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Abstract 
In cryptography, the advanced encryption standard (AES) is an encryption standard 
issued as FIPS by NIST as a successor to data encryption standard (DES) algorithm. The 
applications of the AES are wide including any sensitive data that requires cryptographic 
protection before communication or storage. This paper proposes extending general-
purpose processors with crypto coprocessor based on decoupled architectures. The 
extended coprocessor splits an encryption/decryption instruction into memory 
(load/store) and computation (encryption/decryption) portions (pseudo instructions). 
Loading/storing and encrypting/decrypting data are performed in parallel and 
communicated through architectural queues. The computational unit includes parallel 
AES pipelines for fast encrypting/decrypting data. On four parallel AES pipelines, our 
results show a performance of 222 Giga bits per second. 
Keywords - Parallel processing, AES pipeline, cryptography, decoupled architectures, 

FPGA implementation. 
 

 

1. INTRODUCTION 

 

The basis of many technological solutions to computer and communication security 

problems is cryptography. Cryptography (secret (crypto) writing (graphy) that needs to be 

decoded) is an essential tool underlying virtually all computers and networking 

protection. It has long been used for espionage and military. However, it is now 

commonly used in protecting information within many kinds of civilian systems. 

Cryptographic processing has been brought to the forefront of system design due to the 

need for secure communication and storage data. 

The Data Encryption Standard (DES) [1] had served as an important cryptographic 

algorithm for over two decades. However, the growth of computing power during that 

time had compromised the security of that algorithm. There was considerable evidence 

that it was time to replace DES with a new standard. In October 2000, the National 

Institute of Standards and Technology (NIST) selected the Rijndael algorithm [2] as the 

new encryption standard to replace the current DES algorithm. The Advanced Encryption  
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Standard (AES) specifies the Rijndael algorithm. The AES algorithm is a symmetric 

block cipher that can process (encrypt/decrypt) data blocks of 128-bit, using keys with 

lengths of 128, 192, and 256 bits. However, Rijndael was designed to handle additional 

block sizes and key lengths, which are not adopted in the AES.  

According to NIST, AES is efficient, elegant, and secure. AES has the potential to 

maintain security well beyond twenty years due to the significantly larger key sizes than 

DES had [3]. Thus, AES was accepted as a FIPS (Federal Information Processing 

Standards) in November 2001 to protect electronic data [4]. The applications of the AES 

are wide; this standard can be used by agencies when an agency determines that sensitive 

information requires cryptographic protection. The AES algorithm may be implemented 

in software, firmware, hardware, or any combination thereof. The specific 

implementation may depend on several factors such as the application, environment, 

technology used, etc. 

Since AES was accepted as a FIPS standard, there have been many different hardware 

implementations for ASIC (application specific integrated circuits) and FPGA (field-

programmable gate array) to improve its performance. Some ASIC implementations are 

found in references [5-7]. These references mainly focus on area efficient implementation 

of the AES algorithm using Sbox (byte substitution) optimizations. Reference [7] (the 

first ASIC implementation of the Rijndael on silicon) presented an AES encryption chip 

architecture and discussed the design optimizations. References [8-10] presented different 

pipelined implementations of the AES algorithm as well as the design decisions and the 

area optimizations that lead to a low area and high throughput AES encryption processor. 

Some FPGA implementations of the AES algorithm are found in references [11-13]. 

References [14-15] presented another approach to improve the performance of AES on 

32-bit processors using instruction set extensions.   

This paper proposes another approach which is different from the above ones. It 

extends a general-purpose processor with an AES crypto coprocessor based on decoupled 

architectures, as shown in Figure 1. General-purpose processors can be simple in-order 

scalar or complex out-of-order superscalar processors. For simplicity, the well known 5-

stage pipeline [16] is used as a scalar processor. Each instruction (scalar/crypto) is 

fetched from instruction cache and sent in-order to the decode stage. If the fetched 

instruction is scalar, it completes the remaining cycle of execution on the scalar pipeline 

stages (read operands, execute, memory access, and write-back result). However, crypto 

instructions are fetched from instruction cache and sent in-order to the extended crypto 

coprocessor during the decode stage for execution on the AES pipelines.  

The extended coprocessor is based on decoupled architectures [17] to hid memory 

latency by letting the load/store and encryption/decryption operatrions to work in parallel. 

Note that crypto instructions do not block the issue stage of the scalar processor  
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eventhough the crypto coprocessor is busy. Crypto instructions are sent to the instruction 

queue freeing the issue stage to run ahead to execute scalar instructions latter in the 

instruction stream. In the proposed FastCrypto, latency is tolerated because the address 

unit is able to slip ahead of the computation unit and loads data that will be needed soon 

by the computation unit early in time. As Figure 1 shows, address generation unit and 

encyption/decryption piplines are communicated through architectural queues which are 

used to temporary keep the loaded/stored data from/to memory. 

This paper is organized as follows. The specification of the AES algorithm is 

presented in Section 2. Section 3 describes microarchitecture of FastCrypto, which is 

based on decoupled architectures. Parallel pipelined implementation for accelerating AES 

is presented in Section 4. Finally, Section 5 concludes this paper. 

 

 

2. THE SPECIFICATION OF THE AES ALGORITHM  

 

The AES algorithm is a symmetric block cipher that can convert data to an 

unintelligible form (encryption) and convert the data back into its original form 

(decryption). The input and output for the AES algorithm each consist of sequences of 

128-bit. Each 128-bit is called a block, which can be represented as 16-byte; in0 through 

in15 for input and out0 through out15 for output. Moreover, the cipher key for the AES 

algorithm is a sequence of 128, 192 or 256 bits. Internally, the AES algorithm’s 

operations are performed on a two-dimensional (2-D) array of bytes called the State 

array. The State array consists of four rows of bytes, each containing Nb bytes, where Nb  

Figure 1: Block diagram of FastCrypto 
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is the block length divided by 32 (the word size). At the start of encrypting/decrypting a 

bock of data, the input (the 1-D array of bytes; in0, in1, … in15) is copied into the State 

array (2-D array of bytes) according to the following scheme:  

Staterow, col = inrow + 4*col for 0 ≤ row < 4 and 0 ≤≤ col < Nb. 

Then all encryption/decryption operations are performed on State array. The final value 

of the State array is copied to the output (1-D array of bytes; out0, out1, … out15) as 

follows:  

outrow + 4*col = Staterow, col for 0 ≤ ≤row < 4 and 0 ≤ ≤col < Nb. 

The four bytes in each column of the State array form 32-bit words, where the row 

number (row) provides an index for the four bytes within each word. 

The AES algorithm consists of three distinct phases, as shown in Figure 2. In the first 

phase, an initial addition (XORing) is performed between the input data (plaintext) and 

the given key (cipher key). A number of standard rounds (Nr-1) are performed in the 

second phase, which represents the kernel of the algorithm and consumes most of the 

execution time. The number of these standard rounds depends on the key size; nine for 

128-bits, eleven for 192-bits, or thirteen for 256-bits. Each standard round includes four 

fundamental algebraic function transformations on arrays of bytes.  

1- byte substitution using a substitution table (Sbox), 

2- shifting rows of the State array by different offsets (ShiftRows), 

3- mixing the data within each column of the State array (MixColumns), and 

4- adding a round key to the State array (KeyAddition).  

The third phase of the AES algorithm represents the final round of the algorithm, which 

is similar to the standard round, except that it does not have MixColumns operation. In 

this paper, 128-bit key length AES algorithm is implemented, which has 10 rounds (nine  
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standard rounds plus a final round) executed on parallel AES pipelines (see Figure 1). 

Moreover, the initial key is expanded on the key expantion unit of the crypto coprocessor 

to generate the round keys, each of size equals 128-bit. Each of the ten rounds of the 

algorithm receives a new round key from the key expantion unit. Decryption is performed 

by applying of the inverse transformations of the round functions (see [4] for more 

detail). 

Sbox is a non-linear substitution table used in several byte substitution 

transformations and in the key expansion routine to perform a one-to-one substitution of 

a byte value. It is the primary source of nonlinearity in the AES algorithm. It takes each 

byte in the 128-bit State and computes its multiplicative inverse in GF(28), followed by a 

single stage of systematic bit mixing. The multiplicative inverse in GF(28) is computed 

using the extended Euclidean algorithm, which is essentially the Euclidean algorithm for 

integers, applied to polynomials in GF(28). The computational complexity of the 

Euclidean algorithm and the non-constant number of iterations required to compute the 

multiplicative inverse leads to use a lookup table for computing the multiplicative 

inverses. Thus, the lookup table technique is the optimum software/hardware approach 

for implementing Sbox. 

ShiftRows transformation function processes the State array by cyclically shifting the 

last three rows over different numbers of offsets. In other words, for rows number one, 

two, and three, the offsets used are one, two, and three bytes respectively, however, the 

first row is not shifted. 

MixColumns transformation function takes the columns of the State array and mixes 

their data (independently of one another) to produce new columns. The MixColumns 

transformation for column c can be written as follows: 

State`0,c = (02H • State0,c) ⊕ (03H • State1,c) ⊕ (01H • State2,c) ⊕ (01H • State3,c) 

State`1,c = (01H • State0,c) ⊕ (02H • State1,c) ⊕ (03H • State2,c) ⊕ (01H • State3,c) 

State`2,c = (01H • State0,c) ⊕ (01H • State1,c) ⊕ (02H • State2,c) ⊕ (03H • State3,c) 

State`3,c = (03H • State0,c) ⊕ (01H • State1,c) ⊕ (01H • State2,c) ⊕ (02H • State3,c) 

The above polynomials include three types of multiplication (01H • State0,c, 02H • 

State0,c, and 03H • State0,c). Obviously, any byte (binary polynomial b7b6b5b4b3b2b1b0) 

times 01H results in the same value (b7b6b5b4b3b2b1b0). Multiplying a byte by 02H can be 

implemented at the byte level as a left shift and a subsequent conditional bitwise XOR 

with 1bH. After shifting by one bit, if b7 = 0, the result (b6b5b4b3b2b1b00) is already in 

reduced form. Otherwise, the reduction is accomplished by XORing the shifted byte with 

the polynomial 1bH. Multiply by 03H≤ can be performed by XORing the results from 

multiplying by 01H≤ and 02H≤. 
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The addition in the AES algorithm is performed with parallel XOR operations. 

KeyAddition can be implemented by performing a bit-wise XORing between a column in 

the State array and corresponding column of the round key. 

The key expansion round starts with KeyRotWord function, which cyclically shifts 

(rotates) the last four bytes of the round key by one byte (see Figure 2). After cyclic 

shifting, KeySubWord function is performed by applying Sbox on this last four bytes of 

the round key. The resulted column is XORed in KeyXOR stage with the round constant 

(Rcon[round]), as shown in Table 1.  

 

3. THE MICROARCHITECTURE OF FASTCRYPTO  

 

 FastCrypto is a general-purpose processor extended with crypto coprocessor for fast 

encrypting/decrypting data, as Figure 1 shows. The extended part is based on decoupled 

architectures to execute encryption/decryption instructions with the following format, 

which is similar to MIPS ISA [18].  

6-bit 5-bit 5-bit 10-bit 6-bit 

010010 rs rd length Enc/Dec 

Any crypto instruction has a prefix of 010010 to tell the decode stage of the scalar part 

that the execution of this instruction is on the crypto coprocessor. Crypto instructions are 

fetched, decoded, and then dispatched in-order by the scalar core to a queue called crypto 

instruction queue (CIQ), as shown in Figure 3. Note that rs and rd are scalar registers 

holding the starting source and destination addresses for encryption and decryption and 1 

≤ length < 1024 is the number of blocks (128-bit) needed to be encrypted/decrypted. 

During the decode stage of the scalar unit, the contents of rs and rd are read from the 

scalar register file and pushed into CIQ queue. Thus, 80-bit (6-bit Enc/Dec, 10-bit length,  

32-bit the content of rs, and 32-bit the content of rd) are sent from scalar unit to the 

extended crypto coprocessor though CIQ queue by the end of decode stage of the scalar 

pipeline.  

 

 

Table 1: The content of the Rcon[round] 

Round 1 2 3 4 5 6 7 8 9 10 

R
co

n
[]

 01 02 04 08 10 20 40 80 1b 36 

00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 
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The control unit of the crypto coprocessor fetches crypto instructions in-order from 

the head of CIQ (see Figure 3). Then the control unit sends rs, rd, and length to the 

address generation control unit for generating the addresses to load data from memory 

and to store the encrypted/decrypted data back into the memory. As Figure 3 shows, the 

address generation unit consists of two address generators and two queues working under 

control of address generator control unit. Load address generator works in parallel with 

store address generator, where the generated addresses are stored into LAQ (load address 

queue) and SAQ (store address queue). 

 For the key expansion process, the following instruction format is used for sending 

128-bit key from the scalar processor to the crypto coprocessor through CIQ queue.  

6-bit 5-bit 5-bit 10-bit 6-bit 

010010 rs rd --- Key1/ Key2 

The 128-bit key are sent to the crypto coprocessor in two steps because during the decode 

stage only two register (2×32-bit) can be read from the scalar register file. Thus, the main 

control unit of the crypto coprocessor stores 64-bit comes with Key1 until the other 64-bit 

comes with Key2. After 128-bit key is sent from the scalar unit, the main control unit 

passes it to the key expansion unit. As Figure 2 shows, the key expansion unit iterates the 

functions KeyRotWord, KeySubWord, and KeyXOR ten times (Nr = 10) and stores the 

generated keys (round keys) into key register file. Thus, the size of the key register file is 

11×128-bit (the original cipher key plus 10 generated round keys).  
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4. PARALLEL IMPLEMENTATION OF AES PIPELINE  

  

 Various architectures exist to realize the AES encryption/decryption algorithm. 

Among them, rolling and unrolling are the two basic architectures. The rolled AES 

pipeline uses a feedback structure (see Figure 2) where the data is iteratively transformed 

by round functions. This approach occupies small area, but achieves low throughput. 

Some existing rolled implementations are presented in [19-20]. In the unrolled AES 

pipeline, the round functions are pipelined furthermore. Thus pipeline registers should be 

inserted between rounds allowing simultaneous operations of all 11 round stages. 

Pipelined implementation of AES achieves higher throughput, however, requires larger 

area. Some Existing unrolling implementations are appeared in [21-24]. 

 To further improve the performance (throughput) of unrolling implementations, each 

round would be pipelined. Thus pipelining technique can be applied both for inside 

(inner) and around (outer) each round. Our implementation of the outer pipeline (one 

pipeline stage per round) achieves a throughput of 45 Gbps at frequency 360 MHz on 

Xilinx Virtex V FPGA and Xilinx ISE 10.1 synthesis tool. Since the look-up tables of 

Sbox are the main critical path in the pipeline design, the implementation of inner 

pipeline with two, three or four pipeline stages achieves 70 Gbps at maximum frequency 

557 MHz. This results in two stages per round is the best choice for implementation. This 

choice gives maximum throughput-area tread-off.  

 This section proposes the use of parallel AES pipelines to further improve the 

throughput of encryption/decryption pipelines unit shown in Figure 1 and 3. Figure 4 

shows the proposed implementation, which is based on using parallel AES pipelines 

architecture. Each round has two pipeline stages, which achieves a throughput of 70 

Gbps. The first stage performs Sbox and ShiftRows transformations and the second stage 

performs MixColumns and keyAddition transformations. Four parallel AES pipelines for 

each encryption and decryption, key expansion unit, and key register file consume up to 

15840 slices. In Xilinx terms, two logic cells are grouped to form a slice, where each 

logic cell contains a four-input look-up table and a D flip-flop. The maximum frequency 

for this architecture on Xilinx Virtex V FPGA is 444 MHz, which provides a throughput 

of 222 Gbps. As Figure 4 shows, the input data for these parallel pipelines is loaded from 

four 128-bit queues called LDQ. Each queue is implemented as four words of 128-bit 

wide, which consumes 144 slices. A single data bus feeds the four queues of LDQ in 

round-robin fashion. In addition, four 128-bit output ciphertext/deciphertext are stored 

into four 128-bit queues called SDQ. The implementation of SDQ is the same as LDQ. 

The ICQ is implemented as four 80-bit word with area consumption equals to 72 slices.  

 To keep a balance between data encryption paths and key expansion unit, the key 
expansion round implemented as two stages per round. The unrolled key expansion,  
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which consumes 864 slices calculates the round keys at first 20 cycles and remains 

constant during the execution of encryption/decryption instructions. Thus, the total area 

would be minimized using the offline technique and rolled key expansion unit. The round 

keys in FastCrypto are generated using rolled key expansion unit, which consumes 144 

slices. The key expansion unit calculates the round keys offline and stores them in the 

key register file. As Figure 4 shows, each data encryption path needs eleven 128-bit 

round keys. Instead of adding key expansion unit for each data encryption path, our 

implementation is based on the use of a common key register file for all parallel 

pipelines. By broadcasting the round keys, the key register file feeds parallel AES 

pipelines at once. 

 
5. CONCLUSION 

 
 Encryption has long been used by militaries and governments to facilitate secret 

communication. However, encryption is now commonly used in protecting information 

within many kinds of civilian systems. This paper proposes extending general-purpose 

processors with crypto coprocessor for fast encrypting/decrypting data. The extended unit 

is based on decoupled architectures, which splits each crypto instruction into memory 

(load/store) and computation (encryption/decryption) portions (pseudo instructions).  

 
Figure 4: Parallel pipeline implementation of AES algorithm 
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Loading/storing and encrypting/decrypting data are performed in parallel and 

communicated through architectural queues. The computational unit includes parallel 

AES pipelines for fast encrypting/decrypting data. Each pipeline is based on unrolling 

architectures. In addition, each round has two pipeline stages. On four parallel AES 

pipelines, our results show a performance of 222 Gbps. 
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