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HIGHER ORDER NUMERICAL METHODS FOR

SINGULARLY PERTURBED ELLIPTIC PROBLEMS
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ABSTRACT. We consider a family of singularly perturbed elliptic problems in two dimensions. A

novel fitted operator finite difference method developed is proposed to solve this problems. Through a

rigorous convergence analysis, we show that the method is second order convergent in both variables.

Further attempts are made to improve the order of convergence via some convergence acceleration

techniques, namely the Richardson extrapolation. In turn, we achieve fourth order accurate results.

Error analysis after extrapolation is also presented. Furthermore, some numerical results confirming

the theoretical estimates are provided. We also compare our results with those obtained in the

literature (see, e.g., [R. Lin, Discontinuous discretization for least-squares formulation of singularly

perturbed reaction-diffusion problems in one and two dimensions, SIAM J. Numer. Anal. 47(1)

89–108.] and noticed that the error obtained by our approach is exponentially smaller than the one

obtained by their approach.
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1. INTRODUCTION

We consider the problem

(1.1) Lu := −ε∆u + b(x, y)u = f(x, y), in Ω = (0, 1) × (0, 1),

(1.2) u = 0, on ∂Ω.

where ε ∈ (0, 1] and b and f are sufficiently smooth functions in Ω. It is assumed

that b(x, y) ≥ α2 > 0, in Ω. Also, we impose the following compatibility conditions

[11, 13] which guarantee that the solution u(x, y) to problem (1.1)–(1.2) is a member

of C4(Ω) ∩ C2(Ω), where Ω = Ω ∪ ∂Ω:

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0.
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While singularly perturbed two-point boundary value problems are well studied

from different angles, their higher dimensional counterparts are not tackled suffi-

ciently. There were some attempts made to extend the approaches developed for

singularly perturbed ordinary differential equation but the success was very limited.

On the other hand, some researchers tried to solve these higher dimensional prob-

lems directly, for example, Li [6] proposed a quasi-optimal finite element method, Lin

[8] solved the above problem using Local Discontinuous Galerkin method via least-

squares formulation, O’Riordan and Stynes [11] designed a globally convergent finite

element method, and so on. Some other notable works include [2, 4, 9, 13, 14, 15, 16].

A careful reading of the work by Kadalbajoo and Patidar [5] indicates that there

are no extensions of any fitted operator methods developed for singularly perturbed

ODEs that can solve the singularly perturbed PDEs, in particular the elliptic ones.

To fill this gap, the first aim of this paper is to extend a FOFDM (which is developed

for singularly perturbed ODEs) to solve the elliptic singular perturbation problem.

Then, in order to achieve a higher order convergence, we perform the Richardson

extrapolation.

The rest of this paper is organized as follows. In Section 2, we presents some

qualitative features of the solution and its derivatives. Section 3 is concerned with

the construction and analysis of the numerical method. Section 4 deals with the

extrapolation of the method developed in Section 3. Numerical results to support the

theory are provided in Section 5. Some concluding remarks are provided in Section 6.

2. BOUNDS ON THE SOLUTION AND ITS DERIVATIVES

Lemma 2.1 ([3] Continuous maximum principle). Let ξ(x, y) be any sufficiently

smooth function such that ξ(x, y) ≥ 0 on ∂Ω. Then Lξ(x, y) ≥ 0 on Ω implies

that ξ(x, y) ≥ 0, ∀(x, y) ∈ Ω = ∂Ω ∪ Ω.

Proof. Let (x∗, y∗) be such that

ξ(x∗, y∗) = min
(x,y)∈Ω

ξ(x, y)

and assume that ξ(x∗, y∗) < 0. Clearly, (x∗, y∗) /∈ ∂Ω. We have

∂

∂x
ξ(x, y)

∣∣∣
(x∗,y∗)

= 0,

∂

∂y
ξ(x, y)

∣∣∣
(x∗,y∗)

= 0,

∂2

∂x2
ξ(x, y)

∣∣∣
(x∗,y∗)

≥ 0

and
∂2

∂y2
ξ(x, y)

∣∣∣
(x∗,y∗)

≥ 0.
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Therefore,

Lξ(x∗, y∗) = −ε∆ξ(x∗, y∗) + b(x∗, y∗)ξ(x∗, y∗) < 0,

which is a contradiction.

The following lemmas provide bounds on the solution of the problem (1.1)–(1.1)

as well as those of its derivatives [7]. A suitable choice of barrier functions [6, 17]

may be made in the proofs. One may also note in the following that C will denote a

generic positive constant which is independent of ε.

Lemma 2.2. Let u(x, y) be the solution of problem (1.1)–(1.2). Then we have

(a). |u(x, y)| ≤ C
(
1 − e−αx/

√
ε
)

on Ω̄,

(b). |u(x, y)| ≤ C
(
1 − e−α(1−x)/

√
ε
)

on Ω̄,

(c). |u(x, y)| ≤ C
(
1 − e−αy/

√
ε
)

on Ω̄,

(d). |u(x, y)| ≤ C
(
1 − e−α(1−y)/

√
ε
)

on Ω̄.

Proof. (a). Using the barrier function

φ(x, y) = C(1 − e(−αx/
√

ε)),

we see that

L(φ ± u) = −ε∆(φ ± u) + b(φ ± u),

= Cα2e(−αx/
√

ε) + bC(1 − e(−αx/
√

ε)) ± f,

= C(α2 − b)
(
e(−αx/

√
ε) − 1

)
+ Cα2 ± f.

Since

(α2 − b)
(
e(−αx/

√
ε) − 1

)
≥ 0,

we have

L(φ ± u) ≥ Cα2 ± f ≥ 0.

Using the maximum principle (Lemma 2.1) and the fact that (φ ± u)|∂Ω ≥ 0, we get

|u| ≤ φ.

The proof of part (b), (c) and (d) is done in a similar way by choosing the barrier

functions

φ(x, y) =
(
1 − e−α(1−x)/

√
ε
)

,

φ(x, y) =
(
1 − e−αy/

√
ε
)

and

φ(x, y) =
(
1 − e−α(1−y)/

√
ε
)

,

respectively.

Now we have

Lemma 2.3. Let u(x, y) be the solution of problem (1.1)–(1.2). Then
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(a). |ux(x, y)| ≤ Cε−1/2 on ∂Ω,

(b). |uy(x, y)| ≤ Cε−1/2 on ∂Ω.

Proof. Using Lemma 2.2, we have

|ux(0, y)| =

∣∣∣∣ lim
x→0+

u(x, y) − u(0, y)

x

∣∣∣∣ ≤ lim
x→0+

C(1 − e(−αx/
√

ε))

x
= C

α

ε1/2
≤ Cε−1/2.

Applying the estimate in part (b) of Lemma 2.2, we get the estimate for ux(1, y).

Differentiating the given boundary conditions u(x, y) = 0 at y = 0 and y = 1 with

respect to x gives us ux(x, 0) = ux(x, 1) = 0. Similarly,

|uy(x, 0)| =

∣∣∣∣ lim
y→0+

u(x, y) − u(x, 0)

y

∣∣∣∣ ≤ lim
y→0+

C(1 − e(−αy/
√

ε))

y
≤ Cε−1/2.

We get the estimate of uy(x, 1) by applying the estimate in part (d) of Lemma 2.2.

Differentiating the given boundary conditions u(x, y) = 0 at x = 0 and x = 1 with

respect to y we get uy(0, y) = uy(1, y) = 0. This completes the proof.

Lemma 2.4. Let u(x, y) be the solution of problem (1.1)–(1.2). Then we have

(a). |ux(x, y)| ≤ C
(
1 − ε−1/2e−αx/

√
ε + ε−1/2e−α(1−x)/

√
ε
)

on barΩ,

(b). |uy(x, y)| ≤ C
(
1 − ε−1/2e−αy/

√
ε + ε−1/2e−α(1−y)/

√
ε
)

on Ω̄.

Proof. By choosing the barrier function

φ(x, y) = C
(
1 − ε−1/2e−αx/

√
ε + ε−1/2e−α(1−x)/

√
ε
)

,

we obtain

L(φ ± ux) ≥ bC ± (fx − bxu) ≥ 0,

and since (φ ± ux)|∂Ω ≥ 0, the proof is completed by making use of the maximum

principle (Lemma 2.1).

The proof for the estimate in part (b) can be constructed analogously using the

barrier function

φ(x, y) = C
(
1 − ε−1/2e−αy/

√
ε + ε−1/2e−α(1−y)/

√
ε
)

.

Now, the following results for the bounds on the second derivatives hold:

Lemma 2.5. Let u(x, y) be the solution of problem (1.1)–(1.2). Then we have

(a). |uxx(x, y)| ≤ Cε−1 on ∂Ω,

(b). |uyy(x, y)| ≤ Cε−1 on ∂Ω.

(c). |uxx(x, y)| ≤ C
(
1 + ε−1e−αx/

√
ε + ε−1e−α(1−x)/

√
ε
)

on Ω̄,

(d). |uyy(x, y)| ≤ C
(
1 + ε−1e−αy/

√
ε + ε−1e−α(1−y)/

√
ε
)

on Ω̄.
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Proof. (a). At y = 0 and y = 1, we have u(x, y) = 0. Therefore, uxx = 0 at y = 0 and

y = 1. Also, the fact that u = uyy = 0 at x = 0 and x = 1 leads to uxx = 0 at x = 0

and x = 1.

(b). The proof can follow similar lines as in part (a).

(c). Using the barrier function

φ(x, y) = C
(
1 + ε−1e−αx/

√
ε + ε−1e−α(1−x)/

√
ε
)

,

we see that

L(φ ± uxx) = bC + C(b − α2)
(
ε−1e−αx/

√
ε + ε−1e−α(1−x)/

√
ε
)
± (−ε∆uxx + buxx)

= bC + C(b − α2)
(
ε−1e−αx/

√
ε + ε−1e−α(1−x)/

√
ε
)

± (fxx − 2bxux − bxxu)

≥ bC ± (fxx − 2bxux − bxxu).

It follows that, for C sufficiently large, L(φ ± uxx) ≥ 0. Since (φ ± uxx)|∂Ω ≥ 0, the

continuous maximum principle (Lemma 2.1) concludes the proof.

(d). The proof follows the same lines as in part (c) with the barrier function

φ(x, y) = C
(
1 + ε−1e−αy/

√
ε + ε−1e−α(1−y)/

√
ε
)

.

3. CONSTRUCTION AND ANALYSIS OF THE FITTED OPERATOR

FINITE DIFFERENCE METHOD

Let n and m be positive integers.

We consider the following partitions of the interval [0, 1]:

x0 = 0, xi = x0 + ih, i = 1(1)n, h = xi − xi−1, xn = 1.

y0 = 0, yj = y0 + jk, j = 1(1)m, k = yj − yj−1, ym = 1.

The tensor product of these two partitions gives the mesh grid

µ(n,m) = {(xi, yj), i = 0(1)n, j = 0(1)m}.

In the rest of this paper, we adopt the notation W j
i = W (xi, yj) and denote the

approximations of the uj
i at the grid points (xi, yj) by the unknowns vj

i .

Using the theory of difference equations for problems in one dimension, we con-

struct the following FOFDM (looking at one dimension at a time):

(3.1) −ε

[
vj

i+1 − 2vj
i + vj

i−1

(φj
i )

2
h

+
vj+1

i − 2vj
i + vj−1

i

(φj
i )

2
k

]
+ bj

iv
j
i = f j

i ,

with the discrete boundary conditions

(3.2) v0
i = vj

0 = vm
i = vj

n = 0 i = 0(1)n, j = 0(1)m,
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where

(3.3) (φj
i )h ≡ φj

i (h, ε) :=
2

ρj
i

sinh

(
ρj

ih

2

)

and

(3.4) (φj
i )k ≡ φj

i (k, ε) :=
2

ρj
i

sinh

(
ρj

ik

2

)
,

with ρj
i =

√
bj
i/ε.

Note that

φj
i (h, ε) = h + O

(
h3

ε

)
, and φj

i (k, ε) = k + O

(
k3

ε

)
.

For the sake of simplicity, we assume that h = k, and hence the common denom-

inator will be (φj
i )

2(= (φj
i )

2
h) = (φj

i )
2
k). Thus equation (3.1) becomes

(3.5) −ε

[
vj

i+1 − 2vj
i + vj

i−1

(φj
i )

2
+

vj+1
i − 2vj

i + vj−1
i

(φj
i )

2

]
+ bj

iv
j
i = f j

i ,

which we rewrite as

(3.6) −
ε

(φj
i )

2

[
vj

i+1 + vj
i−1 + vj+1

i + vj−1
i − 4vj

i

]
+ bj

iv
j
i = f j

i .

The method consisting of (3.6) along with (3.2) is termed as the fitted operator finite

difference method (FOFDM).

One should note that, in the above we have considered h = k merely for the sake

of simplicity. However, in the analysis below, we keep the general set up.

In the discussion below, M may denote a different positive constant but is always

independent of ε and the step-sizes h and k.

Following lemmas play a primordial role in the analysis of the method developed

above.

Lemma 3.1 (Discrete maximum principle). Let {ξj
i } be any mesh function satisfying

ξ0
i ≥ 0, ξm

i ≥ 0, i = 1(1)n− 1; ξj
0 ≥ 0, ξj

n ≥ 0, i = 1(1)m− 1; ξ0
0 ≥ 0, ξ0

n ≥ 0, ξm
0 ≥ 0,

ξn
m ≥ 0 and Lk

hξ
j
i ≥ 0, i = 1(1)n − 1; j = 1(1)m − 1. Then ξj

i ≥ 0, ∀i = 0(1)n,

j = 0(1)m.

Proof. Let (s, t) be indices such that

ξt
s = min

(i,j)
ξj
i , ∀ (i, j) ∈ {0, 1, . . . , n} × {0, 1, . . . , m}.

Assume that ξt
s < 0. It is clear that

(s, t) ∈ {1, 2, . . . , n − 1} × {1, 2, . . . , m − 1},

or else, ξt
s ≥ 0.
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We observe that

ξt
s+1 − ξt

s > 0, ξt
s−1 − ξt

s > 0, ξt+1
s − ξt

s > 0, and ξt
s − ξt−1

s > 0.

Therefore

Lk
hξ

t
s < 0,

which is a contradiction.

Lemma 3.2. If Zj
i is any mesh function such that Zj

i = 0 on (∂Ω)j
i , then there exists

a constant C such that

|Zs
l | ≤

1

α2
max

1≤i≤n−1;1≤j≤m−1
|Lk

hZ
j
i |, for 0 ≤ l ≤ n; 0 ≤ s ≤ m.

Proof. Let

M =
1

α2
max

1≤i≤n−1;1≤j≤m−1
|Lk

hZ
j
i |

and (Ψ±)j
i be the mesh function defined by

(Ψ±)j
i = M ± Zj

i .

It is clear that (Ψ±)0
i = (Ψ±)m

i = (Ψ±)j
0 = (Ψ±)j

n = M > 0. Also, for 1 ≤ i ≤ n − 1

and 1 ≤ j ≤ m − 1, we have

Lk
h(Ψ

±)j
i = −ε

[
M ± Zj

i+1 − 2(M ± Zj
i ) + M ± Zj

i−1

(Φj
i )

2
h

+
M ± Zj+1

i − 2(M ± Zj
i ) + M ± Zj−1

i

(Φj
i )

2
k

]
+ bj

i (M ± Zj
i )

= Mbj
i ± Lk

hZ
j
i

=
bj
i

α2
max |Lk

hZ
j
i | ± Lk

hZ
j
i .

Since bj
i ≥ α2, we have

Lk
h(Ψ

±)j
i ≥ 0.

Then, by the discrete maximimum principle (Lemma 3.1), we obtain

(Ψ±)j
i ≥ 0 for 0 ≤ i ≤ n, 0 ≤ j ≤ m.
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3.1. Error estimate before extrapolation. From (3.1), we see that the local trun-

cation error of the FOFDM is

Lk
h(u

j
i − vj

i ) =
{
−ε(∆u)j

i + bj
iu

j
i

}

−

{
−ε

[
uj

i+1 − 2uj
i + uj

i−1

(φj
i )

2
h

+
uj+1

i − 2uj
i + uj−1

i

(φj
i )

2
k

]
+ bj

iu
j
i

}

= −ε(uxx)
j
i − ε(uyy)

j
i +

ε

(φj
i )

2
h

[
h2(uxx)

j
i +

h4

12
(uxxxx)

j
i + · · ·

]

+
ε

(φj
i )

2
k

[
k2(uyy)

j
i +

k4

12
(uyyyy)

j
i + · · ·

]

= −ε(uxx)
j
i − ε(uyy)

j
i

+

(
ε

h2
−

bj
i

12
+

h2(bj
i )

2

240ε
+ · · ·

)[
h2(uxx)

j
i +

h4

12
(uxxxx)

j
i + · · ·

]

+

(
ε

k2
−

bj
i

12
+

k2(bj
i )

2

240ε
+ · · ·

)[
h2(uyy)

j
i +

k4

12
(uyyyy)

j
i · · ·

]
.

This implies that

Lk
h(u

j
i − vj

i ) =
εh2

12
(uxxxx)

j
i −

h2(bj
i )

2

12
(uxx)

j
i −

h4(bj
i )

144
(uxxxx)

j
i +

h4(bj
i )

2

240ε
(uxx)

j
i

+
εk2

12
(uyyyy)

j
i −

k2(bj
i )

2

12
(uyy)

j
i −

k4(bj
i )

144
(uyyyy)

j
i +

k4(bj
i )

2

240ε
(uyy)

j
i + · · ·(3.7)

Using Lemma 2.5, we obtain

|Lk
h(u

j
i − vj

i )| ≤ M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
.

Then by Lemma 3.2, we have

(3.8) max
0≤i≤n

max
0≤j≤m

|uj
i − vj

i | ≤ M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
.

Note that, if h = k, then we have the estimate

(3.9) max
0≤i≤n

max
0≤j≤m

|uj
i − vj

i | ≤ Mh2

(
1 +

h2

ε

)
.

4. EXTRAPOLATION ON THE FITTED OPERATOR FINITE

DIFFERENCE METHOD

4.1. Extrapolation formula. Let µ(2n,2m) = {(x̄i, ȳj)} be the mesh with x̄0 = 0,

x̄n = 1, ȳ0 = 0, ȳm = 1, and x̄i− x̄i−1 = h̄ = h/2, i = 1(1)2n, and ȳj− ȳj−1 = k̄ = k/2,

j = 1(1)2m, and v̄j
i denote the numerical solution computed on the mesh µ(2n,2m).

On one hand, we have from (3.8),

uj
i − vj

i = M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
+ Rm

n (xi, yj),
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1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1.

On the other hand, we have

ūj
i − v̄j

i = M

[
h̄2

(
1 +

h̄2

ε

)
+ k̄2

(
1 +

k̄2

ε

)]
+ R2m

2n (xi, yj),

1 ≤ i ≤ 2n − 1, 1 ≤ j ≤ 2m − 1.

In the above expressions, both remainders Rm
n and R2m

2n are O(h4 + k4). It follows

that

4(ūj
i − v̄j

i ) − (uj
i − vj

i ) = 4R2m
2n (xi, yj) − Rm

n (xi, yj) = O(h4 + k4), (xi, yj) ∈ µ(n,m).

Hence,

uj
i −

4v̄j
i − vj

i

3
= O(h4 + k4), ∀(xi, yj) ∈ µ(n,m).

We therefore set

(vj
i )

ext :=
4v̄j

i − vj
i

3

as the numerical approximation of u after extrapolation at the grid point (xi, yj).

4.2. Analysis of the extrapolation process. The local truncation error after ex-

trapolation is

(4.1) L̄k
h

(
uj

i − (vj
i )

ext
)

=
4

3
Lk̄

h̄(u
j
i − v̄j

i ) −
1

3
Lk

h(u
j
i − vj

i ).

While Lk
h(u

j
i −vj

i ) is given by equation (3.7), Lk̄
h̄
(uj

i − v̄j
i ) is obtained from Lk

h(u
j
i −vj

i )

by substituting h and k by h̄ and k̄, respectively. It follows that

L̄k
h

(
uj

i − (vj
i )

ext
)

=
4

3

[
εh̄2

12
(uxxxx)

j
i −

h̄2(bj
i )

2

12
(uxx)

j
i −

h̄4(bj
i )

144
(uxxxx)

j
i

+
h̄4(bj

i )
2

240ε
(uxx)

j
i +

εk̄2

12
(uyyyy)

j
i −

k̄2(bj
i )

2

12
(uyy)

j
i

−
k̄4(bj

i )

144
(uyyyy)

j
i +

k̄4(bj
i )

2

240ε
(uyy)

j
i + · · ·

]

−
1

3

[
εh2

12
(uxxxx)

j
i −

h2(bj
i )

2

12
(uxx)

j
i −

h4(bj
i )

144
(uxxxx)

j
i

+
h4(bj

i )
2

240ε
(uxx)

j
i +

εk2

12
(uyyyy)

j
i −

k2(bj
i )

2

12
(uyy)

j
i

−
k4(bj

i )

144
(uyyyy)

j
i +

k4(bj
i )

2

240ε
(uyy)

j
i + · · ·

]
.(4.2)



84 J. B. MUNYAKAZI AND K. C. PATIDAR

Simplifying above, we obtain

L̄k
h

(
uj

i − (vj
i )

ext
)

=
bj
ih

4

576
(uxxxx)

j
i −

(bj
i )

2h4

960ε
(uxx)

j
i

+
bj
ik

4

576
(uxxxx)

j
i −

(bj
i )

2k4

960ε
(uxx)

j
i + · · · .(4.3)

Using Lemma 2.5 and its analogues for fourth order derivative terms, we obtain

(4.4)
∣∣L̄k

h

(
uj

i − (vj
i )

ext
)∣∣ ≤ M(h4 + k4)

(
1 +

1

ε

)
.

By Lemma 3.2, we obtain

(4.5)
∣∣uj

i − (vj
i )

ext
∣∣ ≤ M(h4 + k4)

(
1 +

1

ε

)
.

We summarize the results in the following theorem

Theorem 4.1. Let b(x, y) and f(x, y) be sufficiently smooth functions in the problem

(1.1)–(1.2) so that u(x, y) ∈ C4(Ω). Then the numerical solutions v and vext obtained

via the FOFDM (3.1)–(3.2) before and after extrapolation, respectively, satisfy the

following estimates

(4.6) max
0≤i≤n

max
0≤j≤m

|uj
i − vj

i | ≤ M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
.

(4.7) max
0≤i≤n

max
0≤j≤m

|uj
i − (vj

i )
ext| ≤ M(h4 + k4)

(
1 +

1

ε

)
.

5. NUMERICAL RESULTS

In this section, we give some numerical results for a test example corresponding

to problem (1.1)–(1.2). In the implementation of the numerical method (3.1)–(3.2)

before and after extrapolation, we assume that the step-sizes h and k in x- and

y-directions, respectively, are equal.

Example 5.1. Consider problem (1.1)–(1.2) with b = 2,

f(x, y) = −
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√

ε
−

e−y/
√

ε + e−(1−y)/
√

ε

1 + e−1/
√

ε

+ 2 [1 + ε (x(1 − x) + y(1 − y) + xy(1 − x)(1 − y))] .

The exact solution is

u(x, y) =

(
1 −

e−x/
√

ε + e−(1−x)/
√

ε

1 + e−1/
√

ε

)(
1 −

e−y/
√

ε + e−(1−y)/
√

ε

1 + e−1/
√

ε

)

+ xy(1 − x)(1 − y).
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The maximum errors at all mesh points are calculated using the formulas

Eε,n := max
0≤i,j≤m

|uj
i − vj

i |, before extrapolation

and

Eext
ε,n := max

0≤i,j≤m
|uj

i − (vj
i )

ext|, after extrapolation.

The numerical rates of convergence are computed using the formula [1]

rε,s := log2(Ẽns
/Ẽ2ns

), s = 1, 2, . . .

where Ẽ stands for Eε,n and Eext
ε,n , respectively. For the comparison purpose, we also

consider the following example from [8]:

Example 5.2. Consider problem (1.1)–(1.2) with b = 2 where the author chooses f

in such a way that the exact solution is

u(x, y) = y(1 − y)
(
1 − e−x/

√
ε
)(

1 − e−(1−x)/
√

ε
)

+ x(1 − x)
(
1 − e−y/

√
ε
)(

1 − e−(1−y)/
√

ε
)

.

The numerical solution (and the error) obtained for this example using the pro-

posed fitted operator method is displayed in Figure 1.

Table 1. Maximum errors before extrapolation

ε n=8 n=16 n=32 n=64 n=128 n=256

n=512

2−1 3.59E-04 8.98E-05 2.25E-05 5.58E-06 1.27E-06 2.00E-07

2−2 8.98E-04 2.25E-04 5.64E-05 1.41E-05 3.41E-06 4.09E-07

2−3 2.26E-03 5.68E-04 1.42E-04 3.56E-05 8.81E-06 1.86E-06

2−4 4.52E-03 1.15E-03 2.89E-04 7.24E-05 1.80E-05 4.28E-06

2−5 6.71E-03 1.76E-03 4.46E-04 1.12E-04 2.80E-05 6.91E-06

2−6 1.10E-02 3.07E-03 7.88E-04 1.99E-04 4.97E-05 1.24E-05

2−7 1.95E-02 5.76E-03 1.51E-03 3.83E-04 9.61E-05 2.40E-05

2−8 2.65E-02 1.04E-02 2.91E-03 7.53E-04 1.90E-04 4.75E-05

6. CONCLUDING REMARKS AND FUTURE PLANS

This paper was concerned with singularly perturbed elliptic problems in two

dimensions. Our aim was to design a fitted operator finite difference method for

these problems and to investigate the effect of extrapolation on the convergence of this

novel method. The method showed to be second order convergent. The extrapolation

improves this convergence up to fourth order. Numerical results presented in tables

1-4 confirm the theoretical estimates given in (4.6)–(4.7).
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Table 2. Maximum errors after extrapolation

ε n=8 n=16 n=32 n=64 n=128 n=256

2−1 1.10E-07 2.69E-09 4.17E-08 1.71E-07 6.89E-07 2.76E-06

2−2 8.69E-07 4.67E-08 3.25E-08 1.46E-07 5.90E-07 2.36E-06

2−3 6.01E-06 3.74E-07 4.28E-09 1.12E-07 4.57E-07 1.83E-06

2−4 2.96E-05 1.89E-06 1.01E-07 7.06E-08 3.15E-07 1.27E-06

2−5 1.02E-04 6.77E-06 4.25E-07 2.41E-08 1.93E-07 7.82E-07

2−6 3.51E-04 2.48E-05 1.60E-06 9.50E-08 1.07E-07 4.42E-07

2−7 1.19E-03 9.31E-05 6.19E-06 3.92E-07 5.53E-08 2.37E-07

2−8 3.18E-03 3.40E-04 2.40E-05 1.55E-06 9.60E-08 1.23E-07

Table 3. Rates of convergence before extrapolation, nk = 8, 16

ε r1 r2

2−2 2.00 2.00

2−3 1.99 2.00

2−4 1.97 1.99

2−5 1.93 1.98

2−6 1.84 1.96

2−7 1.76 1.93

2−8 1.35 1.84

Table 4. Rates of convergence after extrapolation, nk = 8, 16

ε r1 r2

4.00

2−2 3.99 4.00

2−3 3.98 4.00

2−4 3.96 3.99

2−5 3.91 3.98

2−6 3.82 3.95

2−7 3.68 3.91

2−8 3.23 3.82

We have also compared our results with those seen in the literature. See for

example Figure 1. In this figure, the numerical solution (and the error) obtained

using the proposed fitted operator method is displayed. One can compare these

errors with those obtained by Lin [8] (see, page 105, the right plot on their Fig 6).
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Figure 1. Numerical solution and errors for h = 1/32 by the proposed

FOFDM before extrapolation. (The right figure can be compared with

the one on page 105 in [8].)

Table 5. Comparison of the errors obtained by our method and those

in [8] for ε = 10−8 and n = 32

Maximum errors in [8] Maximum errors obtained by our approach

≈ 4 × 10−2 ≈ 2 × 10−8

As indicated in the Table 5 below, the error there is of the magnitude of 10−2 where

as ours is of the magnitude of 10−8.
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