
Neural, Parallel, and Scientific Computations 18 (2010) 59 – 74

Codevelopment of Multi-Level Instruction Set Architecture

and Hardware for an Efficient Matrix Processor

Mostafa I. Soliman

Computer & System Section, Electrical Engineering Department, Faculty of Engineering,

South Valley University, Aswan, Egypt

Abdulmajid F. Al-Junaid

Computer & System Section, Electrical Engineering Department, Faculty of Engineering,

Assiut University, Egypt

Abstract

The instruction set architecture (ISA) is the part of the processor that is visible to the
programmer or compiler writer. Multi-level ISA is proposed to explicitly communicate
data parallelism to hardware (processor) in a compact way instead of the dynamic
extraction using complex hardware or the static extraction using sophisticated compiler
techniques. This paper presents the codevelopment of multi-level ISA and hardware for
an efficient matrix processor called Mat-Core. Mat-Core extends a general-purpose scalar
processor with a matrix unit for processing vector/matrix data. To hide memory latency,
the extended matrix unit is decoupled into two components: address generation and data
computation, which communicate through data queues. Like vector architectures, the data
computation unit is organized in parallel lanes. However, on parallel lanes, Mat-Core can
execute scalar-matrix, vector-matrix, and matrix-matrix instructions in addition to scalar-
vector and vector-vector instructions. Mat-Core leads to a compiler model that is efficient
both in terms of performance and executable code size. On four parallel lanes Mat-Core

and matrix registers of size 8×4 or 32 elements, our results show performances of about
1.6, 2.1, 4.1, and 6.4 FLOPs per clock cycle achieved on scalar-vector multiplication,
SAXPY, vector-matrix multiplication, and matrix-matrix multiplication, respectively.
Keywords - high performance computing, multi-level ISA, performance evaluation,

SystemC implementation, vector/matrix processing.

1. INTRODUCTION

The presence of parallelism in applications is the key to achieving high performance

with all modern microprocessors, for it allows the hardware to accelerate applications by

executing multiple, independent operations concurrently [1]. Beyond simple pipelining,

there are three major forms of parallelism, instruction-level parallelism (ILP), thread-

level parallelism (TLP), and data-level parallelism (DLP), which are not mutually

exclusive. The cheapest and the most prevalent form of parallelism available in many

Received January 11, 2010 1061-5369 $15.00 © Dynamic Publishers, Inc

60 Soliman and Al-Junaid

applications is DLP. For example, in multimedia applications, which are widely used

today, the computationally intensive kernels repeat the same set of operations over

streams of input data [2].

The Mat-Core architecture [3] relies on the use of multi-level ISA to express and

exploit the DLP in data parallel applications. Scalar/vector/matrix instruction sets can be

executed on the Mat-Core hardware (see Figure 1). Scalar instruction set architecture

(Level-1 ISA) is the fundamental instruction set for any general-purpose processor. It

usually has an instruction for every scalar operation (see Figure 1a). Meaning that scalar

ISA cannot express parallelism to hardware (processor); however, the performance can

be improved only by processing more scalar instructions concurrently. These parallel

instructions require complex superscalar architectures [4] for extracting them

dynamically or wide VLIW architectures [5] relying on sophisticated compiler for

extracting them statically.

Vector instruction sets (Level-2 ISA) have many fundamental advantages and deserve

serious consideration for implementation on microprocessors [6-9]. Vector ISA packages

multiple homogenous, independent operations into a single short instruction, which

results in compact, expressive, and scalable code (see Figure 1b). Advantages of vector

ISAs over scalar or VLIW ISAs can be placed in three broad categories [10]. First,

semantic advantages; that is, vector ISAs tend to express programs in a more concise and

efficient way. Second, explicit parallelism is encoded in each vector instruction, thus

allowing for highly parallel implementations. Third, the combination of regularity in each

vector instruction and explicit parallelism allows for very aggressive design techniques,

such as heavy pipelining, functional unit replication, and aggressive clocking [1].

To reduce the execution time, most vector processors use parallel pipelines per functional
unit. On parallel pipelines, not only vector but also matrix data can be processed (see
Figure 1c). Matrix instruction set (Level-3 ISA) can be executed on the same parallel
pipelines of the extended matrix unit of Mat-Core processor. Matrix FastCrypto: Parallel

i j

k

r1 r2

r3

x1
2
x8
x4

y1
2
y8
y4

x1
3
x9
x5

y1
3

y9
y5

x1
4
x1
0

y1
4
y1
0

x1
5
x1
1

y1
5
y1
1

z1
2
z8
z4

z1
3
z9
z5

z1
4
z1
0

z1
5
z1
1

Lane 0
V1
V2

Lane 1
V1 V2

Lane 2
V1 V2

Lane 3
V1 V2

V3 V3 V3 V3

a3
0
a2
0

b3
0
b2
0

a3
1
a2
1

b3
1
b2
1

a3
2
a2
2

b3
2
b2
2

a3
3
a2
3

b3
3
b2
3

c3
0
c2
0

c3
1
c2
1

c3
2
c2
2

c3
3
c2
3

Lane
0

Lane
1

Lane
2

Lane
3

M3 M3 M3 M3
(a) Scalar instruction: add r3,

r2, r1
(b) Vector instruction: add.vv V3, V2, V1

(c) Matrix instruction: add.mm M3, M2, M1

Figure 1: Mat-Core instruction sets

Crossbars Crossbars

Codevelopment of Multi-Level Instruction 61

processing is the logical direct extension of vector processing. Matrix ISA further reduces

both the semantic and the parallelism gaps between high-level languages and hardware.

(See [11] for more detail about the semantic and the parallelism gaps.) Thus, high-level

instructions, such as vector-scalar, vector-vector, matrix-scalar, matrix-vector, and

matrix-matrix instructions, convoy up to 3-D data parallelism to Mat-Core processor,

which results in reducing the complexity of hardware and compiler.

As Figure 2 shows, Mat-Core extends a general-purpose scalar processor (for

executing scalar instructions) with a matrix unit (for executing vector/matrix

instructions). To tolerate the memory latency, the extended matrix unit is decoupled into

two components: address generation and data computation. The data computation unit is

organized in parallel lanes; each lane contains a pipeline of each functional unit and a

slice of the matrix register file. The elements of vector data are distributed across the

lanes in a round-robin, interleaved fashion (see Figure 1b). SystemC has been used to

simulate the Mat-Core processor (see [12] for more detail).

There are several benefits to the modular, lane-based implementation [13]. A single

lane must be designed and verified regardless of the number of lanes allocated in the

processor. Scaling the processor for processing longer vectors or larger matrices by

allocating the proper number of lanes leads to balanced addition of both register file and

execution resources, without requiring redesign of functional units or their control. A

four-lane processor, for example, can store vectors twice as long and execute twice as

many element operations per cycle as a two-lane processor. Finally, the locality of

communication in a lane-based processors, allows hardware scaling without implications

due to the high latency of long, cross-chip wires [14-15]. Note that the use of crossbars

across Mat-Core lanes reduces the scalability. Thus, small number of parallel lanes is

used for processing vector/matrix data per a single core of Mat-Core processor. As the

underlying semiconductor technology continues to improve significantly, more cores can

Figure 2: Block diagram of the Mat-Core processor

Second-Level Cache (L2)

Instruction

Cache

Scalar

Unit

Scalar Data

Cache (L1)

Main Memory

Instruction

Flow Unit

Matrix

Control

Unit

Address Generation

RF

A
d

d

A
d

d

A
d

d

A
d

d

D
iv

D
iv

D
iv

D
iv

M
u

l

M
u

l

M
u

l

M
u

l

Lane 0 Lane 1 Lane 2 Lane 3 Matrix Unit

RF

RF

RF

Crossbars

Data Computation

62 Soliman and Al-Junaid

be fabricated on a single chip. Multi-threading techniques on Mat-Core having multi-core

can be used to further scaling Mat-Core and improving the performance of data parallel

applications.

This paper is organized as follows. Section 2 demonstrates the Mat-Core instruction

sets. It presents the codevelopment of multi-level ISA and hardware for an efficient

matrix processor (Mat-Core). Section 3 describes the architecture of the decoupled Mat-

Core, which can hide memory latency by splitting extended matrix unit into address

generation and data computation units. In Section 4 an assembler for Mat-Core

architecture is demonstrated, which enables writing programs in assembly language

instead of machine code. Moreover, Section 4 presents the performance evaluation of

Mat-Core processor on vector kernels (scalar-vector multiplication and SAXPY: Single-

precision scalar A times vector X Plus vector Y), on matrix-vector kernel (vector-matrix

multiplication), and on matrix-matrix multiplication as a matrix kernel. Finally, Section 5

concludes this paper.

2. MAT-CORE INSTRUCTION SETS

Mat-Core is a load/store architecture, where memory can be accessed only with

load/store instructions (data should be loaded into registers before processing). Scalar

data are loaded from scalar data cache into scalar registers (integer or floating-point),

processed (in-order or out-of-order) on scalar execution datapath, and then stored from

scalar registers back to scalar data cache. Vector/matrix data are loaded directly from L2

cache into matrix registers through load data queue (LDQ), processed on parallel

execution datapaths, and then stored back from matrix registers to L2 cache through store

data queue (SDQ).

According to Mat-Core ISA, matrix unit can contain up to 32 matrix registers, each

can store up to 1024×P elements, where P is the number of parallel lanes. Each element

can be 64-bit data or less. These matrix registers can store strips of vector data or blocks

of matrices (see Figure 1b and 1c). Thus, each matrix register has two names (M0

through M31 or V0 through V31). For example, M7 and V7 refer to the same hardware

register. This will make the code more readable for matrix/vector processing. The first

implementation of Mat-Core provides only 8 matrix registers M0 through M7 or V0

through V7. Each of them has 32 elements (8×4) of 32-bit wide. Besides, the number of

parallel lanes of the first implementation is only four (P = 4). Future implementations

may provide larger number of lanes for processing longer strip vectors and larger block

matrices.

Mat-Core instructions are divided into several classes:

• Scalar/vector/matrix load/store instructions that move 0-D/1-D/2-D data between

registers and memory;

Codevelopment of Multi-Level Instruction 63

• Scalar/vector/matrix arithmetic/logical instructions that process 0-D/1-D/2-D data

stored in Mat-Core registers;

• Compare/branch/jump scalar instructions.

• Control instructions that read/write control registers; and

• Move instructions, which move data between matrix registers, and between scalar

registers and matrix registers.

Before executing high-level vector/matrix instruction(s), CPL (control parallel lanes)

instruction should be executed first. The main purpose of the CPL control instruction is to

adjust the number of parallel lanes used in the successive execution of vector/matrix

instruction(s) and to tell the functional units about the number of elements per lane. Like

any Mat-Core instruction, CPL has 32-bit with the following fields.

6-bit 10-bit 5-bit 5-bit 6-bit

Matrix class Strps Wstrp Dim CPL opcode
The first 6-bit (010010 like the code of coprocessor 2 in MIPS architectures) tells the

scalar part that the execution of this instruction is on the extended matrix unit instead of

on the scalar unit. Strps and Wstrp fields store the number of strips and the number of

elements per strip, respectively, where 1 ≤ Strps ≤ 1024 and 1 ≤ Wstrp ≤ 32. The last 6-

bit (000000) is the opcode of CPL control instruction Thus the second and the third fields

are used to set the control registers Strps and Wstrp, respectively. Strps×Wstrp elements

of blocks are processed using a vector/matrix instruction. For element-wise vector/matrix

instructions, such as element-wise addition, subtraction, multiplication, etc., Strps and

Wstrp are read by the control unit to generate the proper control signals to process

Strps×Wstrp blocks of matrices or Strps*Wstrp strips of elements. Other instructions,

such as matrix-matrix multiplications, need three parameters for processing blocks of

data. The control register Dim is used for storing the third parameter. Depending on the

opcode of the instruction being executed, the control unit uses Strps/Wstrp or

Strps/Wstrp/Dim fields to generate the control signals.

Like vector ISA, memory instructions are divided into separate unit-stride, stride, and

indexed classes. The simplest and effective form of loading/storing a block of data is the

unit-stride form, which transfers a set of elements (1 ≤ Wstrp ≤ P elements, where P is

the number of lanes) between contiguous memory locations and register file through

LDQ/SDQ. The base address of all contiguous elements is specified by the contents of a

scalar register passed to the matrix unit by the scalar core. The address unit generates a

series of memory addresses (only one address per clock cycle); each address moves 1 ≤

Wstrp ≤ P elements from/to L2 cache memory to/from LDQ/SDQ. Using Strps and

Wstrp, a single-precision matrix block can be loaded into Md matrix register (LM.S Md,

rs, rt), as the following pseudo code shows, where rs and rt are scalar registers

holding the starting address and the number of bytes between two consecutive rows,

64 Soliman and Al-Junaid

respectively. Note that 96-bit (LM.S instruction, rs, and rt scalar registers) are sent from

scalar unit to matrix unit by the end of decode stage of the scalar pipeline.

 address = rs;

 for(i=0; i<Strps; i++){

 for(j=0; j<Wstrp; j++){

 Md[i][j] = Mem[address+j*4]

 }

 address += rt;

 }

In addition, the format of the Mat-Core load instruction (32-bit) is as follows.

6-bit 5-bits 5-bits 5-bits 5-bits 6-bit
010010 rs rt Md LM.S load/store

On the Mat-Core processor, vector data (1-D arrays) are loaded into matrix registers

(2-D arrays) in round-robin fashion, and then processed on P execution datapaths as a

matrix data (see Figure 1b). Said differently, vector data is a special case of matrix data.

The CPL control instruction for processing n-element vector data is as follows.

6-bit 10-bit 5-bit 5-bit 6-bit

Matrix
(010010)

Strps

(n/P)
Wstrp

(P)
Dim

(00000)
CPL

 (000000)

The Mat-Core instruction format for loading n-element (unit-stride loading), four-byte

each, into a matrix register is as follows.

6-bit 5-bits 5-bits 5-bits 5-bits 6-bit

Matrix
 (010010)

rs
(base add.)

rt
(Wstrp*4)

Md
(dest. reg.)

LM.S Load/store
(000001)

Not only unit-stride vector load/store, but also stride version is available. We can

think of the matrix block load as a stride vector load. The contents of CPL instruction for

loading/storing stride data are as follows.

6-bit 10-bit 5-bit 5-bit 6-bit
Matrix

(010010)
Strps

(n)
Wstrp

(00001)
Dim

(00000)
CPL

 (000000)

The first lane is used for loading/storing stride data into a matrix register (LM.S Md,

rs, rt), where rt stores the stride value and rs stores the address of the first element.

The first version of Mat-Core does not support indexed addressing mode.

On 8×4 matrix registers (1 ≤ Strps ≤ 8 and 1 ≤ Wstrp ≤ 4), the Mat-Core processor

can process strips of vectors with a maximum length of 32 elements or blocks of matrices

with size of 8×4. These maximum strip length and maximum block size are unlikely to

match the real vector length and matrix size in a program, respectively. Moreover, the

size of a particular vector or matrix data is often unknown until run time in real programs.

To solve these problems both the strip mining technique [16-18] to process longer or

unknown vectors, and the block mining based on the block notation technique [19] to

process larger or unknown matrices, are used (see Figure 3).

Codevelopment of Multi-Level Instruction 65

In the strip mining technique, the compiler reads two read-only control registers

called MSR and MSW, which holding the maximum number of strips and the maximum

number width per strip, respectively. The compiler strips an n-elemet vectors into

n/(MSR*MSW) segments. The length of all segments is MSR*MSW except the last

which has a length of the remainder of dividing n by MSR*MSW. This results in reducing

the of iterations of a single loop from n (by using scalar ISA) to n/(MSR*MSW) (by

using vector ISA).

The logical extension of the strip mining for processing longer vectors is the block

mining for processing larger matrices (m×n elements). The block mining technique is

based on the block notation of existing matrix algorithms. The compiler reads the control

registers MSR and MSW as well as MDIM, which holds the maximum number of

elements for the third parameter needed for matrix-matrix multiplication. The compiler

reads the necessarily control registers and strips the given m×n matrices horizontally into

m/MSR segments and vertically into n/MSW segments for element-wise matrix

instructions. In case of matrix-matrix multiplication (m×n times n×w), the compiler strips

the first matrix horizontally into m/MDIM segments and vertically into n/MSR

segments and the second matrix horizontally into n/MSR segments and vertically into

Figure 3: Strip/block mining for processing larger vectors/matrices

 N = n % 8
W = w % 4
D = m % 4

66 Soliman and Al-Junaid

w/MSW segments. Note that the Strps, Wstrp, and Dim control registers are set to MSR,

MSW, and MDIM, respectively, to process the maximum vector strips or the maximum

matrix blocks. To process shorter vector strips or smaller matrix blocks, these control

registers are set to values less than MSR, MSW, and MDIM.

3. THE ARCHITECTURE OF THE DECOUPLED MAT-CORE

 Decoupled architectures are based on the observation that the execution of a program

can be split into two different tasks: moving data to/from processor and executing

arithmetic instructions that perform the program computations [20, 21]. The main

advantage of decoupled architectures is the toleration of memory latency. In decoupled

architectures, the arithmetic instructions waiting for memory operands do not block the

issue stage. They are sent to an instruction queue freeing the issue stage to run ahead to

find more memory instructions latter in the instruction stream. In other words, latency is

tolerated because the address unit is able to slip ahead of the computation unit and loads

data that will be needed soon by the computation unit early in time. This excess data

produced by the address unit is stored in FIFO queue and stays there until it is retrieved

by the computation unit [7].

 The Mat-Core processor is based on decoupled architectures to hide memory latency.

The extended matrix unit is split into two components: address generation and data

computation, which communicate through data queues, as Figure 4 shows. The SystemC

implementation of the decoupled Mat-Core processor is described in detail in [12]. The

address unit performs all address computations, addresses checking, and loads/stores data

from/to memory to/from queues. The computation unit moves data from/to queues

to/from registers and executes all arithmetic instructions on data loaded into registers.

These units are communicated through architectural queues which are used to temporary

keep the loaded/stored data from/to memory to/from the register file.

 High-level vector/matrix instructions are fetched, decoded, and then dispatched in-

order by the scalar core to the pre-address queue called instruction and scalar operands

queue 1 (ISQ1). Instruction flow controller in the matrix part takes memory/arithmetic

vector/matrix instructions in-order from the head of ISQ1. Load/store instructions are

split into two components: address generation and pseudo-move instruction. The first

component generates a stream of addresses stored in LAQ (load address queue) or SAQ

(store address queue) to fill LDQ (load data queue) or empty SDQ (store data queue),

respectively. In more detail, the address generation unit generates and checks the required

addresses for loading/storing vector and matrix data. After checking, the address

generation unit inserts load addresses into the load address queue (LAQ) and store

addresses into the store address queue (SAQ). When either a load or a store is ready (i.e.,

TLB

L2 cache memory

Matrix
Registers

Load Store

co
m

m
i

t

V
ecto

r/m
atr

ix

in
stru

ctio
n

s

A
d

d
ress

g
en

erato
r

ISQ1: Instruction
and Scalar

ISQ2: Instruction
and Scalar

operands Queue

LAQ: Load
Address
Queue

SAQ: Store
Address
Queue

LDQ: Load
Data Queue

SDQ: Store
Data Queue

F D X M W Address
checks

Instruction
flow

controller

Scalar
pipeline

In
stru

ctio
n

 cach
e

L1 cache

Figure 4: Decoupled Mat-Core architecture and its SystemC implementation

Codevelopment of Multi-Level Instruction 67

no dependence and the data is available in case of store instruction), it is sent over the

address bus for execution. The pseudo-move instruction moves data from/to the

load/store data queue (LDQ/SDQ) to/from the matrix register file.

 Arithmetic and pseudo-move instructions are passed to another queue called

instruction and scalar operands queue 2 (ISQ2). Note that, the contents of ISQ1 is
arithmetic/memory instructions, however, ISQ2 is keeping arithmetic and pseudo-move
instructions. Once a pseudo-move is at the head of the ISQ2 and its operands are ready,
the scoreboard control unit moves operands from/to LDQ/SDQ to/from matrix registers.
Pseudo-move instructions move data from/to LDQ/SDQ to/from matrix registers,

68 Soliman and Al-Junaid

however, other instructions perform arithmetic operations on data in matrix registers. The

purpose of ISQ2 is to buffer pseudo-move/arithmetic instructions that follow a memory

instruction until it is known that the memory instruction will not generate a data page

fault. On a page fault, the contents of ISQ1, ISQ2, and the current instruction in

instruction flow controller are needed to be stored.

 No interconnections between parallel lanes are needed for element-wise

vector/matrix instructions. However, not only element-wise instructions are needed for

vector/matrix processing, but reduction and expansion instructions are also needed. Dot-

product, vector-matrix, and matrix-matrix multiplications are based on reduction

operations; however, outer-product is based on expansion operations. Executing

reduction and expansion instructions needs interconnections between lanes. These

interconnections can be local, global, bus, etc. It is known that all these types of

interconnections are not scalable, except the local, because longer wires are needed to

connect more lanes. However, for a small number of parallel lanes, the use of full

crossbars is more efficient technique than the other techniques. Crossbars provide

complete flexibility in connecting any register bank of the partition register file with any

functional unit. Pass, Rotate, and Broadcast are the main shuffle operations that can be

done on Mat-Core crossbars. See [3] for more detail about using crossbars in the

execution of matrix/vector operations.

4. ASSEMBLER FOR MAT-CORE ARCHITECTURE

 For Mat-Core hardware to be useful, it is necessary to be able to compile

applications, written in high-level languages such as MATLAB, MATHEMATICA, C++,

etc., into sequences of scalar/vector/matrix instructions. Since MATLAB supports matrix

notations, it can be considered as a suitable high-level language for programming Mat-

Core applications. Traditionally, the Mat-Core compiler can be divided into three main

stages. The first stage is the compiler front-end where syntax and semantic analysis are

done. Loop blocking, strip/block mining, and independent optimization are the three main

tasks of the second stage. The third stage is the compiler back-end, which generates

machine code for Mat-Core architecture and schedules the generated code for optimal

performance. It is known that writing such compiler is not an easy task, which represents

our future work. In this section, a part of the last stage (compiler back-end), is

demonstrated as an assembler for Mat-Core. This enables us to write programs in

assembly language instead of machine code. Thus, the performance of Mat-Core is

evaluated now on kernels instead of applications.

 The Mat-Core assembler consists of three passes as shown in Figure 5. In the first

pass (macro manipulation), each calling of a macro is replaced by its equivalent body.

Codevelopment of Multi-Level Instruction 69

Figure 5: Three-pass Mat-Core assembler for converting assembly

program to machine code

Macro is a group of instructions performs a task that is used repeatedly. Macros allow the

programmer to write the task once and to invoke it whenever it is needed and wherever it

is needed. To make macros more flexible, parameters are used. The assembler passes

macro parameters to the macro body for substitution. Since a macro can be expanded

more than once in a program, labels of the body of the macro must be renamed to avoid

label replication. Otherwise an assembler error would be generated when the same label

is encounter in two or more places.

The second pass is the symbol table construction for labels and addresses. A symbol

table is a container that maps each label in the source program to its corresponding

address in memory. Labels in assembly programs sometimes represent an address in the

data area (a variable) and sometimes they represent an address in the program area (a

location to which you want to jump). Symbol tables are typically implemented using

hashing schemes because good efficiency for the lookup is needed. Thus the symbol table

of the Mat-Core assembler is constructed as a hash table. Finally, the third stage

(instructions coding) generates machine code depending on the type of instruction and the

content of symbol table. The coding process includes two main processes: coding Level-1

ISA (MIPS scalar ISA) and coding high-level instructions (vector/matrix instructions).

The vector/matrix instructions are coded into load/store, arithmetic/logic, control, and

move types as discussed in Section 2. The same conventions used in MIPS assemblers

like directives, register names, etc., are used in developing Mat-Core assembler.

As mentioned in Section 2, strip/block mining techniques are used for processing

longer vectors and larger matrices. In this section, we show how these techniques are

applied on SVmul, SAXPY, vector-matrix and matrix-matrix multiplications on four

70 Soliman and Al-Junaid

parallel lanes, matrix registers of 8×4 elements, and the contents of MSR, MSW, and

MDIM registers are 8, 4, and 4, respectively. Note that the CPL instruction is used to set

Strp, Wstrp, and Dim at the same time whereas SETN, SETW and SETD instructions

individually set these control registers, respectively. In the strip mining technique (see

Figure 3a), n-element vectors are divided into n/32 segments (MSR*MSW = 8*4 = 32

elements). The remainder, which equals n%32, is divided into two segments, one

segment with Strp = n%32/4 and Wstrp = 4 and the other segment with Strp = 1 and

Wstrp = n%32%4. After strip mining vectors, the Mat-Core instructions shown in Table

1 is added in the inner loop. The inner loop of scalar-vector multiplication and SAXPY

need only three and five vector/matrix instructions, respectively.

In vector-matrix multiplication (1×n times n×w), strip mining and block mining

techniques are used (see Figure 3b). The input vector is divided into n/8 strips each one

has 1×8 elements, however, the last strip has 1×(n%8) elements. Moreover, matrix is

divided into w/4 columns, each column has n/8 blocks, where w/4*n/8 blocks

each has 8×4 elements. The last block in any column except the last has (n%8)×4

elements. The last column has n/8 blocks of 8×(w%4) and the last block of this column

Table 1: Mat-Core instructions in high-level and assembly languages

Instruction

set
High-Level Statement in Matlab Mat-core assembly code for inner loop only

Scalar-vector
multiplication

c(1:n) = a* b(1:n)

LV.S $M4,$t0,$t #load vector of SP

elements

MULVS.S $M5,$M4,$t2 # vector-scalar
multiply

SV.S $M5,$t4,$t1 #store result vector

SAXPY c(1:n) = a*b(1:n) + c(1:n)

LV.S $M3,$t0,$t1 #load vector

LV.S $M4,$t6,$t1 #load vector

MULVS.S $M5,$M3,$t4 #vector-scalar

multiply

ADDVV.S $M7,$M5,$M4 #add two vectors

SV.S $M7,$s0,$t1 #store result vector

Vector-
matrix
multiplication

c(1:n) = a(1:n) * b(1:n, 1:n)

LRH.S $M3,$t0,$t1 #load row horizontal

1x8

LM.S $M4,$t6,$t1 #load matrix 8x4

RMAC #Reset MAC

MULVM.S $M5,$M3,$M4 #vector-matrix

multiply

ADDR.S $M7,$M5,$M7 #accumulate row
result

Matrix-
matrix
multiplication

c(1:n, 1:n) = a(1:n,1:n) * b(1:n,1:n)

LMH.S $M3,$t0,$t1 #load matrix horizontal

4x8

LM.S $M4,$t7,$t1 #load matrix 8x4

RMac #Reset MAC

MULMM.S $M5,$M3,$M4 #matrix-matrix multiply

ADDD.S $M7,$M5,$M7 #accumulate block result

 #and use DIM control

register

Codevelopment of Multi-Level Instruction 71

0

20

40

60

80

100

120

SVmul SAXPY VMmul MMmul

S
c

a
la

r
in

s
tr

.
o

v
e

r
M

a
t-

C
o

re
 i

n
s

tr
.

32 64 128 …...102432 64 128 …...1024 8 16 32 …… 512 8 16 32 …… 512

Figure 6: Ratio of scalar to Mat-Core instructions

has (n%8)×(w%4) elements. Vector strips are multiplied by each column blocks to

produce a single strip of the result vector. Thus, vector-matrix multiplication needs two

nested loops for strip/block mining. The inner loop needs only five vector/matrix

instructions, as Table I shows. The first two instructions load a strip (8 elements or less)

and a block (8×4 elements or less). The third instruction is used to reset the multiply-

accumulate (MAC) functional unit. The fourth instruction does vector-matrix

multiplication (1×8 strip times 8×4 block). The result vector-matrix multiplication is

accumulated in a matrix register in the fifth instruction.

In matrix-matrix multiplications (m×n times n×w), block mining technique is used,

which requires reading MSR, MSW, and MDIM control registers. The first matrix is

divided into m/4 rows, each row has n/8 blocks, where m/4*n/8 blocks each has

4×8 elements. The last block in each row has 4×(n%8) elements. The last row has n/8

blocks of (m%4)×8, however, the last block in this row has (m%4)×(n%8) elements. The

second matrix is divided as the matrix in vector-matrix multiplication (see Figure 3c).

Multiplying row blocks in the first matrix by column blocks in the second matrix and

accumulating the results produce one block of the output matrix. Matrix-matrix

multiplication needs the same number of Mat-Core instructions as vector-matrix

multiplication; however, it requires three nested loops for block mining. This shows how

the Mat-Core ISA reduces the semantic gap between high level language and hardware. It

also shows that the data parallelism found in applications is exploited directly by Mat-

Core ISA and convoyed to hardware in a compact form. As Figure 6 shows, the use of

Mat-Core ISA results in reduction of the number of instructions by 15-30 times on

applications dominated by scalar-vector, vector-vector, and vector-matrix kernels and by

60-125 times on applications dominated by matrix-matrix kernels. However, the use of

72 Soliman and Al-Junaid

0

1

2

3

4

5

6

7

SVmul SAXPY VMmul MMmul

F
L
O

P
s
 p

e
r

C
lo

c
k
 C

y
c
le

Small

Medium

Large

Figure 7: Performance evaluation of Mat-Core

scalar ISA results in scattering the data parallelism by compilers and then gathering it

again using complex hardware.

Figure 7 shows the performance of Mat-Core processor with four parallel lanes and

matrix registers of size 8×4 or 32 elements on scalar-vector, vector-vector, vector-matrix,

and matrix-matrix kernels. The performance is evaluated on three categories of

vector/matrix dimensions small (50-element vectors or 50×50-element matrices), medium

(200-element vectors or 100×100-element matrices), and large (8K-element vectors or

300×300-element matrices). It is clear that the performance of Mat-Core processor is

higher on computationally intensive kernels than on memory intensive kernels.

Moreover, as the vector length increases, the loop overhead per element decreases, this

increases the overall performance. A performance of about 1.6 and 2.1 FLOPs per clock

cycle are achieved on SVmul and SAXPY, respectively, as shown in Figure 7. The

maximum performances are four FLOPs per clock cycle on SVmul (four multiply

operations can be processed in parallel in a clock cycle) and eight FLOPs per clock cycle

on SAXPY because of chaining the results of the four multipliers and four adders. Note

that as the number of memory references per FLOP decreases the performance increases

(compare the performance of SAXPY, which has 3/2 memory references per FLOP, and

SVmul, which has 2/1 memory references per FLOP).

Figure 7 shows also the performance of vector-matrix and matrix-matrix

multiplications on four lanes Mat-Core processor. With 8×4 matrix registers, a

performance of 4.1 and 6.4 FLOPs per clock cycle are achieved on vector-matrix and

matrix-matrix multiplications, respectively. Due to reusing the loaded data O(n) times in

case of multiplying two n×n matrices, the performance of matrix-matrix multiplication is

better than vector-matrix multiplication, which reuses the loaded data O(1) times. The

performance of matrix-matrix multiplication on Mat-Core represents 80% of the

maximum performance; eight FLOPs can be executed in parallel on four parallel lanes.

 Codevelopment of Multi-Level Instruction 73

5. CONCLUSION

This paper shows how the codevelopment of multi-level ISA and hardware results in

an efficient matrix processor called Mat-Core. Mat-Core extends a general-purpose scalar

processor (for executing scalar instructions) with a matrix unit (for executing

vector/matrix instructions). To tolerate the memory latency, the extended matrix unit is

decoupled into two components: address generation and data computation.

Scalar/vector/matrix instructions can be executed on the Mat-Core hardware. These

instructions can convoy up to 3-D data parallelism to hardware. Mat-Core ISA reduces

the semantic gap between high level language and hardware. The data parallelism found

in applications is exploited directly by Mat-Core ISA and convoyed to hardware in a

compact form. However, the use of scalar ISA results in scattering the data parallelism by

compilers and then gathering it again by complex hardware. The use of Mat-Core ISA

results in reduction of the number of instructions by 15-30 times on applications

dominated by scalar-vector, vector-vector, and vector-matrix kernels and by 60-125 times

on applications dominated by matrix-matrix kernels.

Three passes assembler for Mat-Core is demonstrated for writing kernels in assembly

language instead of machine code. The performance of Mat-Core processor is evaluated

on scalar-vector, vector-vector, vector-matrix, and matrix-matrix kernels using SystemC.

On four parallel lanes Mat-Core and matrix registers of size 8×4 or 32 elements, our

results show performances of about 1.6, 2.1, 4.1, and 6.4 FLOPs per clock cycle achieved

on scalar-vector multiplication, SAXPY, vector-matrix multiplication, and matrix-matrix

multiplication, respectively.

REFERENCES

[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, San Francisco, CA, 4th Edition, 2007.

[2] K. Diefendorff and P. Dubey, “How Multimedia Workloads Will Change Processor

Design,” IEEE Computer, Vol. 30, No. 9, pp. 43-45, September 1997.

[3] M. Soliman, “Mat-Core: A Matrix Core Extension for General Purpose Processors,” Proc.

The 2007 International Conference on Computer Engineering & Systems (ICCES'07),

Cairo, Egypt, pp. 304-310, November 2007.

[4] J. Smith and G. Sohi, “The Microarchitecture of Superscalar Processors,” Proceedings of

the IEEE, Vol. 83, No. 12, pp. 1609-1624, December 1995.

[5] J. Fisher, “VLIW Architectures and the ELI-512,” Proc. 10
th

 International

Symposium on Computer Architecture, Stockholm, Sweden, pp. 140-150, June

1983.

74 Soliman and Al-Junaid

[6] C. Lee, Code Optimizers and Register Organizations for Vector Architectures, Ph.D.

Thesis, Computer Science Division, University of California at Berkeley, 1992.

[7] R. Espasa, Advanced Vector Architectures, Ph.D. Thesis, Department of Computer

Architecture, Universitat Politecnica de Catalunya, Barcelona, Spain, February 1997.

[8] K. Asanovic, Vector Microprocessors, Ph.D. Thesis, Computer Science Division,

University of California at Berkeley, 1998.

[9] C. Kozyrakis, Scalable Vector Media-processors for Embedded Systems, Ph.D. Thesis,

Computer Science Division, University of California at Berkeley, 2002.

[10] R. Espasa, M. Valero, and J. Smith, “Vector Architectures: Past, Present and Future,” Proc.

2
th

 International Conference on Supercomputing, Melbourne, Australia, pp. 425-432, July

1998.

[11] J. Smith, “The Best Way to Achieve Vector-Like Performance?”, Proc. 21
st
 International

Symposium on Computer Architecture, Denver, CO, June 1997, Slides in

http://www.engr.wisc.edu/ece/faculty/smith_james.html.

[12] M. Soliman and A. Al-Junaid “SystemC Implementation of Mat-Core: A Matrix Core

Extension for General-Purpose Processors,” Proc. 4
th
 IEEE International Conference on

Design & Technology of Integrated Systems in Nanoscale Era, April 2009, Egypt.

[13] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K. Yelick,

“Hardware/Compiler Codevelopment for an Embedded Media Processor,” Proceedings of

the IEEE, Vol. 89, No. 11, pp. 1694-709, November 2001.

[14] R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proceedings of the IEEE, Vol. 89,

pp. 490-504, No. 4, April 2001.

[15] R. Ho, K. Mai, and M. Horowitz, “Efficient On-Chip Global Interconnects,” Proc. IEEE

Symposium on VLSI Circuits, pp. 271- 274, June 2003.

[16] M. Weiss, “Strip Mining on SIMD Architectures,” Proc. 5
th
 International Conference on

Supercomputing, Cologne, West Germany, pp. 234-243, June 1991.

[17] D. Bacon, S. Graham, and O. Sharp, “Compiler Transformations for High-Performance

Computing,” ACM Computing Surveys, Vol. 26, No. 4, pp. 345-420, December 1994.

[18] D. DeVries, A Vectorizing SUIF Compiler: Implementation and Performance, Master

Thesis, Department of Electrical and Computer Engineering, University of Toronto, June

1997.

[19] G. Golub and C. Van Loan, Matrix Computations, 3rd Edition, The Johns Hopkins

University Press, Baltimore and London, 1996.

[20] J. Smith, “Decoupled Access/Execute Computer Architectures,” ACM Transactions on

Computer Systems, Vol. 2, No. 4, pp. 289-308, November 1984.

[21] R. Espasa and M. Valero, “Decoupled Vector Architecture,” Proc. 2
nd

 International

Symposium on High-Performance Computer Architecture, San Jose, CA, pp. 281-290,

February 1996.

