
Neural, Parallel, and Scientific Computations 18 (2010) 195-206

WEIGHTED QUADRATURE BY CHANGE OF VARIABLE

LAWRENCE F. SHAMPINE

Mathematics Department, Southern Methodist University

Dallas, TX 75275, USA

ABSTRACT. The standard way of dealing with singular integrals is first to write the integral in

the form
∫

b

a
f(x)w(x)dx with a weight function w(x) > 0 and a relatively smooth function f(x).

Polynomials orthogonal on [a, b] with weight function w(x) are then used to derive accurate formulas

for approximating the integral. The approach developed in this paper is to use a change of variable

to obtain an integral over a finite interval that has a relatively smooth integrand and no weight

function. Popular formulas can be applied to this standard problem to obtain easily alternatives to

all the common schemes for weighted quadrature. Moreover, the approach provides a way to apply

schemes for estimating the error in the unweighted case to integrals involving weight functions.

It can be used with popular codes to approximate integrals with some kinds of strong end point

singularities. Implementation of the approach is quite convenient in Matlab.

Key Words quadrature, singular, Gauss-Legendre, Gauss-Hermite, Gauss-Jacobi, Matlab

1. INTRODUCTION

Typical methods for the numerical approximation of definite integrals, quadrature,

are based on approximating the integrand by a polynomial. Singular integrals have

integrands that do not behave like polynomials. One way to deal with this difficulty is

to factor the integrand so that the non-polynomial behavior is contained in a weight

function w(x) > 0,

(1.1) I(f) =

∫ b

a

w(x)f(x) dx

The integral is approximated by a quadrature formula of the form

(1.2) Q(f) =
M

∑

j=1

Aj f(xj)

with nodes xj that are real, distinct, and satisfy

a ≤ x1 < x2 < · · · < xM−1 < xM ≤ b

The non-polynomial behavior of w(x) on [a, b] is accounted for analytically in the

coefficients Aj . The formula is said to be of degree of precision d if Q(p) = I(p) for

all polynomials p(x) of degree less than or equal to d. For standard intervals and

Received March 15, 2010 1061-5369 $15.00 c©Dynamic Publishers, Inc.

196 L. F. SHAMPINE

weight functions the theory of orthogonal polynomials can used to obtain formulas

with the highest possible degree of precision. The names of the formulas correspond

to the names of the orthogonal polynomials. For example, the Legendre polynomials

are orthogonal on [−1,+1] with w(x) ≡ 1 and the corresponding quadrature formulas

are called Gauss-Legendre formulas.

In the usual approach to quadrature with weight function, it is necessary to derive

a formula (1.2) for each w(x), [a, b], and M . Our approach accounts for w(x) and

[a, b] by a change of variable that results in an integral on a finite interval with no

weight function. The approach is illustrated by a special case found in Davis and

Rabinowitz [2, p. 89],

(1.3)

∫

∞

0

e−x f(x) dx =

∫ 1

0

f(log(1/t)) dt

The Gauss-Laguerre formulas are based on the polynomials of Laguerre that are

orthogonal with respect to the weight function e−x on the interval [0,∞). They

provide the highest degree of precision in approximating a well-behaved function

f(x) by a polynomial. The change of variable has some advantages, one being that

any useful formula/program can be applied to the relatively well-behaved function

F (t) = f(log(1/t)) on a finite interval. For instance, Gauss-Legendre formulas could

be applied to this integral to obtain an alternative to the Gauss-Laguerre formulas.

A great deal of work has been done on the integration of relatively smooth integrands

over finite intervals that we can bring to bear after a change of variable. In particular,

most of the attention given to estimating the error of a quadrature formula is for an

integral over a finite interval with no weight function. This work can be applied

immediately to the integral resulting from a change of variable that accounts for the

weight function.

We develop simple transformations that are efficiently realized in the problem-

solving environment Matlab [8] which provide alternatives for all the common

weighted Gaussian quadrature formulas. In particular, we treat Hermite, general-

ized Laguerre, Jacobi, and logarithmic weights. Our approach is not much affected

by the interval, so we can treat the Hermite weight e−x
2

not just on the standard in-

terval [−∞,∞], but any interval and in particular, on the interval [0,∞) considered

in [6]. Our approach is especially attractive when there is a parameter, as with gener-

alized Laguerre weight, or two parameters, as with Jacobi weight. In the next section

we discuss a transformation built into the Matlab quadrature program quadgk [10]

and the Fortran quadrature program Q1DA [5] that in conjunction with an adaptive

selection of the mesh allows them to deal efficiently with some kinds of moderate

end point singularities. With the additional transformations developed here, the pro-

grams can deal with some kinds of strong end point singularities. This improvement

is illustrated in §8.

WEIGHTED QUADRATURE 197

2. TRANSFORMATION IN quadgk AND Q1DA

In their discussion of an example of the transformation (1.3), Kahaner, Moler, and

Nash [5, p. 165] write “Transformations must be applied with great care or the result

will not be an easier integral, only a finite one.” Certainly the transformations of this

paper are no panacea. Indeed, Kahaner et alia suggest following (1.3) with another

transformation to moderate behavior at infinity that is difficult to approximate after

it is mapped to the origin. In the next section we return to this matter and provide

some numerical examples computed with the programs Q1DA and quadgk. The

quadgk program uses algebraic changes of variable to transform integrals over infinite

intervals to integrals over finite intervals. When the interval is finite, both Q1DA

and quadgk use a transformation to weaken end point singularities. As stated in [5,

p. 158], this transformation is
∫ b

a

F (x) dx =

∫ β

α

F (p(t)) p′(t) dt

where

x = p(t) = b− (b− a)u2(2u+ 3), u =
t− b

b− a

and p(α) = a, p(β) = b. It is shown in [5, 10] that after this transformation, an

integrand with logarithmic end point singularities log(x− a) and/or log(b− x) is no

longer singular. The same is true for algebraic singularities (x − a)α and (b − x)β

provided that α and β are at least as big as −1/2.

3. THE BASIC IDEA

If we change the variable in (1.1) to x = ψ(t), we obtain

I(f) =

∫ b

a

w(x) f(x) dx =

∫ φ(b)

φ(a)

w(ψ(t)) f(ψ(t))ψ′(t) dt

In this expression we use the inverse transformation t = φ(x). The basic idea is to

find a change of variable such that

(3.1) w(ψ(t))ψ′(t) = c

for a constant c chosen to result in standard special functions. With this we approx-

imate numerically

(3.2)

∫ φ(b)

φ(a)

cf(ψ(t)) dt

involving only the relatively well-behaved function cf . The assumption that the

weight function is positive is important in the theory of orthogonal polynomials. It

is important in our approach, too, because with this assumption, the fundamental

equation (3.1) guarantees that ψ′(t) is of one sign, hence ψ(t) is monotone. The

198 L. F. SHAMPINE

definition (3.1) leads immediately to an expression for the inverse of this change of

variable,

(3.3) t =

∫ x w(ψ)

c
dψ = φ(x)

If we wish to develop a formula, we can apply any standard formula for un-

weighted quadrature on the interval [φ(a), φ(b)] of the form

Q(f) =
n

∑

j=1

Aj F (xj)

after the change of variable. This results in

I(f) =

∫ b

a

w(x) f(x) dx ≈ Q(f) =
n

∑

j=1

cAj f(ψ(xj))

That is, the coefficients of the new formula are {cAj} and the nodes are {ψ(xj)}.
Alternatively, if we can evaluate the change of variables ψ(t) efficiently, we can apply

our favorite program for unweighted quadrature to the new problem.

As we shall see in turn, our approach to the standard weight functions results in

common special functions that are all available in Matlab [8]. In §1 we commented

that our approach to Gauss-Laguerre quadrature resulted in the change of variable

cited and we show this now. For w(x) = e−x on [0,∞) it proves convenient to take

c = −1. This choice leads to

t =

∫ x e−ψ

−1
dψ = e−x = φ(x)

The end points of (3.2) are φ(0) = 1 and φ(∞) = 0. The change of variable is given

by the inverse of φ(x), namely x = ψ(t) = log(1/t).

For our purposes it would be nearly as convenient to use a polynomial in t of low

degree as the constant c in (3.1). Of course, this is useful only if it leads to ψ(t) and

φ(x) that can be evaluated in terms of familiar special functions. An example used

by Krylov [7, p. 131] to illustrate Gauss-Laguerre quadrature,

(3.4) I =

∫

∞

0

e−x
x

1 − e−2x
dx =

π2

8

shows why this might be desirable. For large x the function f(x) is very nearly

the polynomial x, so we can expect Gauss-Laguerre quadrature to be very effective

because it approximates this function with a polynomial. This is not true of the

function that results from the transformation (1.3). The original function f(x) tends

to infinity as x → ∞, hence after transformation the new integrand tends to infinity

as t→ 0. Example 5.8 of [5],

I =

∫

∞

0

e−x cos2(x2) dx ≈ 0.70260

WEIGHTED QUADRATURE 199

shows a different aspect of the transformation. In this case f(x) oscillates infinitely

often as x→ ∞ and correspondingly, after the transformation (1.3), the new function

cos2(log2(t)) oscillates infinitely often as t→ 0. Section 2 describes a transformation

built into quadgk and Q1DA to weaken end point singularities. As a result of this

transformation and adaptive mesh selection, quadgk approximates both the new in-

tegrals without difficulty. Kahaner, Moler, and Nash [6] report that the same is true

for Q1DA, but they suggest an alternative transformation for the original problem

which can be derived with our approach by requiring that

w(ψ(t))ψ′(t) = −2t

This leads to ψ(t) = log(1/t2) and φ(x) =
√
e−x. With this transformation,

∫

∞

0

e−x f(x) dx =

∫ 1

0

2t f(log(1/t2)) dt

The additional factor 2t does not complicate the application of familiar methods and

it moderates the behavior at the origin. It would seem better to use this scheme if

the object is to derive formulas analogous to the Gauss-Laguerre formulas.

4.
∫ b

a
e−x

2

f(x) dx

Our approach to weights is distinctive in that the interval of integration plays a

minor role. With a modern quadrature program, the weight function e−x
2

presents

no difficulty except perhaps when the interval is infinite. The classic interval for the

Hermite weight function is (−∞,+∞), but [0,∞) is also interesting, especially as

regards deriving a formula and error estimate. Indeed Kahaner et al. [6] describe

many sources of integrals in statistical computation with this weight function on

[0,∞) and derive Gaussian quadrature formulas to approximate them. With this

weight the expression (3.3) for the inverse transformation is

t =

∫ x e−ψ
2

c
dψ

If we choose c =
√
π/2 and take the lower limit to be 0, we find that t = erf(x). The

basic transformation is x = erf−1(t). In the classic Hermite case, the interval maps

into (−1,+1), but it was convenient for our experiments in Matlab to allow general

[a, b],

(4.1)

∫ b

a

e−x
2

f(x) dx =

√
π

2

∫ erf−1(b)

erf−1(a)

f(erf−1(t)) dt

The constant c is evaluated in Matlab as 0.5*sqrt(pi). Vectorization is so im-

portant to efficiency in this computing environment that the quadrature programs

require that the procedure for evaluating the integrand accept a vector t of argu-

ments and return a corresponding array of function values. There is a fast vectorized

function built into Matlab for evaluating erf−1(t), namely erfinv(t). With it, the

200 L. F. SHAMPINE

change of variable (4.1) is an easy and efficient alternative to Gauss-Hermite quad-

rature on (−∞,+∞) and offers other possibilities as well. A family of integrals with

the Hermite weight and a finite interval is given as 7.4.12 in [1]. It includes

∫ 1

0

e−x
2

1 + x2
dx =

π

4
e1 [1 − erf 2(1)]

quadgk is perfectly capable of approximating this integral directly, but it is easy to

change variables to account for the weight:

Q = quadgk(@(t) 0.5*sqrt(pi)./(1+erfinv(t).^2),erf(0),erf(1))

Even with the default tolerances used, this Q has an error of 3.3 × 10−16. The more

interesting family of integrals 7.4.6 in [1] includes

∫

∞

0

e−x
2

cos(x) dx =

√
π

2
e−1/4

Noting that erf−1(0) = 0, erf−1(+∞) = +1, and using quadgk with default toler-

ances,

Q = 0.5*sqrt(pi)*quadgk(@(t) cos(erfinv(t)),0,1)

provides an approximation with error −1.5 × 10−8.

The popular high order quadrature formulas for [−1,+1] have nodes that are close

to the end points. If an adaptive program is applied to an integrand that presents

difficulty near an end point, it will also evaluate the integrand at points very near

the end points. There can be precision difficulties in these circumstances. The error

function is very flat for large arguments and this makes inverting the function ill-

conditioned. The inverse error function of Matlab returns a result that is accurate

for the argument it is given. The difficulty is that the argument we supply may not

have many significant digits. That is because for an argument close to ±1, it is the

difference between the argument and the limit value that determines the value of the

inverse function. Multiple precision could be used to deal with this when deriving

a formula. Unfortunately, when using the change of variables and a program for

quadrature on finite intervals, this loss of significance can limit the accuracy possible

when the new integrand has end point singularities.

5.
∫

∞

0
xαe−x f(x) dx, α > −1

Earlier we examined the case of Gauss-Laguerre quadrature (α = 0) and now

we examine generalized Gauss-Laguerre quadrature. To mention one source of such

integrals recall that in §4 we considered the weight e−x
2

on [0,∞). The paper [6]

notes that one way to deal with such integrals is to use a change of variables that

WEIGHTED QUADRATURE 201

results in a generalized Gauss-Laguerre quadrature,

∫

∞

0

e−x
2

f(x) dx =

∫

∞

0

t−1/2 e−t
f(
√
t)

2
dt

As defined in Matlab, the incomplete gamma function gammainc(x,a) is

P (x, a) =
1

Γ(a)

∫ x

0

ta−1 e−t dt

If we note that

Γ(1 + α)
dP (ψ, 1 + α)

dψ
= ψα e−ψ

and we take c = Γ(1 + α) in (3.1), we find that t = φ(x) = P (x, 1 + α). The end

points map into P (0, 1 + α) = 0 and P (∞, 1 + α) = 1. The basic transformation is

then x = ψ(t) = P−1(t, 1 + α).

For α > −1 we have found the change of variable

(5.1)

∫

∞

0

xαe−x f(x) dx =

∫ 1

0

Γ(1 + α) f(P−1(t, 1 + α)) dt

This can be implemented both easily and efficiently in Matlab: The constant Γ(1+α)

is evaluated as gamma(1+alpha). There is a fast built-in function that evaluates

P−1(t, 1 + α) for vector t, namely gammaincinv(t,1+alpha).

Matlab has programming tools that facilitate the use of our approach to weighted

quadrature. Suppose that we have written a vectorized function f to evaluate f(x)

and have assigned a value to the parameter alpha. We can then define a new function

F = @(x) gamma(1+alpha)*f(gammaincinv(t,1+alpha))

and supply it to a quadrature program. For instance, if we use quadgk with default

tolerances, we can approximate the integral with

Q = quadgk(F,0,1)

We have written a Matlab program to experiment with the approximation of in-

tegrals with weight functions. The user indicates the nature of the weight and any

parameters involved and supplies a vectorized function for evaluating f(x). The pro-

gram uses this function to define a function in a new variable in the manner just

illustrated. It determines the end points for the transformed integral and then uses

quadgk to approximate the integral. Of course, the program allows error tolerances

to be specified in the usual way for the underlying quadgk and simply passes them

on for the actual computation.

202 L. F. SHAMPINE

6.
∫ 1

0
xα(1 − x)β f(x) dx, α > −1, β > −1

The Jacobi weights correspond to
∫ 1

−1
(1 − s)α(1 + s)β f(s) ds. These weights

are more complicated than the ones previously considered because there are two

parameters. Still, if we work instead on the interval [0, 1], there is an elegant change of

variable that is applicable for all permissible values of the parameters. The expression

(3.3) for the inverse transformation is now

t =

∫ x ψα(1 − ψ)β

c
dψ

As defined in Matlab, the beta function beta(z,w) is

B(z, w) =

∫ 1

0

tz−1(1 − t)w−1dt

and the incomplete beta function betainc(x,z,w) is

Ix(z, w) =
1

B(z, w)

∫ x

0

tz−1(1 − t)w−1dt

Evidently if we take c = B(1+α, 1+β), we have t = Ix(1+α, 1+β). The end points

map into I0(1 + α, 1 + β) = 0 and I1(1 + α, 1 + β) = 1.

For α > −1 and β > −1 we have found the change of variable

(6.1)

∫ 1

0

xα(1 − x)β f(x) dx = B(1 + α, 1 + β)

∫ 1

0

f(I−1
t (1 + α, 1 + β)) dt

This change of variable can also be implemented both easily and efficiently in Mat-

lab: The constant B(1 + α, 1 + β) is evaluated as beta(1+alpha,1+beta). There

is a fast built-in function that evaluates I−1
t (1 + α, 1 + β) for vector t, namely

betaincinv(t,1+alpha,1+beta).

This change of variable is elementary when β = 0 (or α = 0). With c = 1/(1+α),

the expression (3.3) is

t =

∫ x ψα

c
dψ = x1+α = φ(x)

The transformation maps [0, 1] into [0, 1] and x = ψ(t) = t1/(1+α), so

∫ 1

0

xα f(x) dx =
1

1 + α

∫ 1

0

f(t1/(1+α)) dt, α > −1

This change of variable is discussed in [2, 4]. A number of authors have developed for-

mulas for this weight with α = 1/2 or α = −1/2. For instance, Gautschi [3, pp. 160–

163] develops analytical expressions for the coefficients of the two point Gauss-Jacobi

formula for α = −1/2 and β = 0,

Q = 1.3043 · · · × f(0.1559 . . .) + 0.6957 . . .× f(0.74156 . . .)

WEIGHTED QUADRATURE 203

He applies the formula to
∫ 1

0
x−1/2 cos(πx/2) dx = 1.5597865 . . . to get the approx-

imation Q = 1.55759 In our approach to weights, we change the variable to

get
∫ 1

0

x−1/2 f(x) dx =

∫ 1

0

2f(t2) dt

and can then apply any formula we wish. After transformation from the standard

interval [−1,+1] to [0, 1], the two point Gauss-Legendre formula has nodes x1 =

1/2−
√

3/6 and x2 = 1/2+
√

3/6 and weights Ai = 1/2. This leads to a new formula

Q = f(x2
1) + f(x2

2) = f(0.04466 . . .) + f(0.6220 . . .)

For Gautschi’s example, this formula provides Q = 1.55701 There is no reason

to expect that one approach will approximate this integral better than the other and

neither shows any great advantage for this example. An interesting aspect of this

particular weight function is that Krylov [7, p. 120] shows how to derive the Gauss-

Jacobi formula of n nodes for w(x) = x−1/2 in terms of the Gauss-Legendre formula

with 2n nodes. Our approach derives a formula of n nodes for any admissible α and

β by a change of variable and subsequent application of the Gauss-Legendre formula

with n nodes.

Gautschi [3, pp. 169–170] shows how to change the variable so as to deal with an

interesting class of integrals on [0,∞) by reducing them to an integral with Jacobi

weights on a finite interval. Suppose that we want to approximate
∫

∞

0

F (x) dx

and the integrand behaves like

F (x) ∼
{

f0 x
p with p > −1 as x→ 0,

f∞ x−q with q > +1 as x→ ∞.

By moving appropriate factors of F (x) to a weight function, we can write the integral

as
∫

∞

0

xp

(1 + x)p+q
f(x) dx, p > −1, q > +1

for a function f(x) that is well-behaved at both the origin and infinity. Indeed,

f(0) = f0 and f(∞) = f∞. We need to modify slightly the transformation used by

Gautschi to get an integral on [0, 1]. To this end we take x = t/(1 − t), so that

t = x/(1 + x) and

∫

∞

0

xp

(1 + x)p+q
f(x) dx =

∫ 1

0

tp (1 − t)q−2 f

(

t

1 − t

)

dt

We can now apply the transformation developed earlier for the Jacobi weight.

204 L. F. SHAMPINE

7.
∫ 1

0
− log(x) f(x) dx

The polynomial change of variable used by Q1DA and quadgk deals well enough

with a logarithmic singularity, but for a number of applications it is useful to develop

formulas with − log(x) as weight. Also, this case illustrates what has to be done if the

special function needed in our approach is not available. However, before going into

this, we note that a preliminary change of variable can be used to deal not only with

this logarithmic weight, but even with powers of the weight: For α > −1, changing

the variable of integration to x = e−t leads to
∫ 1

0

(− log(x))α f(x) dx =

∫

∞

0

tα e−tf(e−t) dt

This is, of course, an integral with a generalized Gauss-Laguerre weight and a compar-

atively smooth function F (t) = f(e−t) to which we can apply the scheme developed

in §5.

Returning now to the direct application of our approach to the particular weight

function − log(x), if we take c = 1, the expression (3.3) for the inverse transformation

is

t =

∫ x

0

− log(ψ) dψ = x(1 − log(x)) = φ(x)

The end points map into φ(0) = 0 and φ(1) = 1. There is no special function in

Matlab for the inverse of φ(x), so we evaluate it by solving the algebraic equation

0 = φ(x)−t numerically in the function psilog displayed below. Notice the coding of

the nested function phi minus t. For given t the root solver fzero evaluates φ(ξ)− t
at both ends of the interval 0 ≤ ξ ≤ 1 where it is to locate a root. At ξ = 0, Matlab

evaluates ξ log(ξ) as NaN. Accordingly, we have to code the function so as to provide

the proper limit value 0. The function is smooth and has opposite signs at the ends

of the interval. In the circumstances fzero is globally and superlinearly convergent.

function x = psilog(t)

x = zeros(size(t));

for entry = 1:length(t)

if t(entry) == 0, x(entry) = 0;

elseif t(entry) == 1, x(entry) = 1;

else x(entry) = fzero(@phi_minus_t,[0,1]);

end

end

function v = phi_minus_t(xi)

if xi == 0, v = - t(entry);

else v = xi*(1 - log(xi)) - t(entry);

end

end % nested function phi_minus_t

WEIGHTED QUADRATURE 205

end % psilog

To illustrate our approach to deriving a formula, we first note the conventional formula

of Gaussian type for this weight function as stated in Table 25.7 of [1],
∫ 1

0

− log(x) f(x) dx ≈ 0.718539 f(0.112009) + 0.281461 f(0.602277)

If we use the two-point Gauss-Legendre formula on [0, 1] stated in §6, the nodes of a

new formula are computed by

x = psilog([1/2-sqrt(3)/6,1/2+sqrt(3)/6])

and the resulting formula is
∫ 1

0

− log(x) f(x) dx ≈ 0.5 f(0.0539011) + 0.5 f(0.425020)

We have no reason to think that one of these formulas is better than the other.

However, the table cited provides only the formulas of 2, 3, and 4 nodes. In our

approach it is easy to obtain a formula from transformation and Gauss-Legendre

quadrature of whatever number of nodes seems appropriate to the task. In passing

we remark that Trefethen [11] provides a short Matlab program for computing the

coefficients of the Gauss-Legendre formula of any desired number of nodes.

Evaluating ψ(t) in this way is perfectly satisfactory for developing formulas. In-

deed, this example shows that it is easy enough to develop formulas for any w(x) with

a convenient analytical integral. However, for the routine computation of integrals

involving w(x), we would want the speed gained by compiling a function to solve the

algebraic equations.

8. A FINAL EXAMPLE

Mori [9] and others have considered the approximation of
∫ +1

−1

1

x− 2
(x+ 1)−3/4 (1 − x)−1/4 dx = −1.949 . . .

With default tolerances, quadgk reports that it goes to minimum mesh spacing near

x = −1 and does not achieve the desired accuracy. The change of variables built into

the program to weaken end point singularities deals with the singularity at x = +1,

but the singularity at x = −1 is too strong. These end point singularities correspond

to a Jacobi weight and the change of variables developed in §6 for this weight makes

the integral an easy one for quadgk. Mori and others have considered changes of

variable that in principle deal with end point singularities without asking the user to

specify just what the singularity is. These IMT and DE transformations are certainly

attractive, but all the authors who have investigated transformations of this kind have

remarked on precision difficulties. Indeed, Mori [9, p. 126] provides details for Jacobi

206 L. F. SHAMPINE

weights as in this example—there are severe difficulties with cancellation and overflow

that require careful handling. A similar discussion of the practical difficulties for a

different transformation of this kind is found in Yserentant [12]. These difficulties

arise in evaluating the integrand near a singular point, difficulties that are avoided in

our approach because we ask the user to specify the nature of the singularity, which

allows us to deal with it analytically.

REFERENCES

[1] M. Abramowitz and I.A. Stegun, eds., Handbook of Mathematical Functions, Dover Publications,

New York, 1972.

[2] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, 2nd ed., Academic, Orlando,

1984.

[3] W. Gautschi, Numerical Analysis An Introduction, Birkhäuser, Basel, 1997.

[4] E. Isaacson and H.B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.

[5] D. Kahaner, C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall, Englewood

Cliffs, NJ, 1977.

[6] D. Kahaner, G. Tietjen, and R. Beckman, Gaussian-quadrature formulas for
∫

∞

0
e−x

2

g(x) dx,

J. Statistical Computation and Simulation, 15:155–160, 1982.

[7] V.I. Krylov, Approximate Calculation of Integrals, translated by A.H. Stroud, ACM Monograph

Series, MacMillian Company, New York, 1962.

[8] Matlab, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760.

[9] M. Mori, Quadrature formulas obtained by variable transformation and the DE-rule, J. Comp.

Appl. Math., 12&13:119–130, 1985.

[10] L.F. Shampine, Vectorized adaptive quadrature in Matlab, J. Comp. Appl. Math., 211:131–

140, 2008.

[11] L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Review, 50:67–87,

2008.

[12] H. Yserentant, A remark on the numerical computation of improper integrals, Computing,

30:179–183, 1983.

