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Abstract 

The instruction set architecture (ISA) is the part of the processor that is visible to the 
programmer or compiler writer. Multi-level ISA is proposed to explicitly communicate 
data parallelism to hardware (processor) in a compact way instead of the dynamic 
extraction using complex hardware or the static extraction using sophisticated compiler 
techniques. This paper presents the codevelopment of multi-level ISA and hardware for 
an efficient matrix processor called Mat-Core. Mat-Core extends a general-purpose scalar 
processor with a matrix unit for processing vector/matrix data. To hide memory latency, 
the extended matrix unit is decoupled into two components: address generation and data 
computation, which communicate through data queues. Like vector architectures, the data 
computation unit is organized in parallel lanes. However, on parallel lanes, Mat-Core can 
execute scalar-matrix, vector-matrix, and matrix-matrix instructions in addition to scalar-
vector and vector-vector instructions. Mat-Core leads to a compiler model that is efficient 
both in terms of performance and executable code size. On four parallel lanes Mat-Core 

and matrix registers of size 8×4 or 32 elements, our results show performances of about 
1.6, 2.1, 4.1, and 6.4 FLOPs per clock cycle achieved on scalar-vector multiplication, 
SAXPY, vector-matrix multiplication, and matrix-matrix multiplication, respectively. 
Keywords - high performance computing, multi-level ISA, performance evaluation, 

SystemC implementation, vector/matrix processing. 
 

1. INTRODUCTION 

 

The presence of parallelism in applications is the key to achieving high performance 

with all modern microprocessors, for it allows the hardware to accelerate applications by 

executing multiple, independent operations concurrently [1]. Beyond simple pipelining, 

there are three major forms of parallelism, instruction-level parallelism (ILP), thread-

level parallelism (TLP), and data-level parallelism (DLP), which are not mutually 

exclusive. The cheapest and the most prevalent form of parallelism available in many  
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applications is DLP. For example, in multimedia applications, which are widely used 

today, the computationally intensive kernels repeat the same set of operations over 

streams of input data [2]. 

The Mat-Core architecture [3] relies on the use of multi-level ISA to express and 

exploit the DLP in data parallel applications. Scalar/vector/matrix instruction sets can be 

executed on the Mat-Core hardware (see Figure 1). Scalar instruction set architecture 

(Level-1 ISA) is the fundamental instruction set for any general-purpose processor. It 

usually has an instruction for every scalar operation (see Figure 1a). Meaning that scalar 

ISA cannot express parallelism to hardware (processor); however, the performance can 

be improved only by processing more scalar instructions concurrently. These parallel 

instructions require complex superscalar architectures [4] for extracting them 

dynamically or wide VLIW architectures [5] relying on sophisticated compiler for 

extracting them statically.  

Vector instruction sets (Level-2 ISA) have many fundamental advantages and deserve 

serious consideration for implementation on microprocessors [6-9]. Vector ISA packages 

multiple homogenous, independent operations into a single short instruction, which 

results in compact, expressive, and scalable code (see Figure 1b). Advantages of vector 

ISAs over scalar or VLIW ISAs can be placed in three broad categories [10]. First, 

semantic advantages; that is, vector ISAs tend to express programs in a more concise and 

efficient way. Second, explicit parallelism is encoded in each vector instruction, thus 

allowing for highly parallel implementations. Third, the combination of regularity in each 

vector instruction and explicit parallelism allows for very aggressive design techniques, 

such as heavy pipelining, functional unit replication, and aggressive clocking [1].  

To reduce the execution time, most vector processors use parallel pipelines per functional 
unit. On parallel pipelines, not only vector but also matrix data can be processed (see 
Figure 1c). Matrix instruction set (Level-3 ISA) can be executed on the same parallel 
pipelines of the extended matrix unit of Mat-Core processor. Matrix FastCrypto: Parallel  
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processing is the logical direct extension of vector processing. Matrix ISA further reduces 

both the semantic and the parallelism gaps between high-level languages and hardware. 

(See [11] for more detail about the semantic and the parallelism gaps.) Thus, high-level 

instructions, such as vector-scalar, vector-vector, matrix-scalar, matrix-vector, and 

matrix-matrix instructions, convoy up to 3-D data parallelism to Mat-Core processor, 

which results in reducing the complexity of hardware and compiler.  

As Figure 2 shows, Mat-Core extends a general-purpose scalar processor (for 

executing scalar instructions) with a matrix unit (for executing vector/matrix 

instructions). To tolerate the memory latency, the extended matrix unit is decoupled into 

two components: address generation and data computation. The data computation unit is 

organized in parallel lanes; each lane contains a pipeline of each functional unit and a 

slice of the matrix register file. The elements of vector data are distributed across the 

lanes in a round-robin, interleaved fashion (see Figure 1b). SystemC has been used to 

simulate the Mat-Core processor (see [12] for more detail). 

There are several benefits to the modular, lane-based implementation [13]. A single 

lane must be designed and verified regardless of the number of lanes allocated in the 

processor. Scaling the processor for processing longer vectors or larger matrices by 

allocating the proper number of lanes leads to balanced addition of both register file and 

execution resources, without requiring redesign of functional units or their control. A 

four-lane processor, for example, can store vectors twice as long and execute twice as 

many element operations per cycle as a two-lane processor. Finally, the locality of 

communication in a lane-based processors, allows hardware scaling without implications 

due to the high latency of long, cross-chip wires [14-15]. Note that the use of crossbars 

across Mat-Core lanes reduces the scalability. Thus, small number of parallel lanes is 

used for processing vector/matrix data per a single core of Mat-Core processor. As the 

underlying semiconductor technology continues to improve significantly, more cores can  

Figure 2: Block diagram of the Mat-Core processor 
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be fabricated on a single chip. Multi-threading techniques on Mat-Core having multi-core 

can be used to further scaling Mat-Core and improving the performance of data parallel 

applications. 

This paper is organized as follows. Section 2 demonstrates the Mat-Core instruction 

sets. It presents the codevelopment of multi-level ISA and hardware for an efficient 

matrix processor (Mat-Core). Section 3 describes the architecture of the decoupled Mat-

Core, which can hide memory latency by splitting extended matrix unit into address 

generation and data computation units. In Section 4 an assembler for Mat-Core 

architecture is demonstrated, which enables writing programs in assembly language 

instead of machine code. Moreover, Section 4 presents the performance evaluation of 

Mat-Core processor on vector kernels (scalar-vector multiplication and SAXPY: Single-

precision scalar A times vector X Plus vector Y), on matrix-vector kernel (vector-matrix 

multiplication), and on matrix-matrix multiplication as a matrix kernel. Finally, Section 5 

concludes this paper. 

 

2. MAT-CORE INSTRUCTION SETS  

 

Mat-Core is a load/store architecture, where memory can be accessed only with 

load/store instructions (data should be loaded into registers before processing). Scalar 

data are loaded from scalar data cache into scalar registers (integer or floating-point), 

processed (in-order or out-of-order) on scalar execution datapath, and then stored from 

scalar registers back to scalar data cache. Vector/matrix data are loaded directly from L2 

cache into matrix registers through load data queue (LDQ), processed on parallel 

execution datapaths, and then stored back from matrix registers to L2 cache through store 

data queue (SDQ).  

According to Mat-Core ISA, matrix unit can contain up to 32 matrix registers, each 

can store up to 1024×P elements, where P is the number of parallel lanes. Each element 

can be 64-bit data or less. These matrix registers can store strips of vector data or blocks 

of matrices (see Figure 1b and 1c). Thus, each matrix register has two names (M0 

through M31 or V0 through V31). For example, M7 and V7 refer to the same hardware 

register. This will make the code more readable for matrix/vector processing. The first 

implementation of Mat-Core provides only 8 matrix registers M0 through M7 or V0 

through V7. Each of them has 32 elements (8×4) of 32-bit wide. Besides, the number of 

parallel lanes of the first implementation is only four (P = 4). Future implementations 

may provide larger number of lanes for processing longer strip vectors and larger block 

matrices. 

Mat-Core instructions are divided into several classes:  

• Scalar/vector/matrix load/store instructions that move 0-D/1-D/2-D data between 

registers and memory;  
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• Scalar/vector/matrix arithmetic/logical instructions that process 0-D/1-D/2-D data 

stored in Mat-Core registers; 

• Compare/branch/jump scalar instructions. 

• Control instructions that read/write control registers; and  

• Move instructions, which move data between matrix registers, and between scalar 

registers and matrix registers. 

Before executing high-level vector/matrix instruction(s), CPL (control parallel lanes) 

instruction should be executed first. The main purpose of the CPL control instruction is to 

adjust the number of parallel lanes used in the successive execution of vector/matrix 

instruction(s) and to tell the functional units about the number of elements per lane. Like 

any Mat-Core instruction, CPL has 32-bit with the following fields.  

6-bit 10-bit 5-bit 5-bit 6-bit 

Matrix class Strps Wstrp Dim CPL opcode 
The first 6-bit (010010 like the code of coprocessor 2 in MIPS architectures) tells the 

scalar part that the execution of this instruction is on the extended matrix unit instead of 

on the scalar unit. Strps and Wstrp fields store the number of strips and the number of 

elements per strip, respectively, where 1 ≤ Strps ≤ 1024 and 1 ≤ Wstrp ≤ 32. The last 6-

bit (000000) is the opcode of CPL control instruction Thus the second and the third fields 

are used to set the control registers Strps and Wstrp, respectively. Strps×Wstrp elements 

of blocks are processed using a vector/matrix instruction. For element-wise vector/matrix 

instructions, such as element-wise addition, subtraction, multiplication, etc., Strps and 

Wstrp are read by the control unit to generate the proper control signals to process 

Strps×Wstrp blocks of matrices or Strps*Wstrp strips of elements. Other instructions, 

such as matrix-matrix multiplications, need three parameters for processing blocks of 

data. The control register Dim is used for storing the third parameter. Depending on the 

opcode of the instruction being executed, the control unit uses Strps/Wstrp or 

Strps/Wstrp/Dim fields to generate the control signals. 

Like vector ISA, memory instructions are divided into separate unit-stride, stride, and 

indexed classes. The simplest and effective form of loading/storing a block of data is the 

unit-stride form, which transfers a set of elements (1 ≤ Wstrp ≤ P elements, where P is 

the number of lanes) between contiguous memory locations and register file through 

LDQ/SDQ. The base address of all contiguous elements is specified by the contents of a 

scalar register passed to the matrix unit by the scalar core. The address unit generates a 

series of memory addresses (only one address per clock cycle); each address moves 1 ≤ 

Wstrp ≤ P elements from/to L2 cache memory to/from LDQ/SDQ. Using Strps and 

Wstrp, a single-precision matrix block can be loaded into Md matrix register (LM.S Md, 

rs, rt), as the following pseudo code shows, where rs and rt are scalar registers 

holding the starting address and the number of bytes between two consecutive rows,  
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respectively. Note that 96-bit (LM.S instruction, rs, and rt scalar registers) are sent from 

scalar unit to matrix unit by the end of decode stage of the scalar pipeline. 

 address = rs; 

 for(i=0; i<Strps; i++){ 

  for(j=0; j<Wstrp; j++){ 

   Md[i][j] = Mem[address+j*4] 

  } 

  address += rt;    

 } 

In addition, the format of the Mat-Core load instruction (32-bit) is as follows. 

6-bit 5-bits 5-bits 5-bits 5-bits 6-bit 
010010 rs rt Md LM.S load/store 

On the Mat-Core processor, vector data (1-D arrays) are loaded into matrix registers 

(2-D arrays) in round-robin fashion, and then processed on P execution datapaths as a 

matrix data (see Figure 1b). Said differently, vector data is a special case of matrix data. 

The CPL control instruction for processing n-element vector data is as follows. 

6-bit 10-bit 5-bit 5-bit 6-bit 

Matrix  
(010010) 

Strps 

(n/P) 
Wstrp 

(P) 
Dim 

(00000) 
CPL 

 (000000) 

The Mat-Core instruction format for loading n-element (unit-stride loading), four-byte 

each, into a matrix register is as follows. 

6-bit 5-bits 5-bits 5-bits 5-bits 6-bit 

Matrix 
 (010010) 

rs  
(base add.) 

rt  
(Wstrp*4)

Md 
(dest. reg.) 

LM.S Load/store 
(000001) 

Not only unit-stride vector load/store, but also stride version is available. We can 

think of the matrix block load as a stride vector load. The contents of CPL instruction for 

loading/storing stride data are as follows. 

6-bit 10-bit 5-bit 5-bit 6-bit 
Matrix  

(010010) 
Strps 

(n) 
Wstrp 

(00001) 
Dim 

(00000) 
CPL 

 (000000) 

The first lane is used for loading/storing stride data into a matrix register (LM.S Md, 

rs, rt), where rt stores the stride value and rs stores the address of the first element. 

The first version of Mat-Core does not support indexed addressing mode. 

On 8×4 matrix registers (1 ≤ Strps ≤ 8 and 1 ≤ Wstrp ≤ 4), the Mat-Core processor 

can process strips of vectors with a maximum length of 32 elements or blocks of matrices 

with size of 8×4. These maximum strip length and maximum block size are unlikely to 

match the real vector length and matrix size in a program, respectively. Moreover, the 

size of a particular vector or matrix data is often unknown until run time in real programs. 

To solve these problems both the strip mining technique [16-18] to process longer or 

unknown vectors, and the block mining based on the block notation technique [19] to 

process larger or unknown matrices, are used (see Figure 3). 
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In the strip mining technique, the compiler reads two read-only control registers 

called MSR and MSW, which holding the maximum number of strips and the maximum 

number width per strip, respectively. The compiler strips an n-elemet vectors into 

n/(MSR*MSW) segments. The length of all segments is MSR*MSW except the last 

which has a length of the remainder of dividing n by MSR*MSW. This results in reducing 

the of iterations of a single loop from n (by using scalar ISA) to n/(MSR*MSW) (by 

using vector ISA).  

The logical extension of the strip mining for processing longer vectors is the block 

mining for processing larger matrices (m×n elements). The block mining technique is 

based on the block notation of existing matrix algorithms. The compiler reads the control 

registers MSR and MSW as well as MDIM, which holds the maximum number of 

elements for the third parameter needed for matrix-matrix multiplication. The compiler 

reads the necessarily control registers and strips the given m×n matrices horizontally into 

m/MSR segments and vertically into n/MSW segments for element-wise matrix 

instructions. In case of matrix-matrix multiplication (m×n times n×w), the compiler strips 

the first matrix horizontally into m/MDIM segments and vertically into n/MSR 

segments and the second matrix horizontally into n/MSR segments and vertically into  

Figure 3: Strip/block mining for processing larger vectors/matrices 

 N = n % 8 
W = w % 4 
D = m % 4 
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w/MSW segments. Note that the Strps, Wstrp, and Dim control registers are set to MSR, 

MSW, and MDIM, respectively, to process the maximum vector strips or the maximum 

matrix blocks. To process shorter vector strips or smaller matrix blocks, these control 

registers are set to values less than MSR, MSW, and MDIM. 

 

 

3. THE ARCHITECTURE OF THE DECOUPLED MAT-CORE  

 

 Decoupled architectures are based on the observation that the execution of a program 

can be split into two different tasks: moving data to/from processor and executing 

arithmetic instructions that perform the program computations [20, 21]. The main 

advantage of decoupled architectures is the toleration of memory latency. In decoupled 

architectures, the arithmetic instructions waiting for memory operands do not block the 

issue stage. They are sent to an instruction queue freeing the issue stage to run ahead to 

find more memory instructions latter in the instruction stream. In other words, latency is 

tolerated because the address unit is able to slip ahead of the computation unit and loads 

data that will be needed soon by the computation unit early in time. This excess data 

produced by the address unit is stored in FIFO queue and stays there until it is retrieved 

by the computation unit [7].  

 The Mat-Core processor is based on decoupled architectures to hide memory latency. 

The extended matrix unit is split into two components: address generation and data 

computation, which communicate through data queues, as Figure 4 shows. The SystemC 

implementation of the decoupled Mat-Core processor is described in detail in [12]. The 

address unit performs all address computations, addresses checking, and loads/stores data 

from/to memory to/from queues. The computation unit moves data from/to queues 

to/from registers and executes all arithmetic instructions on data loaded into registers. 

These units are communicated through architectural queues which are used to temporary 

keep the loaded/stored data from/to memory to/from the register file. 

 High-level vector/matrix instructions are fetched, decoded, and then dispatched in-

order by the scalar core to the pre-address queue called instruction and scalar operands 

queue 1 (ISQ1). Instruction flow controller in the matrix part takes memory/arithmetic 

vector/matrix instructions in-order from the head of ISQ1. Load/store instructions are 

split into two components: address generation and pseudo-move instruction. The first 

component generates a stream of addresses stored in LAQ (load address queue) or SAQ 

(store address queue) to fill LDQ (load data queue) or empty SDQ (store data queue), 

respectively. In more detail, the address generation unit generates and checks the required 

addresses for loading/storing vector and matrix data. After checking, the address 

generation unit inserts load addresses into the load address queue (LAQ) and store 

addresses into the store address queue (SAQ). When either a load or a store is ready (i.e.,  
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Figure 4: Decoupled Mat-Core architecture and its SystemC implementation 
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no dependence and the data is available in case of store instruction), it is sent over the 

address bus for execution. The pseudo-move instruction moves data from/to the 

load/store data queue (LDQ/SDQ) to/from the matrix register file.  

 Arithmetic and pseudo-move instructions are passed to another queue called  

 

instruction and scalar operands queue 2 (ISQ2). Note that, the contents of ISQ1 is 
arithmetic/memory instructions, however, ISQ2 is keeping arithmetic and pseudo-move 
instructions. Once a pseudo-move is at the head of the ISQ2 and its operands are ready, 
the scoreboard control unit moves operands from/to LDQ/SDQ to/from matrix registers. 
Pseudo-move instructions move data from/to LDQ/SDQ to/from matrix registers,  
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however, other instructions perform arithmetic operations on data in matrix registers. The 

purpose of ISQ2 is to buffer pseudo-move/arithmetic instructions that follow a memory 

instruction until it is known that the memory instruction will not generate a data page 

fault. On a page fault, the contents of ISQ1, ISQ2, and the current instruction in 

instruction flow controller are needed to be stored.  

 No interconnections between parallel lanes are needed for element-wise 

vector/matrix instructions. However, not only element-wise instructions are needed for 

vector/matrix processing, but reduction and expansion instructions are also needed. Dot-

product, vector-matrix, and matrix-matrix multiplications are based on reduction 

operations; however, outer-product is based on expansion operations. Executing 

reduction and expansion instructions needs interconnections between lanes. These 

interconnections can be local, global, bus, etc. It is known that all these types of 

interconnections are not scalable, except the local, because longer wires are needed to 

connect more lanes. However, for a small number of parallel lanes, the use of full 

crossbars is more efficient technique than the other techniques. Crossbars provide 

complete flexibility in connecting any register bank of the partition register file with any 

functional unit. Pass, Rotate, and Broadcast are the main shuffle operations that can be 

done on Mat-Core crossbars. See [3] for more detail about using crossbars in the 

execution of matrix/vector operations.  

 

 

4. ASSEMBLER FOR MAT-CORE ARCHITECTURE  

  

 For Mat-Core hardware to be useful, it is necessary to be able to compile 

applications, written in high-level languages such as MATLAB, MATHEMATICA, C++, 

etc., into sequences of scalar/vector/matrix instructions. Since MATLAB supports matrix 

notations, it can be considered as a suitable high-level language for programming Mat-

Core applications. Traditionally, the Mat-Core compiler can be divided into three main 

stages. The first stage is the compiler front-end where syntax and semantic analysis are 

done. Loop blocking, strip/block mining, and independent optimization are the three main 

tasks of the second stage. The third stage is the compiler back-end, which generates 

machine code for Mat-Core architecture and schedules the generated code for optimal 

performance. It is known that writing such compiler is not an easy task, which represents 

our future work. In this section, a part of the last stage (compiler back-end), is 

demonstrated as an assembler for Mat-Core. This enables us to write programs in 

assembly language instead of machine code. Thus, the performance of Mat-Core is 

evaluated now on kernels instead of applications. 

 The Mat-Core assembler consists of three passes as shown in Figure 5. In the first 

pass (macro manipulation), each calling of a macro is replaced by its equivalent body.  
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Figure 5: Three-pass Mat-Core assembler for converting assembly  

program to machine code 
 

 

Macro is a group of instructions performs a task that is used repeatedly. Macros allow the 

programmer to write the task once and to invoke it whenever it is needed and wherever it 

is needed. To make macros more flexible, parameters are used. The assembler passes 

macro parameters to the macro body for substitution. Since a macro can be expanded 

more than once in a program, labels of the body of the macro must be renamed to avoid 

label replication. Otherwise an assembler error would be generated when the same label 

is encounter in two or more places.  

The second pass is the symbol table construction for labels and addresses. A symbol 

table is a container that maps each label in the source program to its corresponding 

address in memory. Labels in assembly programs sometimes represent an address in the 

data area (a variable) and sometimes they represent an address in the program area (a 

location to which you want to jump). Symbol tables are typically implemented using 

hashing schemes because good efficiency for the lookup is needed. Thus the symbol table 

of the Mat-Core assembler is constructed as a hash table. Finally, the third stage 

(instructions coding) generates machine code depending on the type of instruction and the 

content of symbol table. The coding process includes two main processes: coding Level-1 

ISA (MIPS scalar ISA) and coding high-level instructions (vector/matrix instructions). 

The vector/matrix instructions are coded into load/store, arithmetic/logic, control, and 

move types as discussed in Section 2. The same conventions used in MIPS assemblers 

like directives, register names, etc., are used in developing Mat-Core assembler. 

As mentioned in Section 2, strip/block mining techniques are used for processing 

longer vectors and larger matrices. In this section, we show how these techniques are 

applied on SVmul, SAXPY, vector-matrix and matrix-matrix multiplications on four  
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parallel lanes, matrix registers of 8×4 elements, and the contents of MSR, MSW, and 

MDIM registers are 8, 4, and 4, respectively. Note that the CPL instruction is used to set  

 

Strp, Wstrp, and Dim at the same time whereas SETN, SETW and SETD instructions  

individually set these control registers, respectively. In the strip mining technique (see 

Figure 3a), n-element vectors are divided into n/32 segments (MSR*MSW = 8*4 = 32 

elements). The remainder, which equals n%32, is divided into two segments, one 

segment with Strp = n%32/4  and Wstrp = 4 and the other segment with Strp = 1 and 

Wstrp = n%32%4. After strip mining vectors, the Mat-Core instructions shown in Table 

1 is added in the inner loop. The inner loop of scalar-vector multiplication and SAXPY 

need only three and five vector/matrix instructions, respectively.  

In vector-matrix multiplication (1×n times n×w), strip mining and block mining 

techniques are used (see Figure 3b). The input vector is divided into n/8 strips each one 

has 1×8 elements, however, the last strip has 1×(n%8) elements. Moreover, matrix is 

divided into w/4 columns, each column has n/8 blocks, where w/4*n/8 blocks 

each has 8×4 elements. The last block in any column except the last has (n%8)×4 

elements. The last column has n/8 blocks of 8×(w%4) and the last block of this column  

 
 

Table 1: Mat-Core instructions in high-level and assembly languages  

Instruction 

set 
High-Level Statement in Matlab Mat-core assembly code for inner loop only 

Scalar-vector 
multiplication 

c(1:n) = a* b(1:n) 

LV.S $M4,$t0,$t     #load vector of SP 

elements                         

MULVS.S $M5,$M4,$t2 # vector-scalar 
multiply 

SV.S $M5,$t4,$t1    #store result vector                       

SAXPY c(1:n) = a*b(1:n) + c(1:n) 

LV.S $M3,$t0,$t1    #load vector  

LV.S $M4,$t6,$t1    #load vector  

MULVS.S $M5,$M3,$t4 #vector-scalar 

multiply  

ADDVV.S $M7,$M5,$M4 #add two vectors                       

SV.S $M7,$s0,$t1    #store result vector                       

Vector-
matrix 
multiplication 

c(1:n) = a(1:n) * b(1:n, 1:n) 

LRH.S $M3,$t0,$t1   #load row horizontal 

1x8 

LM.S $M4,$t6,$t1    #load matrix 8x4 

RMAC                #Reset MAC             

MULVM.S $M5,$M3,$M4 #vector-matrix 

multiply  

ADDR.S $M7,$M5,$M7     #accumulate row 
result 

Matrix-
matrix 
multiplication 

c(1:n, 1:n) = a(1:n,1:n) * b(1:n,1:n) 

LMH.S $M3,$t0,$t1   #load matrix horizontal 

4x8 

LM.S $M4,$t7,$t1    #load matrix 8x4 

RMac                #Reset MAC 

MULMM.S $M5,$M3,$M4 #matrix-matrix multiply 

ADDD.S $M7,$M5,$M7  #accumulate block result         

                  #and use DIM control 

register                      
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Figure 6: Ratio of scalar to Mat-Core instructions 

 

 

 

has (n%8)×(w%4) elements. Vector strips are multiplied by each column blocks to 

produce a single strip of the result vector. Thus, vector-matrix multiplication needs two 

nested loops for strip/block mining. The inner loop needs only five vector/matrix 

instructions, as Table I shows. The first two instructions load a strip (8 elements or less) 

and a block (8×4 elements or less). The third instruction is used to reset the multiply-

accumulate (MAC) functional unit. The fourth instruction does vector-matrix 

multiplication (1×8 strip times 8×4 block). The result vector-matrix multiplication is 

accumulated in a matrix register in the fifth instruction. 

In matrix-matrix multiplications (m×n times n×w), block mining technique is used, 

which requires reading MSR, MSW, and MDIM control registers. The first matrix is 

divided into m/4 rows, each row has n/8 blocks, where m/4*n/8 blocks each has 

4×8 elements. The last block in each row has 4×(n%8) elements. The last row has n/8 

blocks of (m%4)×8, however, the last block in this row has (m%4)×(n%8) elements. The 

second matrix is divided as the matrix in vector-matrix multiplication (see Figure 3c). 

Multiplying row blocks in the first matrix by column blocks in the second matrix and 

accumulating the results produce one block of the output matrix. Matrix-matrix 

multiplication needs the same number of Mat-Core instructions as vector-matrix 

multiplication; however, it requires three nested loops for block mining. This shows how 

the Mat-Core ISA reduces the semantic gap between high level language and hardware. It 

also shows that the data parallelism found in applications is exploited directly by Mat-

Core ISA and convoyed to hardware in a compact form. As Figure 6 shows, the use of 

Mat-Core ISA results in reduction of the number of instructions by 15-30 times on 

applications dominated by scalar-vector, vector-vector, and vector-matrix kernels and by 

60-125 times on applications dominated by matrix-matrix kernels. However, the use of  
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Figure 7: Performance evaluation of Mat-Core 
 

 

scalar ISA results in scattering the data parallelism by compilers and then gathering it 

again using complex hardware. 

Figure 7 shows the performance of Mat-Core processor with four parallel lanes and 

matrix registers of size 8×4 or 32 elements on scalar-vector, vector-vector, vector-matrix, 

and matrix-matrix kernels. The performance is evaluated on three categories of 

vector/matrix dimensions small (50-element vectors or 50×50-element matrices), medium 

(200-element vectors or 100×100-element matrices), and large (8K-element vectors or 

300×300-element matrices). It is clear that the performance of Mat-Core processor is 

higher on computationally intensive kernels than on memory intensive kernels. 

Moreover, as the vector length increases, the loop overhead per element decreases, this 

increases the overall performance. A performance of about 1.6 and 2.1 FLOPs per clock 

cycle are achieved on SVmul and SAXPY, respectively, as shown in Figure 7. The 

maximum performances are four FLOPs per clock cycle on SVmul (four multiply 

operations can be processed in parallel in a clock cycle) and eight FLOPs per clock cycle 

on SAXPY because of chaining the results of the four multipliers and four adders. Note 

that as the number of memory references per FLOP decreases the performance increases 

(compare the performance of SAXPY, which has 3/2 memory references per FLOP, and 

SVmul, which has 2/1 memory references per FLOP). 

Figure 7 shows also the performance of vector-matrix and matrix-matrix 

multiplications on four lanes Mat-Core processor. With 8×4 matrix registers, a 

performance of 4.1 and 6.4 FLOPs per clock cycle are achieved on vector-matrix and 

matrix-matrix multiplications, respectively. Due to reusing the loaded data O(n) times in 

case of multiplying two n×n matrices, the performance of matrix-matrix multiplication is 

better than vector-matrix multiplication, which reuses the loaded data O(1) times. The 

performance of matrix-matrix multiplication on Mat-Core represents 80% of the 

maximum performance; eight FLOPs can be executed in parallel on four parallel lanes. 
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5.  CONCLUSION 

 
This paper shows how the codevelopment of multi-level ISA and hardware results in 

an efficient matrix processor called Mat-Core. Mat-Core extends a general-purpose scalar 

processor (for executing scalar instructions) with a matrix unit (for executing 

vector/matrix instructions). To tolerate the memory latency, the extended matrix unit is 

decoupled into two components: address generation and data computation. 

Scalar/vector/matrix instructions can be executed on the Mat-Core hardware. These 

instructions can convoy up to 3-D data parallelism to hardware. Mat-Core ISA reduces 

the semantic gap between high level language and hardware. The data parallelism found 

in applications is exploited directly by Mat-Core ISA and convoyed to hardware in a 

compact form. However, the use of scalar ISA results in scattering the data parallelism by 

compilers and then gathering it again by complex hardware. The use of Mat-Core ISA 

results in reduction of the number of instructions by 15-30 times on applications 

dominated by scalar-vector, vector-vector, and vector-matrix kernels and by 60-125 times 

on applications dominated by matrix-matrix kernels. 

Three passes assembler for Mat-Core is demonstrated for writing kernels in assembly 

language instead of machine code. The performance of Mat-Core processor is evaluated 

on scalar-vector, vector-vector, vector-matrix, and matrix-matrix kernels using SystemC. 

On four parallel lanes Mat-Core and matrix registers of size 8×4 or 32 elements, our 

results show performances of about 1.6, 2.1, 4.1, and 6.4 FLOPs per clock cycle achieved 

on scalar-vector multiplication, SAXPY, vector-matrix multiplication, and matrix-matrix 

multiplication, respectively. 
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