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ABSTRACT. In this paper an algorithm for computing a generalized eigenmode of reducible

regular matrices over the max-plus algebra is applied to a helicopter maintenance process. A timed

event Petri net model is constructed from the state transition dynamics table that characterizes the

transport system. A max-plus recurrence equation, with a reducible and regular matrix, is associated

to the timed event Petri net. Next, given the reducible and regular matrix, the problem consists in

giving an algorithm which will tell us how to compute its generalized eigenmode over the max plus

algebra. The solution to the problem is achieved by studying some type of recurrence equations.

In fact, by transforming the reducible regular matrix into its normal form, and considering a very

specific recurrence equation, an explicit mathematical characterization is obtained, upon which the

algorithm is constructed. The generalized eigenmode obtained sets a timetable for the helicopter

maintenance process.
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1. INTRODUCTION

In this paper an algorithm for computing a generalized eigenmode of reducible

regular matrices over the max-plus algebra is applied to a helicopter maintenance

process. A timed event Petri net model is constructed from the state transition dy-

namics table that characterizes the process. A max-plus recurrence equation, with a

reducible and regular matrix, is associated to the timed event Petri net model. Next,

given the reducible and regular matrix of finite size i.e., a matrix such that in each

one of its rows has at least one finite element and whose communication graph is

not strongly connected, the problem consists in giving an algorithm which will tell

us how to compute its generalized eigenmode over the max plus algebra, which in-

deed has an idempotent semiring, or also called dioid, mathematical structure. The

notion of generalized eigenmode, as its name says, results to be a genaralization of

the notion of eigenvalues and eigenvectors for the case when the matrix under study
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is irreducible i.e., has a communication graph which is strongly connected. The so-

lution to the problem is achieved by studying some type of recurrence equations. In

fact, by transforming the reducible regular matrix into a block upper triangular form,

called normal form, and considering a very specific recurrence equation, an explicit

mathematical characterization is obtained, upon which the algorithm is constructed.

The generalized eigenmode obtained sets a timetable for the helicopter maintenance

process. Another alternative algorithm for computing a generalized eigenmode of a

reducible and regular matrix, is Howard’s algorithm which is based on a policy it-

eration improvement procedure which in numerical examples has proven to be very

efficient. The paper is organized as follows. In section 2, the concept of max-plus

algebra is defined, its algebraic structure is also described. Matrices and graphs are

presented, the spectral theory of matrices is discussed, finally the problem of solving

linear equations is addressed. Section 3, starts by introducing the concept of general-

ized eigenmode. Once this has been done, it continues by discussing, how to compute

the generalized eigenmode for recurrence equations for the cases of irreducible and

reducible matrices, Mth order recurrence equations are also treated. In section 4,

the algorithm is formally presented. In section 5, max-plus recurrence equations for

timed event Petri nets are introduced. Section 6, presents the helicopter maintenance

process. Finally, in section 7, some conclusions are given.

2. MAX-PLUS ALGEBRAS [1, 2]

2.1. Basic Definitions. NOTATION: N is the set of natural numbers, R is the

set of real numbers, ε = −∞, e = 0, Rmax = R ∪ {ε}, n = 1, 2, ..., n Let a, b ∈ Rmax

and define the operations ⊕ and ⊗ by: a⊕ b = max(a, b) and a⊗ b = a+ b.

Definition 2.1. The set Rmax with the two operations ⊕ and ⊗ is called a max-plus

algebra and is denoted by <max = (Rmax,⊕,⊗, ε, e).

Definition 2.2. A semiring is a nonempty set R endowed with two operations ⊕R,

⊗R, and two elements εR and eR such that: ⊕R is associative and commutative with

zero element εR, ⊗R is associative, distributes over ⊕R, and has unit element eR, ∈Ris

absorbing for ⊗R i.e., a⊗R ε = εR ⊗ a = a, ∀a ∈ R..

Such a semiring is denoted by < = (R,⊕R,⊗R, ε, e). In addition if ⊗R is commu-

tative then R is called a commutative semiring , and if ⊕R is such that a ⊕R a = a,

∀a ∈ R then it is called idempotent.

Theorem 2.3. The max-plus algebra <max = (Rmax,⊕,⊗, ε, e) has the algebraic

structure of a commutative and idempotent semiring.
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2.2. Matrices and Graphs. Let Rn×n
max be the set of n × n matrices with coefficients

in Rmax with the following operations: The sum of matrices A,B ∈ Rn×n
max, denoted

A ⊕ B is defined by: (A ⊕ B)ij = aij ⊕ bij = max (aij, bij) for i and j ∈ n. The

product of matrices A ∈ Rn×l
max, B ∈ Rl×n

max, denoted A⊗B is defined by: (A⊗B)ik =
l⊗

j=1

aij ⊗ bjk = max
j∈l

{aij + bjk} for i and k ∈ n. Let E ∈ Rn×n
max denote the matrix with

all its elements equal to ε and denote by E ∈ Rn×n
max the matrix which has its diagonal

elements equal to e and all the other elements equal to ε. Then, the following result

can be stated.

Theorem 2.4. The 5-tuple <n×n
max = (Rn×n

max,⊕,⊗, E , E) has the algebraic structure of

a noncommutative idempotent semiring.

Definition 2.5. Let A ∈ Rn×n
max and k ∈ N then the k-th power of A denoted by A⊗k

is defined by: A⊗k = A⊗ A⊗ · · · ⊗ A︸ ︷︷ ︸
k−times

, where A⊗0 is set equal to E.

Definition 2.6. A matrix A ∈ Rn×n
max is said to be regular if A contains at least one

element distinct from ε in each row.

Definition 2.7. Let N be a finite and non-empty set and consider D ⊆ N ×N . The

pair G = (N,D) is called a directed graph, where N is the set of elements called nodes

and D is the set of ordered pairs of nodes called arcs. A directed graph G = (N,D) is

called a weighted graph if a weight w(i, j) ∈ R is associated with any arc (i, j) ∈ D.

Let A ∈ Rn×n
max be any matrix, a graph G(A), called the communication graph of

A, can be associated as follows. Define N(A) = n and a pair (i, j) ∈ n× n will be a

member of D(A)⇔ aji 6= ε, where D(A) denotes the set of arcs of G(A).

Definition 2.8. A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈
D(A)}k∈m such that i = i1, jk = ik+1, for k < m and jm = j. The path p consists of

the nodes i = i1, i2, ..., im, jm = j with length m denoted by | p |1= m. In the case

when i = j the path is said to be a circuit. A circuit is said to be elementary if nodes

ik and il are different for k 6= l. A circuit consisting of one arc is called a self-loop.

Let us denote by P (i, j;m) the set of all paths from node i to node j of length

m ≥ 1 and for any arc (i, j) ∈ D(A) let its weight be given by aij then the weight

of a path p ∈ P (i, j;m) denoted by | p |w is defined to be the sum of the weights

of all the arcs that belong to the path. The average weight of a path p is given

by | p |w / | p |1. Given two paths, as for example, p = ((i1, i2), (i2, i3)) and q =

((i3, i4), ((i4, i5) in G(A) the concatenation of paths ◦ : G(A) × G(A) → G(A) is

defined as p ◦ q = ((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph G(A)

and powers of matrix A are closely related as it is shown in the next theorem.
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Theorem 2.9. Let A ∈ Rn×n
max, then ∀k ≥ 1: [A⊗k]ji = max{| p |w: p ∈ P (i, j; k)},

where [A⊗k]ji = ε in the case when P (i, j; k) is empty i.e., no path of length k from

node i to node j exists in G(A).

Definition 2.10. Let A ∈ Rn×n
max then define the matrix A+ ∈ Rn×n

max as: A+ =
∞⊕
k=1

A⊗k.

Where the element [A+]ji gives the maximal weight of any path from j to i. If in

addition one wants to add the possibility of staying at a node then one must include

matrix E in the definition of matrix A+ giving rise to its Kleene star representation

defined by: A∗ =
∞⊕
k=0

A⊗k.

Lemma 2.11. Let A ∈ Rn×n
max be such that any circuit in G(A) has average circuit

weight less than or equal to ε. Then it holds that: A∗ =
n−1⊕
k=0

A⊗k.

Proof. [4].

Definition 2.12. Let G = (N,D) be a graph and i, j ∈ N , node j is reachable from

node i, denoted as iRj, if there exists a path from i to j. A graph G is said to be

strongly connected if ∀i, j ∈ N, jRi. A matrix A ∈ Rn×n
max is called irreducible if its

communication graph is strongly connected, when this is not the case matrix A is

called reducible.

Definition 2.13. Let G = (N,D) be a not strongly connected graph and i, j ∈ N ,

node j communicates with node i, denoted as iCj, if either i = j or iRj and jRi.

The relation iCj defines an equivalence relation in the set of nodes, and therefore

a partition of N into a disjoint union of subsets, the equivalence classes, N1, N2, ..., Nq

such that N = N1 ∪N2 ∪ ... ∪Nq or N =
⋃
i∈N

[i]; [i] = {j ∈ N : iCj}.

Given the above partition, it is possible to focus on subgraphs of G denoted by

Gr = (Nr, Dr); r ∈ q where Dr denotes the subset of arcs, which belong to D, that

have both the begin node and end node inNr. IfDr 6= ∅ , the subgraphGr = (Nr, Dr)

is known as a maximal strongly connected subgraph of G.

Definition 2.14. The reduced graph G̃ = (Ñ , D̃) of G is defined by setting Ñ =

{[i1] , [i2] , ... [iq]} and ([ir], [is]) ∈ D̃ if r 6= s and there exists an arc (k, l) ∈ D for

some k ∈ [ir] and l ∈ [is].

Let Arr denote the matrix by restricting A to the nodes in [ir] ∀r ∈ q i.e.,

[Arr]kl = akl ∀k, l ∈ [ir]. Then ∀r ∈ q either Arr is irreducible or is equal to ε.

Therefore since by construction the reduced graph does not contain any circuits, the

original reducible matrix A after a possible relabeling of the nodes in G(A), can be
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written as:

(2.1) A =



A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33
...

...
...

. . . . . .
...

E E · · · E Aqq


with matrices Asr 1 ≤ s < r ≤ q, where each finite entry in Asr corresponds to an

arc from a node in [ir] to a node in [is].

Definition 2.15. Let A ∈ Rn×n
max be a reducible matrix then, the block upper trian-

gular given by (2.1) is said to be a normal form of matrix A.

2.2.1. Spectral Theory.

Definition 2.16. Let A ∈ Rn×n
max be a matrix. If µ ∈ Rmax is a scalar and v ∈ Rn

max

is a vector that contains at least one finite element such that: A⊗ v = µ⊗ v then, µ

is called an eigenvalue and v an eigenvector.

Remark 2.17. Notice that the eigenvalue can be equal to ε and is not necessarily

unique. Eigenvectors are certainly not unique indeed.

Let C(A) denote the set of all elementary circuits in G(A) and write: λ = max
p∈C(A)

|p|w
|p|1

for the maximal average circuit weight. Notice that since C(A) is a finite set, the

maximum is attained (which is always the case when matrix A is irreducible). In case

C(A) = ∅ define λ = ε.

Definition 2.18. A circuit p ∈ G(A) is said to be critical if its average weight is

maximal. The critical graph of A, denoted by Gc(A) = (N c(A), Dc(A)), is the graph

consisting of those nodes and arcs that belong to critical circuits in G(A).

Theorem 2.19. If A ∈ Rn×n
max is irreducible, then there exists one and only one

finite eigenvalue (with possible several eigenvectors). This eigenvalue is equal to the

maximal average weight of circuits in G(A) λ(A) = max
p∈C(A)

|p|w
|p|1

Proof. [4].

2.2.2. Linear Equations.

Theorem 2.20. Let A ∈ Rn×n
max and b ∈ Rn

max. If the communication graph G(A) has

maximal average circuit weight less than or equal to e, then x = A∗ ⊗ b solves the

equation x = (A⊗ x)⊕ b. Moreover, if the circuit weights in G(a) are negative then,

the solution is unique.

Proof. ([4]).
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3. GENERALIZED EIGENMODE AND RECURRENCE EQUATIONS

[2]

Definition 3.1. Let A ∈ Rn×n
max be a regular matrix, a pair of vectors (η, v) ∈ Rn×Rn

is called a generalized eigenmode of A if for all k ≥ 0: A⊕ (k×η+v) = (k+1)×η+v

Remark 3.2. It is important to underline that the second vector v in a generalized

eigenmode is not unique.

Theorem 3.3. Consider the inhomogeneous recurrence equation

(3.1) x(k + 1) = A⊗ x(k)⊕
m⊕
j=1

Bj ⊗ uj(k), k ≥ 0

with A ∈ Rn×n
max irreducible with eigenvalue λ = λ(A), or A ∈ Rmax A = ε with

λ = ε, {Bj}mj=1 ∈ Rn×mj
max for some appropriate mj ≥ 1 matrices different from E,

uj(k) ∈ Rmj such that uj(k) = wj(k) ⊗ τ⊗kj , k ≥ 0, with τj ∈ R and wj ∈ Rmj .

Denote τ =
⊕
j∈m

τj. Then, there exists an integer K ≥ 0 and a vector v ∈ Rn such

that the sequence x(k) = v⊗µ⊗k with µ = λ⊗τ satisfies equation (3.1) for all k ≥ K.

Proof. [4].

Remark 3.4. Notice that in theorem (3.3) equation (3.1) is satisfied for all k ≥ K.

However, in the case where it is possible to reinitialize the sequences uj(k) = wj(k)⊗
τ⊗kj , k ≥ 0, by redefining the vectors wj for j ∈ m then, it is possible to satisfy

equation (3.1) ∀k ≥ 0. Indeed, just set v = v ⊗ µ⊗K , wj(k) = wj(k) ⊗ τ⊗Kj , j ∈ m.

Then, the new sequences x(k) = v⊗µ⊗k, uj(k) = wj(k)⊗τ⊗kj j ∈ m solve our problem

∀k ≥ 0.

Now, let us consider the recurrence equation: x(k + 1) = A ⊗ x(k), k ≥ 0

with A reducible and regular. Recalling what was presented in sub-section (2.2) (see

also definition (2.15)), and using that matrix A is regular, it follows that matrix

A can always be rewritten in its normal form (2.1) with the conditions that Aqq

is irreducible, that for i ∈ q − 1 either Aii is an irreducible matrix or is equal to

ε, and that the Aij matrices are different from E for i, j = i + 1; i ∈ q. Let the

vector x(k) be partitioned according to the normal form given by equation (2.1)

as: x(k) = (x1(k), x2(k), ..., xq(k)) where xi(k), i ∈ q are vectors of suitable size.

Therefore the recurrence equation given by equation x(k + 1) = A⊗ x(k), k ≥ 0 can

be written as:

(3.2) x(k + 1) = Aii ⊗ xi(k)⊕
q⊕

j=1+1

Aij ⊗ xj(k), i ∈ q, k ≥ 0
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Theorem 3.5. Consider the recurrence equation given by equation (3.2). Assume

that Aqq is irreducible and that for i ∈ q − 1 either Aii is an irreducible matrix or

is equal to ε. Assume also, that the Aij matrices are different from E for i, j =

i + 1; i ∈ q. Then, there exist finite vectors v1, v2, ..., vq of suitable size and scalars

ξ1, ξ2, ..., ξq ∈ R such that the sequences: xi(k) = vi ⊗ ξ⊗ki , i ∈ q satisfy equation (3.2)

for all k ≥ 0. The scalars ξ1, ξ2, ..., ξq ∈ R are determined by: ξi =
⊕
j∈Hi

ξj ⊕ λi, where

Hi = {j ∈ q : j > i, Aij 6= E}.

Proof. [4].

Corollary 3.6. Let A ∈ Rn×n
max be a reducible and regular matrix, then there exist a

pair of vectors (η, v) ∈ Rn × Rn, a generalized eigenmode, such that for all k ≥ 0:

A⊕ (k × η + v) = (k + 1)× η + v

Proof. [4].

The result provided by corollary (3.6) plays a fundamental role in the proposed

algorithm for reducible matrices, as will be seen in the next section.

Definition 3.7. Let Am ∈ Rn×n
max for 0 ≤ m ≤ M and x(m) ∈ Rn

max for −M ≤ m ≤

−1; M ≥ 0. Then, the recurrence equation: x(k) =
M⊕

m=0

Am ⊗ x(k − m); k ≥ 0 is

called an Mth order recurrence equation.

Theorem 3.8. The M th order recurrence equation, given by equation x(k) =
M⊕

m=0

Am⊗

x(k−m); k ≥ 0, can be transformed into a first order recurrence equation x(k+ 1) =

A⊗ x(k); k ≥ 0 provided that A0 has circuit weights less than or equal to zero.

Proof. Since by hypothesis, A0 has circuit weights less than or equal to zero, lemma

(2.11) allows A0 to be written as A∗0 =
n−1⊕
i=0

A⊗i0 . Setting b(k) =
M⊕

m=1

Am ⊗ x(k −m)

the original equation reduces to x(k) = A0 ⊗ x(k) ⊕ b(k) which by theorem (2.20)

can be rewritten as x(k) = A∗0 ⊗ b(k). Finally, defining x̂(k) = (xT (k − 1), xT (k −
2), ..., xT (k −M))T and,

Â =



A∗0 ⊗ A1 A∗0 ⊗ A2 · · · · · · A∗0 ⊗ AM

E E · · · · · · E
E E

. . . E
...

. . .
...

E E · · · E E


we get that x̂(k + 1) = Â⊗ x̂(k); k ≥ 0 as desired.
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4. AN ALGORITHM FOR COMPUTING GENERALIZED

EIGENMODES OF REDUCIBLE MATRICES

This section proposes an algorithm for computing a generalized eigenmode for

reducible matrices. The main idea of the algorithm was inspired by [2].

Algorithm: 1 Take A ∈ Rn×n
max a reducible and regular matrix. 2 Using the

material presented in (2.2) bring it to the normal form and write it in the form of

system (3.2). 3 Consider the last equation of system (3.2) i.e., the nth equation, and

compute its eigenvalue λn with associated eigenvector vn, set ξn = λn and j = n. 4

Consider the above next (j − 1)th equation , and compute the eigenvalue of matrix

A(j−1)(j−1), called it λj−1. 5 Is λj−1 > ξj, if this is the case go to 6 if not, go to 7. 6 Set

ξj−1 = λj−1 and compute vj−1 according to the first case of the proof of theorem (3.3).

Go to 8. 7 Set ξj−1 = ξj and compute vj−1 according to the second case of the proof of

theorem (3.3). 8 Decrease j by one. Is j 6= 1 go back to 4 if not finish. At the end the

algorithm provides one pair of vectors η = (ξ1, ξ2, ..., ξn) ∈ Rn, v = (v1, v2, ..., vq) ∈ Rn

which result to be a generalized eigenmode of matrix A ∈ Rn×n
max.

Remark 4.1. Theorem (2.19) can be used for computing the eigenvalues of the

irreducible matrices {Aii ; i ∈ n}. In addition, the power algorithm ([2]) results of

great help for computing the eigenvector in case it comes from the solution of equation

A⊗ v = µ⊗ v.

5. MAX-PLUS RECURRENCE EQUATIONS FOR TIMED EVENT

PETRI NETS [1, 2, 3]

Definition 5.1. A Petri net is a 5-tuple, PN = {P, T, F,W,M0} where: P =

{p1, p2, ..., pm}is a finite set of places, T = {t1, t2, ..., tn} is a finite set of transitions,

F ⊂ (P ×T )∪(T ×P ) is a set of arcs, W : F → N+
1 is a weight function, M0: P → N

is the initial marking, P ∩ T = ∅ and P ∪ T 6= ∅.

A Petri net structure without any specific initial marking is denoted byN . A Petri

net with the given initial marking is denoted by (N,M0). Notice that if W (p, t) = α

(or W (t, p) = β) then, this is often represented graphically by α, (β) arcs from p to t

(t to p) each with no numeric label. A Petri net is called an event Petri net when every

pi ∈ P has one input and one output transition. Let Mk(pi) denote the marking (i.e.,

the number of tokens) at place pi ∈ P at time k and let Mk = [Mk(p1), ...,Mk(pm)]T

denote the marking (state) of PN at time k. A transition tj ∈ T is said to be enabled

at time k if Mk(pi) ≥ W (pi, tj) for all pi ∈ P such that (pi,tj) ∈ F . It is assumed that

at each time k there exists at least one transition to fire. If a transition is enabled

then, it can fire. If an enabled transition tj ∈ T fires at time k then, the next marking

for pi ∈ P is given by Mk+1(pi).
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Definition 5.2. The clock structure associated with a place pi ∈ P is a set V = {Vi :

pi ∈ P } of clock sequences Vi = {vi,1, vi,2, ...}, vi,k ∈ R+, k = 1, 2, ...

The positive number vi,k, associated to pi ∈ P , called holding time, represents

the time that a token must spend in this place until its outputs enabled transitions

vi,1, vi,2, ..., fire. Some places may have a zero holding time while others not. Thus,

we partition P into subsets P0 and Ph, where P0 is the set of places with zero holding

time, and Ph is the set of places that have some holding time.

Definition 5.3. A timed Petri net is a 6-tuple TPN = {P, T, F,W,M0,V} where

{P, T, F,W,M0} are as before, and V = {Vi : pi ∈ P } is a clock structure. A timed

Petri net is a timed event petri net when every pi ∈ P has one input and one output

transition, in which case the associated clock structure set of a place pi ∈ P reduces

to one element Vi = {vi}

With any timed event Petri net, matrices A0, A1, ..., AM ∈ Nn×Nn can be defined

by setting [Am]jl = ajl, where ajl is the largest of the holding times with respect to

all places between transitions tl and tj with m tokens, for m = 0, 1, ...,M , with M

equal to the maximum number of tokens with respect to all places. Let xi(k) denote

the kth time that transition ti fires, then the vector x(k) = (x1(k), x2(k), ...xm(k))T ,

called the state of the system, satisfies the Mth order recurrence equation: x(k) =
M⊕

m=0

Am ⊗ x(k − m); k ≥ 0 Now, assuming that all the hypothesis of theorem (3.8)

are satisfied, and setting x̂(k) = (xT (k), xT (k − 1), ..., xT (k − M + 1))T , equation

x(k) =
M⊕

m=0

Am ⊗ x(k −m); k ≥ 0 can be expressed as: x̂(k + 1) = Â⊗ x̂(k); k ≥ 0,

which is known as the standard autonomous equation.

6. THE HELICOPTER MAINTENANCE PROCESS

Aerospace Ltd is an International owned company which gives maintenance ser-

vice to broken helicopters due to engine failure. A faulty engine, which has to repaired,

is first removed from the helicopter by the Engine Replacement Team (ERT). The

ERT work is done at our headquarters located at the Airport, taking 6 hours to

remove a faulty engine, and then sending it to the company,s repair shop located 6

hours away from the airport where the Engine Repair Team restore the faulty engine.

The time taken to repair a faulty engine is in the worst possible scenario of 8 hours.

Once a faulty engine has been repaired is sent back to our headquarters where the

ERT fits it back. This takes another 6 hours. The characteristics of the helicopter

maintenance process are provided by the state transition dynamics summarized in

table 1.
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Table 1. State Transition Dynamics Table

Origin Destination Travel to Dest. Waiting at Dest. Depart

HQ ERT 0 6 3

ERT Repair 6 8 9

Repair HQ 6 6 0

Figure 1. Petri net model

The timed event Petri net that models the state transition dynamics is shown

in fig 1. The number attached to each place is its associated holding time H, which

is equal to the sum of the travel time to destination plus the waiting time at the

destination. The initial marking, or token distribution, at each place is computed

in such a way that the corresponding timed Petri net can be executed with cycle

time T , which in this case is equal to 24 hours and it is determined by the next

formula: M0(pi) = dDi−DJ+Hpi

T
e, where Di represents the departure time at the origin

station, Dj represents the departure time at the destination station, and Hpi is the

holding time associated to place pi. From the timed Petri net model we obtain that:

A0 =

 ε ε ε

6 ε ε

ε ε ε

 and A1 =

 ε ε 12

ε ε ε

ε 14 ε

 and making the required computations

that: A∗0 =

 0 ε ε

6 0 ε

ε ε 0

 , which leads to: Â = A∗0 ⊗ A1 =

 ε ε 12

ε ε 18

ε 14 ε

, which

is already in its normal form, with A11 = ε, and A22 =

(
ε 18

14 ε

)
. From A22 we

get that λ2 = 16 = ξ2 and doing algebra that v2 = (7, 5). Now, since A11 = ε

this implies that λ1 = 1 ≤ ξ2 therefore ξ1 = ξ2 = 16 and v1 = 1 is obtained as

the solution of 12 ⊗ v22 = 16 ⊗ v1. Therefore, the pair η = (16, 16, 16), v = (1, 7, 5)

results to be a generalized eigenmode, which describes the process and since it satisfies

equation x̂(k + 1) = Â ⊗ x̂(k); k ≥ 0, it provides a possible timetable given by:

x(k) = k × [16, 16, 16]T + [1, 7, 5]T , k ≥ 0. Moreover, since the maximum numerical

value attained by the elements that form vector η, which in this case is 16, determines

the highest frequency at which the process operates (or in other words the slowest
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one) is less than the cycle time T = 24, we can conclude that the process works

properly.

7. CONCLUSIONS

This work gives and applies an algorithm for computing a generalized eigenmode

of reducible regular matrices over the max-plus algebra to a helicopter maintenance

process timed event Petri net model. Given a reducible regular matrix, the first step

consists in, transforming it into its normal form. Once this has been done the follow-

ing steps are constructed based on an explicit mathematical characterization, which

comes out to be a consequence of considering a very specific recurrence equation.

Finally, applying the algorithm a timetable for the helicopter maintenance process

was obtained.
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