
Neural, Parallel, and Scientific Computations 17 (2009) 409-432

HOPFIELD NEURAL NETWORKS: ADAPTIVE COEFFICIENTS

AND OTHER ENHANCEMENTS

LAURENE V. FAUSETT

Texas A&M University-Commerce, Department of Mathematics

Commerce, TX 75429-3011

ABSTRACT. The Hopfield neural network has been an important tool for solving the travelling

salesman problem for over 25 years. However, computational issues have continued to make it

difficult to use in practical settings. This paper presents two approaches to solving one of the

continuing dilemmas, namely how to find appropriate coefficients for the terms in the energy function.

Several other enhancements to the original model are also presented, which improve the reliability

of modified networks to find good valid tours.

Keywords. Hopfield neural networks, travelling salesman problem, adaptive coefficients

1. INTRODUCTION

Neural networks provide an alternative to traditional computing techniques for

many types of problems. Hopfield neural networks may be used for a variety of

optimization and constrained optimization problems, including the classic traveling

salesman problem.

In general, a neural network consists of a (large) number of simple processing

elements (neurons), connected by weighted pathways over which signals are sent. The

pattern of connection (network architecture) and method of determining the weights

are two of the distinguishing characteristics of different types of neural networks.

A Hopfield neural network (in particular a continuous Hopfield network) is dif-

ferent from many other types of networks in that the weights on the connections

are specified in advance, rather than trained. No examples of “correct” or “desired”

results are provided to the network. Instead, an energy function is constructed so

that a minimum of the energy function corresponds to a solution of the optimization

problem. The question of setting the weights (which corresponds to the question of

setting the coefficients on different terms in the energy function) has been a central

question in the use of Hopfield networks.

In this paper, we consider several variations of the original Hopfield neural net-

work for solving the classic travelling salesman problem. These include two ap-

proaches that allow the network to determine the appropriate coefficients for the

Received June 11, 2009 1061-5369 $15.00 c©Dynamic Publishers, Inc.

410 L. V. FAUSETT

terms in the energy functions, as well as some alternatives to the standard random

initialization of activations.

The paper is organized as follows. In the next section we present an overview

of the travelling salesman problem (TSP) and the basic Hopfield neural network ap-

proach to the problem. In section 3, we present the balanced coefficient Hopfield

method for the TSP. In section 4 we consider an approach to finding the coefficients

based on Lagrange multipliers. Section 5 discusses various other computational con-

siderations, including methods of initializing the activations to improve the quality of

the valid tours. Finally, section 6 summarizes the results and draws a few conclusions.

2. TRAVELLING SALESMAN PROBLEM AND

THE BASIC HOPFIELD NETWORK APPROACH

The travelling salesman problem is a classic constrained optimization problem.

The goal is to find a path or tour of minimum distance which visits each of a set of

n cities once and only once.

2.1. Hopfield Neural Networks. A Hopfield neural network operates by letting the

activations of the neurons evolve to minimize an energy function. The construction

of an appropriate energy function is thus the key aspect of designing a Hopfield

neural network for a particular problem. The energy function typically consists of

several terms, each of which is minimized when a particular constraint is satisfied.

In addition there is a term in the energy function corresponding to the objective

function of the problem (in this case, finding the shortest possible tour). The weights

on the connections between the neurons are directly related to the coefficients on the

different terms in the energy function. However, in using a Hopfield network it is not

necessary to explicitly display the weights for each neuron.

2.2. Architecture. The basic approach to using a Hopfield network to solve the

n−city travelling salesman problem was established early on (Hopfield and Tank,

1983, Szu, 1988). The network consists of n2 neurons, arranged in an n × n array.

The rows of the array represent cities to be visited, the columns represent the days

(or stages) of the tour. The activation of each neuron ranges between 0 and 1, with 1

(or “on”) denoting the fact that the city represented by the neuron is visited on the

indicated day. Thus, a valid tour is given whenever the activations of the array are

a permutation matrix (exactly one element on in each row and each column). The

return of the salesman from the final city to the starting city is built into the network

also.

HOPFIELD NEURAL NETWORKS 411

2.3. Energy Function. The energy function used in the original presentation of

the problem (Hopfield and Tank, 1983) had terms representing the row constraint

(only one neuron on in each row), the column constraint (only one neuron on in each

column), the total distance travelled (objective), and one “encouragement” term to

ensure that exactly n cities were visited. This last term was intended to prevent

a minimum tour of length zero achieved by the salesman staying home. Other re-

searchers have found that a more specific form of encouragement was more effective.

This approach uses two encouragement terms: one to ensure that exactly one city is

visited on each day, and one to ensure that each city is visited exactly once. This

is the form of the energy function that is most widely used at present, and the form

that will be used in this paper. Thus the energy function has the form

(1) E = 0.5[C1E1 + C2E2 + C3E3 + C4E4 + C5E5]

where

• E1 represents the constraint that no city is visited more than once,

• E2 represents the constraint that no more than one city is visited on any day,

• E3 requires that the total number of cities visited on any day is one,

• E4 requires that the total number of times a city is visited is one,

• E5 represents the objective that total distance be as small as possible.

The internal activation of neuron nx,i is denoted ux,i; its output signal is vx,i where

v = tanh(u). The equations for these energy terms are

(2) E1 =
∑

x

∑

i

∑

j 6=i

vx,ivx,j; E2 =
∑

i

∑

x

∑

y 6=x

vx,ivy,i;

(3) E3 =
∑

x

(1 −
∑

j

vx,j)
2; E4 =

∑

i

(1 −
∑

x

vx,i)
2;

(4) E5 =
∑

x

∑

y 6=x

∑

i

dx,yvx,i(vy,i+1 + vy,i−1).

However, the issue has remained (until recently) as to how to set the coefficients on

these terms.

2.4. Evolution of Activations. The evolution of the network consists of each neu-

ron changing its internal activation in a manner that reduces the overall energy of

the network. This is a numerical (discrete time-step) approach to solving a differen-

tial equation describing the connection between changes in activation and changes in

energy.

(5)
du

dt
= −

∂E

∂v
.

412 L. V. FAUSETT

Thus, the question of appropriate values for the coefficients is inter-related to

other computational issues such as the size of the time step and the steepness of the

output function. The update equation for a neuron is given by

(6)
du

dt
= −[C1

du1

dt
+ C2

du2

dt
+ C3

du3

dt
+ C4

du4

dt
+ C5

du5

dt
].

The equations for these update terms are

(7)
du1

dt
=

∑

j 6=i

vx,j;
du2

dt
=

∑

y 6=x

vy,i;

(8)
du3

dt
=

∑

j

vx,j − 1;
du4

dt
=

∑

x

vx,i − 1;

(9)
du5

dt
=

∑

y 6=x

dx,y(vy,i+1 + vy,i−1).

3. THE BALANCED HOPFIELD NETWORK

The relative importance of the different terms in the energy function has been a

major subject of investigation in the the use of the Hopfield network.

3.1. Motivation. The idea behind the balanced coefficients approach is that the

proportion of the total energy that comes from each energy term should be reflected

in the relative importance of each of the corresponding terms in the update equations

(Park, 1996). The coefficients are found to be

(10) Cj =
Ej∑
j
Ej

which is simply a normalization of the partial derivative of the total energy with

respect to the corresponding coefficient. These coefficients change as the energy

changes, but eventually stabilize at values that allow the neural network to find good,

valid solutions.

In the balanced coefficients approach, a first phase of evolution is used to find

these proportions. The change in the energy is easily computed using some of the same

calculations that are needed for the updates of the activations also, so the additional

computational effort is relatively small. During the second phase the coefficients are

held fixed and the network evolves to find a valid (and usually good) tour.

The coefficients found for a tour of a particular number of cities (with coordinates

and distances normalized to the same range) is relatively independent of the actual

cities used, so the coefficients can be found for each problem size without recomput-

ing on each run. It is found that the average of several such balancing phases can

be used effectively for a wide variety of city sets (with the same number of cities).

HOPFIELD NEURAL NETWORKS 413

Since determination of the appropriate coefficients can be carried out independent

of a specific city-set, separate Matlab functions are given in the Appendix for the

determining of the balanced coefficients (AHNN_B) and the solution of the travelling

salesman problem using fixed coefficients (AHNN_F).

3.2. Sample results. Typical results using AHNN_F with coefficients found from

AHNN_B are shown in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4.00751

Figure 1: Typical 20-City tour for AHNN_F

The results using 10 different n-city sets, with 10 random initializations for each set:

n C1 C2 C3 C4 C5

10 0.0526 0.0741 0.2301 0.2516 0.3916

15 0.0543 0.0708 0.2316 0.2481 0.3952

20 0.0546 0.0687 0.2292 0.2433 0.4041

30 0.0550 0.0684 0.2234 0.2368 0.4164

Rounding each of these to the nearest 0.05 (and making any necessary minor adjust-

ments to ensure that the sum of the coefficients is 1), we have

C = [0.05 0.05 0.25 0.25 0.40]

In some applications of this process, the coefficient of the objective term is held fixed,

since the energy associated with that term cannot be driven to zero. For example,

the results for C5 = 0.5 and 10-cities may be approximated in a balanced form as

C = [0.08 0.08 0.42 0.42 0.50]

414 L. V. FAUSETT

Park investigated the use of different fixed values for C5 and found that smaller

values for larger city sets gave approximately half of the solutions as valid tours.

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 2: Example of balancing the coefficients

The Balanced Hopfield network gives much better results than those obtained

using many other possible values for the coefficients. Another approach to the problem

of determining the coefficients is considered in the next section.

4. THE LAGRANGE HOPFIELD NETWORK

The relative importance of the different terms in the energy function has been a

major subject of investigation in the the use of the Hopfield network.

4.1. Motivation. This approach views the coefficients as Lagrange multipliers, and

evolves both coefficients and activations simultaneously (van den Berg, 1996). The

activations, u(x, y), update as in the Balanced Hopfield Network.

The equations for the updating of the coefficients are

(11)
dC1

dt
= vy,x

∑

j 6=x

vy,j ;
dC2

dt
= vy,x

∑

i6=x

vi,x;

(12)
dC3

dt
= (

∑

j

vy,j − 1)2;
dC4

dt
= (

∑

i

vi,x − 1)2.

A Matlab function AHNN_L to implement this model is given in the Appendix.

4.2. Sample Results. The coefficients for the constraints in the Lagrange-Hopfield

network evolve away from zero as the network seeks a valid tour. The size of these

constraint coefficients continues to grow as the network evolves, although the changes

become smaller as the network nears a valid tour. The Matlab function AHNN_L uses

the same stopping condition (test for valid tour) and basic time-step (time-step for

updating the activations) as the function AHNN_F. However, because the constraint

coefficients grow more rapidly for larger sized problems, the time-step used for the

coefficients is the basic time-step divided by the number of cities. It is worth noting

that this network consistently finds valid tours, and in a relatively few epochs.

HOPFIELD NEURAL NETWORKS 415

A solution of a 20-city problem using AHNN_L would specify the epoch at which

a valid tour was first found, the path pp, and the length of the tour len. If the tour

is shorter than any found previously, its length is designated as len_s. The path is

a vector of the cities in the order in which they are visited. The coefficients may also

be displayed if desired, in the vector C. Note that the coefficients given are the final

coefficients when a valid tour was first detected, and would not work effectively as

fixed coefficients. Typically several different initializations of the neurons would be

used for each problem. An example of typical results is given below.

valid path at epoch 17

C = [0.8553, 0.8573, 0.8988, 0.8969, 1.0000]

pp = [19,13, 7,10,12, 6, 5,17, 3,15, 4,16,11,20, 1,18, 9, 2,14, 8]

len_s = 4.0634

The Matlab scripts given in the Appendix also graph the tour each time a shorted

tour is found.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4.06339

Figure 3: Typical 20-City tour for AHNN_L

The quality of the solutions found by the Lagrange-Hopfield model is influenced

by the initial activations of the neurons, as is the case for the Balanced-Hopfield model

discussed in the previous section. The next section considers this aspect, and others

that impact the computational characteristics of Hopfield neural network solutions of

the travelling salesman problem.

416 L. V. FAUSETT

5. OTHER CONSIDERATIONS

Other computational considerations include the initialization of activations, and

the choice of update order for the neurons (for each cycle, or “epoch”). In theory

neurons are updated in a random order, but this raises the question as to whether

all neurons are in fact being updated in a uniform manner. Other possible update

strategies are sequential, or cycle with random start, or batch updates. The effect of

these choices is discussed below.

5.1. Initializations. There is a lot of variation in the quality of the results from

both the Lagrange-Hopfield and Balanced-Hopfield approaches (even for the same

city set). This suggests that the random initialization of the activations (which has

been standard for Hopfield neural networks in general) of the neurons may be a

significant difficulty. To mitigate this problem, a biasing of the initialization towards

shorter tours has been developed.

5.1.1. Biased Initializations. The biased initialization begins by specifying a starting

city (say city j) for the tour (by increasing the initial activation of that neuron on

day 1). It then proceeds to encourage the city that is closest to city j to be visited

on day 2 (again by increasing the initial activation of that neuron). The initialization

continues in this way until the initializations have biased the tour by increasing the

initial activation of one neuron in each column. To prevent selecting the same city to

be encouraged on different days, once a nearest city is selected, it is prevented from

being selected again. This means that the tour is most strongly biased toward short

paths for the first few days, i.e. for cities that are close to the starting city. For this

reason, the biased initialization is used with a sequence of n starting initializations,

with each of the n cities in the problem chosen as the starting city in one of the

initializations. Scripts for running AHNN_F and AHNN_L with biased initializations are

given in the Appendix (codes AHNN_F_run_bias and AHNN_L_run_bias respectively).

HOPFIELD NEURAL NETWORKS 417

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
3.95708

Figure 4: 20-City tour for AHNN_F with biased initialization

5.1.2. Encouraged Initializations. Another approach to improving the quality of the

tours found by Balanced Hopfield and Lagrange Hopfield neural networks is to en-

courage all cities within a specified distance (for example 0.5 units) of the city being

visited on day 1, (and also, if desired, discourage all that are further than a certain

distance away). This approach allows for some experimentation in terms the radius

for encouragement (the specified distance) or discouragement, as well as the strength

of the encouragement or discouragement. This only starts the solution in the direction

of a valid tour, and initializations with different starting cities are still important.

The following segment of Matlab code illustrates the changes that would need

to be made to the codes AHNN_F_run_bias and AHNN_L_run_bias to use the en-

couraged initialization. In addition to the code shown, one would define the matrix

d1 = d + eye(N_CT) just after computing matrix d (where N_CT is the number of

cities in the problem). Then insert the following code after the computation that

finds the city (which has not been encouraged previously) that is nearest the current

city, and encourages it to be visited on the next day. The radius of encouragement

(0.5) and the strength of encouragement (0.25) may be modified as desired.

% encourage visiting nearby cities on day kk = k + 1

for i = 1:N_CT-1

if d1(j, i)< 0.5

u(i, k+1) = u(i,k+1)+ 0.25;

418 L. V. FAUSETT

end

end

This provides a small additional encouragement for visiting any of the cities which

are within 0.5 units of the city currently being visited.

Typical results for a 10-city problem illustrate the use of both biased initialization

and biased and encouraged initialization for the AHNN_F and AHNN_L networks. The

matrix p gives the coordinates of the cities in Matlab format. The elapsed time (for

10 initializations) is computed using the Matlab functions tic and toc. The function

tic starts a stopwatch timer and toc displays the elapsed time (in seconds) at the

end of the run.

The coordinates of the cities:

p = [0.9226 0.8743

0.2258 0.4316

0.5838 0.8260

0.0928 0.7593

0.6253 0.8739

0.6371 0.4706

0.7204 0.8275

0.8487 0.7155

0.9101 0.4381

0.0808 0.7972]

The Balanced Hopfield network with biased initialization finds valid tours for 4

of the 10 initializations. The best tour is

pp = [2 4 10 3 5 7 1 8 9 6]

len_s = 2.4212

elapsed_time = 9.9540

As in other examples, the AHNN_F network uses the coefficients found earlier, namely

C = [0.05, 0.05, 0.25, 0.25, 0.4].

The Balanced Hopfield network using biased initialization with additional en-

couragement finds valid tours for 3 of the initializations. The best tour is the same

as that found with biasing alone; the elapsed time is similar.

The Lagrange Hopfield network with biased initialization finds valid tours for all

10 initializations. The best tour is

valid path at epoch 10

C = [0.2879 0.2855 1.3809 1.3514 1.0000]

ppp = [2 4 10 3 5 7 8 1 9 6]

len_s = 2.5363

HOPFIELD NEURAL NETWORKS 419

elapsed_time = 2.7240

The Lagrange Hopfield network using biased initialization with additional en-

couragement finds valid tours for all 10 initializations. The best tour found is the

same as (a permutation of) that found with biasing alone, but the time required is

approximately 1/2 of the time for biasing alone.

5.1.3. Path Following. A third possible way of improving the quality of the solutions

is based on the idea of path-following used in some numerical solutions of partial

differential equations. This approach may be combined with either a biased initial-

ization or an encouraged initialization (or with random initialization for that matter).

In order to use path-following, the function implementing the neural network must

return the matrix of internal activations u1 for the valid tour. A new initialization is

then formed using an average (or other weighted combination) of the activations for

the valid tour and random activations Ur (denoted as noise in the following segment

of Matlab code). Depending on the proportion of u1 and Ur, the network may find

a tour which is similar to the previous solution, but possibly shorter. If too much

emphasis is placed on the activations from the valid tour, the network will simply

find the same solution several times.

The approach is illustrated in the following segment of code, which can be used

to replace the corresponding part of the scripts given in the Appendix. Portions of

the computations which are the same as in the other scripts, such as the plotting of

better solutions, are omitted.

for k = 1:k_max

[len, path, u1] = AHNN_F(d, u, MAX_EP_B, tm_st, C, u0);

if len ~= 0

u = 0.5*noise + 0.5*u1;

end

end

This tends to give the same tour for each retry. Adjusting the proportion of the

previous activations and the new noise improves the results in some cases, but as

with the encouraged initialization, there is room for experimentation in adjusting the

parameters.

5.2. Update Options. The basic Hopfield network was originally presented in terms

of random updates of the neurons. This has biological motivation, but may cause

difficulties in implementation. Sequential updates of the neurons ensures that all

neurons update on each epoch, and simplifies coding, but raises the question as to

whether the order of updates plays any role in the quality of the solution.

420 L. V. FAUSETT

Within the structure of the MATLAB codes given in the Appendix for the Bal-

anced Hopfield Network, several variations of the basic sequential update scheme have

been investigated.

The basic updating strategy is given in the following code:

for x = 1:N_CT

for y = 1:N_CT

[UinTot, S] = Sum_in(y, x, v, d, C, N_CT);

u(y,x) = u(y,x) + tm_st*UinTot;

v(y,x) = 0.5*(1.0+tanh(u(y,x)/u0));

end

end

It may be summarized as

for x = 1:N_CT

for y = 1:N_CT

update u; update v

end

end

Other variations include:

Interchanging the order of the loops:

for y = 1:N_CT

for x = 1:N_CT

update u; update v;

end

end

Updating by rows or by columns (vectorizing the update of v).

for x = 1:N_CT

for y = 1:N_CT

update u

end

update v

end

Updating the entire matrix of v.

for x = 1:N_CT

for y = 1:N_CT

update u

end

HOPFIELD NEURAL NETWORKS 421

end

update v

No significant difference in the quality of the solutions, or the speed of the com-

putation, was detected. Further vectorization of the updates of u would require

modification of the subroutine Sum_in, and was not investigated.

5.3. Energy Function Options. The energy function in the original Hopfield net-

work included only one “encouragement term” which was intended to ensure that

the number of neurons “on” was the same as the number of cities. One of the first

modifications made by other researchers was the introduction of more specific encour-

agement, specifically the use of two terms, one to ensure that there was one neuron

“on” in each row, and one in each column.

The original Hopfield network also included a decay term in the update equations

for the activations, which corresponded to an integral term in the energy function.

It was pointed out (Takefuji, 1992) that using the decay term did not guarantee

convergence to an energy function constructed (without the integral term) to specify

the desired solution to the travelling salesman problem. Many, but not all researchers

since then have not included the decay term in the activation updates. None of the

codes included in this study use the decay term, although it should be noted that the

introduction of the use of Lagrange multipliers in a Hopfield network (van den Berg,

1996) on which the Lagrange Hopfield network presented here is based, did use the

decay term.

Further modifications of the energy function may be investigated in future work.

For example, if specific row and column encouragement terms are beneficial (and

their wide acceptance indicates that is the case), then perhaps further modification

of these terms so that shorter tours are encouraged could also be helpful.

5.4. Stopping Conditions. All of the results reported in this paper are based on

declaring a neuron to be “on” if its output signal v is greater than 0.5. The iterations

stop when a valid tour is detected (or after a maximum number of epochs. Some

other investigators have taken a much higher threshold value for declaring neurons

to be “on” or “off”, and have therefore required many more epochs. The number of

epochs required is also directly influenced by the time step used in the computations.

Researchers who include the decay term as given in the original Hopfield network use

a much smaller time step in order to keep the influence of the decay term quite small.

6. SUMMARY AND CONCLUSIONS

Investigations of the use encouraged initializations, or path-following, do not

indicate that their basic forms provide any advantage over the use of the biased

422 L. V. FAUSETT

initialization described in section 5.1.1. However, comparison of AHNN_F using the

coefficients determined by AHNN_B, and AHNN_L, provide some interesting insights into

the usefulness of Hopfield-type neural networks for solving the travelling salesman

problem.

The following summary of results illustrates the typical behavior of the Balanced

Hopfield and Lagrange Hopfield networks using the original 10-city problem from

(Hopfield, 1984), 5 other random 10-city problems, 5 random 20-city problems, and

5 random 30-city problems, and 5 random 40-city problems.

6.1. 10-city problems. In this section we illustrate typical results for the Balanced

Hopfield and Lagrange Hopfield networks using several different initializations. In

each case the original Hopfield city-set, and 5 rother random city-sets are used. There

are 10 initializations for each city set. The results for the Balanced Hopfield network

are found using AHNN_F with the coefficients found previously using AHNN_B.

6.1.1. Balanced Hopfield Network; Random Initializations. For the original Hopfield

10-city problem, 2 valid tours were found, one of which was optimal. The optimal

tour was found after 150 epochs; its length is 2.6907.

pp = [7 8 9 10 2 3 1 4 5 6]

Five random 10-city sets were also used. No valid tours for any of these city-sets.

6.1.2. Lagrange Hopfield Network; Random Initializations. The Lagrange Hopfield

network found 10 valid tours for each city-set; for the original data set the optimal

tour was found in 19 epochs.

For the 5 random 10-city sets, the Lagrange Hopfield network required approxi-

mately 15 epochs to find a valid (and very good) tour. In each case the final coefficients

were very similarly, approximately

C = [0.5 0.5 2.0 2.0 1.0]

6.1.3. Balanced Hopfield Network; Biased Initializations. For the original data, 6 of

the 10 trials gave valid tours, including the optimal tour. No valid tours were found

for four of the random 10-city sets; for the fifth city-set, 3 of the 10 trials gave valid

tours.

6.1.4. Lagrange Hopfield Network; Biased Initializations. The Lagrange Hopdield

network found 10 valid tours for each city-set. For the 5 random 10-city sets, the La-

grange Hopfield network with biased initialization required approximately 10 epochs

to find a valid (and very good) tour. In each case the final coefficients were approxi-

mately

C = [0.25 0.25 1.5 1.5 1.0]

HOPFIELD NEURAL NETWORKS 423

6.2. 20-city problems. We now illustrate the behavior of the Balanced Hopfield

and Lagrange Hopfield networks for 5 random 20-city sets;, using 20 initializations

for each city set.

6.2.1. Balanced Hopfield Network; Biased-Encouraged Initializations. For 2 of the city

sets there were no valid tours found; for the other city sets 2/20, 3/20 and 7/20 valid

tours were found. The best tours found for each of the 5 city-sets appeared to be of

very good quality.

6.2.2. Balanced Hopfield Network; Biased-only Initializations. For 1 of the city sets

there were no valid tours found; for the other city sets 1/20, 3/20, 4/20 and 4/20

valid tours were found. The best tours found for each of the 5 city-sets appeared to

be of good or very good quality. The elapsed time for each city set is a little over 90

seconds; city sets in which there are more valid tours execute more quickly, as fewer

epochs are computed.

6.2.3. Lagrange Hopfield Network; Biased-Encouraged Initializations. Valid tours were

found in all but one case. The best tour found for each of the 5 city-sets appeared to

be of very good quality.

6.2.4. Lagrange Hopfield Network; Biased-only Initializations. Valid tours were found

in all cases. The best tour found for each of the 5 city-sets appeared to be of very

good quality. The elapsed time for each city set is between 12 and 15 seconds.

6.3. Larger problems. We now consider some 30-city and 40-city problems. In each

case there are 5 randomly generated city-sets and the same number of initializations

for each city-set as there are cities.

6.3.1. Balanced Hopfield Network; Biased-only Initializations. The results for the Bal-

anced Hopfield network in solving 5 randomly generated 30-city problems, are sum-

marized as follows. The city sets had 1/30, 1/30, 3/30, 11/30 and 12/30 valid tours;

the elapsed time ranged from 284 to 337 seconds for the the 30 runs for each city-set.

6.3.2. Lagrange Hopfield Network; Biased-only Initializations. For the 5 randomly

generated 30-city problems, valid tours were found in all cases. The elapsed time

ranged from 40 to 61 seconds.

The best tour found for each of the 5 city-sets appeared to be of good to very

good (but not optimal) quality.

424 L. V. FAUSETT

6.3.3. Lagrange Hopfield Network; Biased-only Initializations. Due to the relatively

low proportion of valid tours, and the rather long computational times required,

results for larger city sets using the balanced Hopfield network are not included. 5

random city sets; 40 initializations for each city set. valid tours found in all cases.

Elapsed time ranged from 100 to 144 seconds. The best tour found for each of

the 5 city-sets appeared to be of good to very good (but not optimal) quality.

6.4. Conclusions. The results of our investigation of two methods of determining

the coefficients for a Hopfield network to solve the travelling salesman problem demon-

strate that allowing the network to adapt these coefficients (either in advance, as is

done for the Balanced Hopfield network, or during the solution process, as is the case

for the Lagrange Hopfield network) improves the proportion of valid tours that are

found by the network. The variation in the results for different random initializations

indicates that initialization of the activations plays a significant role in the validity

and quality of the solutions. Although the Lagrange Hopfield network almost always

finds a valid tour, and finds it quickly, the quality of the tour may not be particularly

good unless the initial activations are biased towards a shorter tour. The quality of

the results produced by both the Balanced and the Lagrange Hopfield networks is

greatly improved by using a biased initialization of the activations.

ACKNOWLEDGEMENTS

The author wishes to thank Jason Moore for his work on translating the C pro-

grams in Dr. Park’s thesis into Matlab. That Matlab program formed the starting

point for the various functions developed for this research and given in the Appendix.

REFERENCES

1. Fausett, L. V. (1994). Fundamentals of Neural Networks. Englewood Cliffs:

Prentice Hall.

2. Hopfield, J. J. & Tank, D. W. (1986). Computing with neural circuits: a model,

Science, (8), 625-633.

3. Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-

lective computational abilities, Proceedings of the National Academy of Sciences,

(79), 2554-2558.

4. Hopfield, J. J. (1984). Neurons with graded response have collective compu-

tational properties like those of two-state neurons, Proceedings of the National

Academy of Sciences (81), 3088-3092.

5. Park, C.-Y. & Fausett, D. W. (1995). Energy Function Analysis for Improved

Performance of Hopfield-Type Neural Networks, Intelligent Engineering Systems

Through Artificial Neural Networks, Vol. 5, ASME Press, pp. 995-1000.

HOPFIELD NEURAL NETWORKS 425

6. Park, C.-Y. (1996). Energy Landscape Analysis of the Performance of Hopfield

Neural Networks as a Method of Solving Combinatorial Optimization Problems.

Ph. D. Dissertation, Florida Institute of Technology, Melbourne, FL.

7. Takefuji, Y. (1992). Neural Network Parallel Computing. Boston: Kluwer Aca-

demic Publishers.

8. Tank, D. W. & Hopfield, J. J. (1987). Collective computation in neuronlike

circuits, Scientific American, (257), 104-114, .

9. van den Berg, J. (1996). Neural Relaxation Dynamics. Ph.D. Dissertation,

Erasmus University, Rotterdam. Netherlands.

10. Wilson, G. V. & Pawley, G. S. (1988). On the stability of the travelling salesman

problem algorithm of Hopfield and Tank, Biological Cybernetics, (58), 63-70.

426 L. V. FAUSETT

APPENDIX

Function to solve TSP by evolving coefficients and activations.

function [len, path, C] = AHNN_L(d, u, EP_a, tm_st, u0)

[N_CT, M] = size(d); v = 0.5*(1.0+tanh(u)); u = u*u0;

n_EP_a=0; C = [0, 0, 0, 0, 1]; tm_st_C = tm_st/N_CT;

while n_EP_a < EP_a

for x = 1:N_CT

for y = 1:N_CT

[UinTot, S] = Sum_in(y, x, v, d, C, N_CT);

u(y,x) = u(y,x) + tm_st*UinTot;

v(y,x) = 0.5*(1.0+tanh(u(y,x)/u0));

C(1) = C(1) + tm_st_C*v(y,x)*S(1);

C(2) = C(2) + tm_st_C*v(y,x)*S(2);

C(3) = C(3) + tm_st_C*S(3)*S(3);

C(4) = C(4) + tm_st_C*S(4)*S(4);

end

end

C;

n_EP_a = n_EP_a+1;

% check for valid path

[invalid, path] = check_valid_tour(v, N_CT);

if invalid == 0

out = [’valid path at ’, num2str(n_EP_a-1)]; disp(out)

C, break

end

end

if invalid == 1

len = 0; return

end

%compute path length%

len=0;

for i=1:(N_CT-1)

len=len+d(path(i),path(i+1));

end

len = len + d(path(N_CT),path(1));

HOPFIELD NEURAL NETWORKS 427

Functions used by AHNN_L and AHNN_F; function Sum_in is also used by AHNN_B.

function [invalid, path] = check_valid_tour(v, N_CT)

invalid=0; pos=0; tol=0.5;

path = zeros(1, N_CT);

for j=1 : N_CT

on=0;

for i=1:N_CT

if v(i,j)>=tol

on=on+1;

k = i;

end

end

if on==1

path(j) = k;

for jj = 1 : j - 1

if path (jj)==k

invalid = 1;

break

end

end

else

invalid=1;

end

end

function [UinTot, S] = Sum_in(y,x,v,d,C,N_CT)

S = [0 0 0 0 0];

if x < 2, x_m = N_CT; else x_m = x-1; end

if x > (N_CT-1), x_p = 1; else x_p = x+1; end

S_row = sum(v(y,:)); S_col = sum(v(:,x));

S(1) = S_row - v(y,x); S(2) = S_col - v(y,x);

S(3) = S_row - 1; S(4) = S_col - 1;

S(5) = S(5)+d(y,:)*(v(:,x_p)+v(:,x_m));

Uin = C.*S;

UinTot = -1.0*sum(Uin);

428 L. V. FAUSETT

Function to solve TSP using fixed coefficients.

function [len, path, u] = AHNN_F(d, u, MAX_EP_B, tm_st, C, u0)

[N_CT, M] = size(d); v = 0.5*(1.0+tanh(u)); u = u*u0; n_EP = 0;

while n_EP < MAX_EP_B

for x = 1:N_CT

for y = 1:N_CT

[UinTot, S] = Sum_in(y, x, v, d, C, N_CT);

u(y,x) = u(y,x) + tm_st*UinTot;

end

end

v = 0.5*(1.0+tanh(u/u0));

[invalid, path] = check_valid_tour(v, N_CT);

n_EP=n_EP+1;

if invalid == 0

out = [’valid path at epoch ’, num2str(n_EP-1)]; disp(out)

break

end

end

if invalid == 1

len = 0; return

end

%compute path length%

len=0;

for i=1:(N_CT-1)

len=len+d(path(i),path(i+1));

end

len = len + d(path(N_CT),path(1));

HOPFIELD NEURAL NETWORKS 429

Script to run AHNN_L, with biased initialization

% AHNN_L_run_bias, biased initialization

clear, tic, N_CT = 20, p = rand(N_CT,2)

d2 = zeros(N_CT,N_CT);

for i=1:N_CT

d2(:,i)=((p(i,1)-p(:,1)).^2+(p(i,2)-p(:,2)).^2);

end

d = d2.^(1/2); vc = 0; len_s = N_CT;

EP_a = 100; tm_st = 0.1; u0 = 0.1;

noise = rand(N_CT)-0.5;

for j = 1:N_CT

u = 0.2*noise + atanh(2.0/N_CT-1);

v = 0.5*(1.0+tanh(u));

k = 1; u(j,k) = 1; %start at city j, on day k = 1

clear enc, enc(1)=j; dd =d+eye(N_CT); dd(:,j) =dd(:,j)+2;

for kkk = 1:N_CT-1

[a, jj] = min(dd(j, :)); kk = k + 1; enc = [enc, jj];

% encourage city jj on day kk = k + 1

u(jj, kk) = u(jj,kk) + 0.5;

% prevent city j from being chosen again

j = jj; dd(:, j) = dd(:, j)+2; k = kk;

end

[len, path, C] = AHNN_L(d, u, EP_a, tm_st, u0);

ppp = path(1:N_CT), len, C;

if len ~= 0

vc = vc + 1;

if len < len_s % graph path if it is better

len_s = len, figure(vc),

x = p(path(1:N_CT), 1); y = p(path(1:N_CT), 2);

X = [x; x(1)]; Y = [y; y(1)];

plot(X,Y, p(:, 1), p(:, 2), ’*’);

axis([0, 1, 0, 1]); title(len)

end

end

end

vc, len_s, toc

430 L. V. FAUSETT

Script to run AHNN_F with biased initialization

clear, tic, N_CT = 10, p = rand(N_CT, 2)

d2 = zeros(N_CT,N_CT);

for i=1:N_CT

d2(:,i)=((p(i,1)-p(:,1)).^2+(p(i,2)-p(:,2)).^2);

end

d = d2.^(1/2); vc = 0; len_s = 10;

MAX_EP_B = 200; tm_st = 0.1; u0 = 0.1;

C =[0.05 0.05 0.25 0.25 0.4];

noise = rand(N_CT)-0.5;

for j = 1:N_CT

u = 0.2*noise + atanh(2.0/N_CT-1);

v = 0.5*(1.0+tanh(u));

k = 1; u(j,k) = 1; %start at city j, on day k = 1

clear enc, enc(1)=j; dd = d+eye(N_CT); dd(:,j)= dd(:,j)+ 2;

for kkk = 1:N_CT-1

[a, jj] = min(dd(j, :)); kk = k+1; enc = [enc, jj];

% encourage city jj on day kk = k + 1

u(jj, kk) = u(jj,kk) + 0.5;

% prevent city j from being chosen again

j = jj; dd(:, j) = dd(:, j)+2; k = kk;

end

[len, path, u] = AHNN_F(d, u, MAX_EP_B, tm_st, C, u0);

ppp = path(1:N_CT); len;

if len ~= 0

vc = vc + 1;

if len < len_s % graph path if it is better

len_s = len, ppp, figure(k),

x = p(path(1:N_CT), 1); y = p(path(1:N_CT), 2);

X = [x; x(1)]; Y = [y; y(1)];

plot(X,Y, p(:,1), p(:,2), ’*’); axis([0,1,0,1]);

title(len)

end

end

end

toc; vc

HOPFIELD NEURAL NETWORKS 431

Function to compute balanced coefficients (used by AHNN_F to solve the TSP.)

function C = AHNN_B(d, u, EP_a, tm_st, u0)

[N_CT,M] = size(d); v = 0.5*(1.0+tanh(u)); u = u*u0; n_EP_a=0;

% compute initial energy of network

E = zeros(1,5);

for i=1:N_CT

for j=1:N_CT

for k=1:N_CT

if(j~=k), E(1) = E(1)+v(i,j)*v(i,k); end

if k~=j, E(2) = E(2)+v(j,i)*v(k,i); end

k_m = k-1; if(k_m < 1), k_m = N_CT; end

k_p = k+1; if(k_p > N_CT), k_p = 1; end

E(5)= E(5)+d(i,j)*v(i,k)*(v(j,k_p)+v(j,k_m));

end

end

E(3) = E(3)+(sum(v(i,:))-1)^2;

E(4) = E(4)+(sum(v(:,i))-1)^2;

end

E2 = 0.5*E;

%balance the coefficients%

while n_EP_a < EP_a

ET = sum(E2(1:5)); C = E2/ET;

for x = 1:N_CT

for y = 1:N_CT

[UinTot, S] = Sum_in(y, x, v, d, C, N_CT);

u(y,x) = u(y,x) + tm_st*UinTot;

v_new = 0.5*(1.0+tanh(u(y,x)/u0));

del_v = v_new- v(y,x); v(y,x) = v_new;

del(1) = del_v*S(1); del(2) = del_v*S(2);

del(3) = del_v*(S(3)+0.5*del_v);

del(4) = del_v*(S(4)+0.5*del_v);

del(5) = del_v*S(5); E2 = E2 + del;

end

end

n_EP_a = n_EP_a+1;

end

432 L. V. FAUSETT

Script to find the balanced coefficients.

% run AHNN_B, j_max random cities, k_max initializations for each

clear, N_CT = 10, j_max = 5, k_max = 2

for j = 1:j_max

p = rand(N_CT,2); d2 = zeros(N_CT,N_CT);

for i=1:N_CT

d2(:,i)=((p(i,1)-p(:,1)).^2+(p(i,2)-p(:,2)).^2);

end

d = d2.^(1/2); EP_a = 200; tm_st = 0.1; u0 = 0.1;

for k = 1:k_max

noise = rand(N_CT)-0.5;

u = 0.2*noise + atanh(2.0/N_CT-1);

C = AHNN_B(d, u, EP_a, tm_st, u0);

CC(k,:)= C(1, :);

end

CM(j, 1:5) = max(CC(:, 1:5));

Cm(j, 1:5) = min(CC(:, 1:5));

C_ave(j, 1:5) = sum(CC(:, 1:5))/k_max;

end

C_ave, CCC = sum(C_ave(:, 1:5))/j_max

