whether or not such models can be refined in the future to include non-

cooperative or criminal networks such as terrorist, drug, and other illegal networks.

In addition, the model may be able to address such problems as the prediction of

missing links. Missing links stem from missing nodes and/or links within a network

that for some reason have not yet been discovered. In our upcoming research, we

will use known parameters and other existing information from the model to uncover

these missing links between nodes.
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