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Abstract: This paper presents a cohesive zone model and explores its capacity for predicting 

crack growth in materials and structures. An exponential cohesive law was implemented for the 

specific case of monotonic loading and applied to crack growth simulation, in three-dimensions, 

in thin fracture specimens made from the chosen material of interest. The cohesive law is 

governed by the two parameters, cohesive strength and cohesive energy, and our parameter study 

revealed the cohesive strength to be a more influential parameter. The cohesive parameters were 

calibrated for the commercial aluminum-copper-magnesium alloy 2024 in the T3 temper by 

comparing the finite element predictions with experimental test results obtained for a compact-

tension specimen. Middle-cracked tension test specimens having different ratios of the crack 

length were modeled using the calibrated parameters and the numerical results showed good 

correlation with the experimental test results. 
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1.  INTRODUCTION 

 
Failure of engineering structures can occur from either one or a combination of reasons. 

Often in practice disasters tend to occur primarily because the relevant engineering structure 

contains cracks, which occur and exist either during production or during service. The 

consequences of failure can often be catastrophic. Over the last four decades, several 

contributions have been made towards enriching our prevailing understanding of crack-related 

structural failures and as a direct consequence various approaches have been introduced.  
 
The science of fracture mechanics provides different concepts of a single parameter for 

the purpose of evaluating crack growth through a test specimen or structure. The stress intensity 

factor (SIF) (Irwin, 1956) [10], referred to henceforth through this manuscript as K, has proven to 

be a useful tool for both studying and understanding problems related to the fracture of solids 

having pre-existing flaws and a negligible non-linear zone ahead of the crack tip. Yet, it is 

understood that the stress intensity factor is limited to conditions where essentially linear-

elasticity prevails in the cracked body, such as small scale yielding. The concept of Elastic-Plastic 

Fracture Mechanics, referred to henceforth as EPFM, was developed for studying ductile fracture 

of solids that experience a substantial amount of plastic deformation. The path-independent 

contour integral J-integral, put forth by James Rice (Rice, 1968) [25], is usually used in rate-

independent quasi-static fracture analysis with the primary objective of characterizing the energy 

release during crack growth. However, the assumption of non-linear elasticity, or deformation  
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theory of plasticity, applies only to monotonic loading of elastic-plastic materials. Another 

noticeable limitation is the use of small deformation theory to prove the path-independence of the 

J-integral.  
 
The concept of cohesive zone was initially conceived by Dugdale in 1960 [7], Barenblatt 

in 1962 [2], Rice in 1968 [25] and a few others during the subsequent years.  This concept regards 

fracture to be a gradual phenomenon in which separation occurs between two adjacent virtual 

surfaces across an extended crack tip (cohesive zone) and is often resisted by the presence of 

cohesive forces. This theory of fracture led to a novel numerical approach to simulate and study 

crack propagation. In this approach, the continuum is characterized by two constitutive relations:  

  (i) A volumetric constitutive model describing the “bulk behavior” of the material.  

(ii) A cohesive surface constitutive relation between the traction and displacement 

characterizing the behavior of bond surfaces between the elements.  

Over the years, the Cohesive Zone Model (referred to as CZM) has been successfully applied for 

studying and rationalizing crack growth simulation in materials spanning the domains of metals, 

concretes, ceramics, polymers, and even their composite counterparts, i.e., metal-matrix 

composites (MMCs), ceramic-matrix composites (CMCs) and polymer-matrix composites 

(PMCs). Examples include the following: (a) quasi-static fracture simulations (Roy and Dodds, 

2002 [27], (b) dynamic crack growth (Xu and Needleman, 1994 [35], Siegmund and Needleman, 

1997 [30]), (c) fragmentation (Camacho and Ortiz, 1996 [4]; Miller, Freund and Needleman, 

1999 [18], Zhai and Zhou, 1999 [36], Repetto, Radovitzky and Ortiz, 2000 [24]), (d) creep 

behavior (Bouvard, Chabocheb, 2009 [3]), and (e) separation stability (Suo, Ortiz, Needleman, 

1992 [32]; Levy, 1994 [15]).  
 
The specific study becomes complex for three-dimensional applications due to 

complexity of the local stress state coupled with crack branching/tunneling. Lin and Cornec, 1998 

[17] simulated 3-D crack extension using the cohesive zone model for: (a) side-grooved compact 

tension specimen, and (b) a surface-crack tension specimen. Their results presented good 

agreement with the experimental findings. Subsequently, Ortiz, Pandolfi, 1999 [21] and Pandolfi 

and Guduru, 2000 [22] employed a similar type of triangular cohesive element to simulate 3-D 

dynamic crack extension in solids that undergo large scale plasticity. This led Foulk and 

coworkers, 2000 [9] to apply 3-D cohesive zone models for the purpose of studying crack growth 

in brittle composites. The success achieved by the earlier researchers motivated Roy and Dodds, 

2001 [26] to study ductile crack extension in thin aluminum panels under the influence of quasi-

static loading using the cohesive zone model. The specific aspect of crack path deviation during 

stable crack extension in ductile materials was investigated by Scheider, 2001 [28], Scheider and 

Brocks, 2003 [29] by placing interface elements between all the continuum elements and 

successfully captured the phenomenon of cup–cone fracture of a round tensile bar of a ductile 

solid subjected to monotonic loading. 

 
This paper presents the results of a study on crack growth under monotonic loading using 

a 3-D exponential cohesive zone model. The constitutive behavior between the crack surfaces 

was formulated considering: (i) local unloading and reloading, and (ii) potential contact 

phenomenon. The quasi-static fracture analysis was performed on a thin sheet Compact Tension 

(CT) specimen and the three-dimensional cohesive zone model and resultant cohesive parameters 

were calibrated by fitting with results obtained from experiments. Middle-crack Tension (MT) 

specimens made of the same sheet material were then modeled using the cohesive zone model 

with the calibrated parameters by considering the effect of the ratio of the initial crack length to 

specimen width. 
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2.   FORMULATION OF THE COHESIVE ZONE MODEL 

 
Consider a quasi-static solid specimen having cracked surfaces. Along the potential crack 

path a pair of virtual crack surfaces is assumed, which is subjected to a separating force that is 

referred to as cohesive traction. Based on the principle of virtual work, the equation for 

mechanical equilibrium considering the contribution of the cohesive tractions can be expressed as 

 

 
extS

ext
S

CZ
V

dSuTdSTdVFs



int

:     (1) 

 

where in this expression: 

(a) V is the specimen volume, Sint the internal (cohesive) surface, and Sext represents the 

external surface.   

(b) s


is the nominal stress tensor )det(1 FFs  , where F


is the deformation gradient 

and σ is the Cauchy stress;  

(c) CZT


 denotes the cohesive traction vector while extT


 is the external traction vector.  

(d) u


 is the displacement vector and 


=u
+
-u

-
 represents the displacement jump across two 

adjacent cohesive surfaces.  

(e) 


is referred to as the relative displacement vector, or the separation vector.  

 
The cohesive surface contributions are well described by an integration term over the 

internal surface  
intS

CZ dST


 .  Comparable to the deformation behavior of the bulk material that 

can be easily described with conventional stress-strain relationships; the evolution of separation 

that occurs due to local traction at the crack tip can be defined using a constitutive law for a 

special field between the virtual crack surfaces. The cohesive traction and separation are work 

conjugate, just as stress and strain being strain energy conjugate.  

 
For isothermal conditions, based on the First and Second laws of thermodynamics, the 

traction vector acting on the cohesive surfaces ( CZT


), simplified as T


henceforth through this 

manuscript, can be derived using the interfacial potential )(


  (Needleman, 1992 [19]) 




 


 )(
T

      (2) 

)(


  represents the free energy density function per unit undeformed area. By selecting   a 

proper potential function ( ), the constitutive equation between the cohesive traction and relative 

separation can be formulated.  Under 3-D configuration, both 


 and T


 have three components 

(normal, tangential and transverse). We adopt the following notation: 

(i) 


= ( nu , 1tu , 2tu ), and 

(ii) T


= ( nT , 1tT , 2tT ),  

where nun


 ; 11 tut


 ;  22 tut


  ; and nTTn


 ; 11 tTTt


 ; 22 tTTt


 . 

 
Different potential forms, divided between linear/bilinear, polynomial and exponential 

forms, have been adopted by the researchers in their independent studies.  The present study 

chooses the computationally convenient exponential form of the free energy density potential 
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where 0max,  is the initial normal cohesive strength under monotonic loading, 0  is the 

characteristic cohesive length, i.e. the material separation required to achieve the normal cohesive 

strength. q is the ratio between the normal cohesive energy n  and shear cohesive energy t . 

The cohesive energy is the energy needed to fail the cohesive zone and to concurrently create a 

unit area of new free surface. With the assumption of transverse isotropy, the same shear cohesive 

energy for both the tangential and transverse directions are used:  ttt  21  and ntq  / .  

 

 

2.1 The cohesive traction-separation law for monotonic loading 
 

In this section we consider the monotonic loading situation with no degradation in the 

cohesive strength to be accounted for. The cohesive traction components can be computed from 

derivatives of the potential function and are expressed as follows: 
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Taking into consideration the free energy density potential, we now have the separation law for 

cohesive traction for the case of monotonic loading 

 )exp()1()1exp(
2

2

2

10max, vvqquuTn     (4a) 

 

)exp()1exp()1(2
2

2

2

110max,1 vvuvuqTt      (4b) 

 

)exp()1exp()1(2
2

2

2

120max,2 vvuvuqTt      (4c) 

where Δu, Δv1 and Δv2 are the normalized normal, tangential and transverse separation 

components respectively 
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The features of the traction-separation constitutive equations defined for both the pure normal 

condition and pure shear condition are illustrated in the normalized form in Figure 1. The traction 

values are normalized with respect to the corresponding cohesive strength 0max,  (normal 

cohesive strength) or 0max,i  (shear cohesive strength, 2,1i  for the tangential and transverse 

directions respectively), and the separation values are normalized with respect to the 

characteristic cohesive length ( 0 ). As shown in Figure 1, the cohesive traction increases 

monotonically with increasing separation prior to the characteristic separation at which point the 

cohesive strength ( 0max,  or 0max,i ) is achieved. For the case of pure normal loading the 

characteristic separation is 0 , and for the case of pure shear (tangential and transverse) loading 

this separation value equals 2/2 0 .  Subsequently, the traction value decreases with increasing 

separation and approaches to zero eventually. 

 
The cohesive strength is taken to be the peak value of the cohesive traction. Further, it 

represents the maximum resistance offered by the material to crack opening under pure loading  
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modes (σmax,0 for normal and 0max,i for shear). Assuming the existence of in-plane isotropy, the 

initial shear cohesive strength under conditions of pure shear can be defined from the constitutive 

laws as  

0max,0max,20max,1 2  qe        

In this expression q is the ratio of the shear cohesive energy ( t ) to the normal cohesive energy 

( n ). 

 

The cohesive energy, or work of separation, per unit area, of the cohesive surface, is 

defined as 





0

Td       (5) 

It is represented by the area enclosed under the traction-separation curve. With the exponential 

constitutive law given by Equation (3), the critical cohesive energy for: (a) pure normal loading, 

and for (b) pure shear loading are as follows: 

00max, en  ,  

)2,1(
2

00max,00max,  i
e

eq iti  . 

  

        

(a)       (b)
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Monotonic traction-separation relation under (a) pure normal, and  

(b) Pure shear (tangential: i = 1; transverse: i = 2) loading. 

 

2.2 Unloading/reloading 
 

To account for the partial unloading and reloading, which occurs with crack propagation, 

the paths of unloading and reloading need to be well defined in the cohesive zone model. When 

separation of the cohesive surfaces becomes smaller than the previous loading state, the path of 

unloading is followed. In this research effort, unloading is prescribed to be directed back to the 

origin of the traction-separation space (Figure 2). The traction components during unloading are 

calculated as follows. 

0,2220,1110, *** ttttttnnn kuTkuTkuT          (6) 

where in this expression 

(i) max,2max,20,2max,1max,10,1max,max,0, /,/,/ ttttttnnn uTkuTkuTk   are the 

constant unloading stiffness;  
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(ii) max,nu , max,1tu and max,2tu are values of the separation components at the onset of 

unloading; and  

(iii) max,nT , max,1tT and max,2tT are the corresponding traction values up until maximum 

separation.   

When the current separation overpasses the previous value but is smaller than the maximum 

separation, the relation for traction separation follows a reloading path. For the case of monotonic 

loading with no damage accumulation, reloading takes place along the reverse direction of the 

unloading path before it meets with the loading curve (Figure 2). Under such circumstances, the 

reloading stiffness equals the unloading stiffness.  

 

2.3 Compression/normal contact of broken cohesive surfaces 
 

During unloading in the normal direction, the unloading path may reach  0 nu , and 

the crack surfaces came into contact with each other.  In order to avoid overlapping and 

interpenetration of the material surfaces, a penalty is taken for the cohesive traction 

corresponding to 0 nu .  The penalized equation for contact computation can be expressed as 

)1exp(0max, uuATn        (7) 

In this equation, the stiffness multiplier (A) penalizes any negative value of Δu thereby preventing 

the solid elements that surround the cohesive element from interpenetrating each other.  However, 

the value of the penalty multiplier has to be appropriate such that negative separation can be 

resisted while it should not be too big to introduce effects due to adverse loading.  In the present 

study, the value of A is chosen to be equal to 30 after trial and error adjustments. 

 

It is worth noting that no other fracture criterion is necessary to complete the description of the 

Cohesive Zone Model.  The opening of new crack surfaces is the natural result of an evolvement 

of the traction-separation law. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Unloading/reloading paths for (a) pure normal and (b) Pure shear (i=1for 

tangential; i=2 for transverse). 
 

3.  FINITE ELEMENT IMPLEMENTATION AND FRACTURE ANALYSIS 

 
The cohesive zone model can be implemented into finite element analysis as mixed 

boundary conditions or incorporated in the form of cohesive elements. Here, we use cohesive 

elements to describe the nonlinear fracture process of materials.  

compression 
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The Finite Element software package ABAQUS [1] offers a library of cohesive elements 

and separation behavior of the cohesive elements can be well defined within the specific 

constitutive relations. In this section, the exponential cohesive zone model presented earlier is 

implemented through a user defined subroutine UMAT. The cohesive element type COH3D8 is 

made use of for the three-dimensional finite element models. The cohesive element has 8 nodes 

and 4 integration points (Figure 3). The surface defined by nodes 1-2-3-4 and the surface defined 

by nodes 5-6-7-8 constitute the two virtual surfaces for purpose of crack propagation. Under the 

influence of the applied load, the two surfaces of the cohesive elements separate from each other 

and the relationship between traction load and separation follows the defined constitutive law. 

 

 

 
 

Figure 3.   The COH3D8 cohesive element. 

 

 

3.1 Finite element implementation and verification 

 
To first verify the numerical cohesive zone model implemented in the UMAT, a three-

element finite element model is generated, which consists of two volumetric solid elements and 

one cohesive element having an initially zero thickness sandwiched in between, as shown in 

Figure  4 (a).  The boundary conditon of the model is defined by restraining the three degrees of 

freedom (DOFs) at the bottom surface. A couple of cycles of normal loading with R=-1 is applied 

at the top surface nodes, in a manner that the cohesive element is loaded, unloaded and 

compressed prior to being reloaded and completely broken.  

 

In Figure 4 (b) is shown the normal traction-separation curve of the cohesive element 

under conditions of monotonic loading and its response under both contact and compression. An 

exponential form is displayed for the monotonic loading unloading/reloading. Assuming 

0max,0max,  i  (q =1/ e2  ≈ 0.4289), the cohesive element presents similar exponential 

relations with a monotonic shear/transverse loading as shown in Figure 2, while a negative shear 

separation occurs during reversed shear loading/unloading.  

 

The adopted form of the traction-separation model tends to reduce the traction value 

exponentially to zero with increasing separation.  In an attempt to provide a consistent definition 

for the amount of crack extension, the advancing crack tip is defined at 05 nu  or 

03 tiu  ( i = 1 for tangential and i = 2 for transverse). The element is considered to be broken 

at the current integration point when the critical separation is reached, and consequently a new 

crack tip is defined at this point. 
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Figure 4. (a) A three-element model containing two soild elements and one 

cohesive element.  

(b) Normal traction-separation relation with contact behavior. 

 

 

 

3.2 Application in fracture analysis 

 
To apply the verified cohesive model for fracture analysis, a high constraint Compact-

Tension (CT) specimen and a low constraint Middle-cracked Tension (MT) specimen made from 

a thin sheet of aluminum alloy 2024 were modeled. For the purpose of predicting fracture 

behavior of the cracked specimens, cohesive elements having an initially zero thickness were 

defined along the potential crack path. The cohesive parameters were calibrated in a 

phenomenological way by fitting the numerical outcome with experimental data.  Constant values 

were chosen and used for the computational efficiency and the validity was evaluated for 

different specimen types and geometries.  

 

The geometry of the specimens tested is shown in Figure 5. The CT specimen has a width 

dimension of 150mm while the MT specimens have a dimension of 2W = 300 mm and crack 

length ratios of a/W = 0.33, a/W = 0.4 and a/W = 0.56. All of the specimens have a uniform 

thickness of 2.3mm. The material chosen for this study was aluminum alloy 2024-T3. In the 

longitudinal (L) orientation, the sheet material has a yield stress of 345 MPa, Young‟s Modulus of 

71.3 GPa, and a Poisson‟s ratio of 0.3. The stress - strain curve for the chosen material is shown 

in Figure 6.  The elastic-plastic property of the material enables possibility of plastic deformation 

of the bulk material during the quasi-static fracture process. 

 

Crack front tunneling was observed in the crack extension experiments of specimens 

having finite thickness, where an initially straight crack front usually grows to become a curved 

shape. This phenomenon results from the conjoint influence of complex crack tip stress state, and 

conditions of external constraint. The interior, near plane-strain stress state enables faster growth 

of the crack compared to the state of plane-stress at the outer surface. In the three-dimensional 

cohesive zone model (CZM) simulation of the compact tension (CT) and middle tension (MT) 

specimens, the tunneling effect is revealed even for thin sheets of the chosen aluminum alloy.  
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Figure 5. Representative geometry of the specimens. 
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Figure 6. True stress-strain curve of aluminum alloy 2024-T3 (longitudinal 

orientation) 

 

3.2.1 Modeling the CT specimen and Calibration of the Cohesive Parameters 

 

To adequately resolve both the stress and strain fields in the cohesive zone at the crack 

tip, the finite element model should bear sufficient refinement of the mesh. Also, large-size 

elements may fail to capture the peak of the traction-separation curve resulting in inaccuracy and 

numerical instability. The length of the cohesive zone model introduced a characteristic length 

scale as reference.  According to Roy and Dodds, 2001 [26], an element size of no more than 50 

times the cohesive length generates numerically stable solutions when the values of the peak 

cohesive stress is less than three times the yield stress. They used a cohesive element size of 0.25 

mm along the direction of crack advance, which is consistent with Siegmund and Brocks, 2000 

[31], and obtained good results using a research code WARP3D for the same 2024 aluminum 

alloy. In the thickness direction, it was shown that four layers of finite elements were able to 

capture the through-thickness gradients of field quantities and the tunneling phenomenon in the 

immediate vicinity of the crack front. 
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Here fracture specimens of the thin 2024 aluminum alloy panels are analyzed using 

ABAQUS [1] with the cohesive zone model defined by the UMAT described previously. The in-

plane size of the cohesive element is 0.1mm. Due to symmetry only half thickness is considered.  

Four layers of the solid (C3D8R) and cohesive (COH3D8) elements over the half-thickness 

direction were modeled for all the specimens. As shown in Figure 7, the finite element models 

tended to minimize mesh dependencies on crack growth response for the chosen mesh 

consideration. A typical model for the C(T) specimen contains 43,000 solid elements and 1,780 

cohesive elements. 

 

Parameters of the cohesive zone model are calibrated by matching the predicted tensile 

load versus crack extension with the experimental results obtained for the C(T)  specimen. A 

series of calibration analyses for the C(T) specimen provide the needful parameters for the 

traction-separation model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The Finite Element model for the compact tension (CT) test specimen 

 

 

In Figure 8 is depicted the effect of changes in the value of cohesive strength. For a 

constant value of the cohesive energy, a higher cohesive strength yields a higher external load 

while a lower cohesive strength yields a lower value of the external load. With a 5% change in 

the value of cohesive strength, the maximum external load is changed by about 14%. The force 

required for crack initiation remained almost the same for the same cohesive energy. The 

simulated results are summarized in Table 1. 

 

By comparison, the change in cohesive energy causes less variance in the external load.  

For a constant value of the cohesive energy, a 10% change in the cohesive energy value resulted 

in less than 3% change in the computed external force. This is well represented in Figure 9. The 

simulated results are summarized in Table 2. Thus, it is concluded that the influence of cohesive 

strength is greater for this particular case when compared to cohesive energy. 
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Figure 8. The effect of cohesive strength on the predicted load versus crack extension 

response. 

 

Table 1:  Effect of cohesive strength      Table 2:  Effect of cohesive Energy 

 

Cohesive strength 

0max,  

Peak external 

load (kN) 

y9.1  9.1 

y0.2  10.5 

y1.2  12.0 

 

By comparing the numerical results with the experimental data, a group of cohesive 

parameters that result in a best agreement between the numerical and experimental results are 

listed as follows 

MPay 6900.20max,   , mm0144.00  , 
2/27 mkJc  .  

These results are consistent with those obtained and recorded by Roy and Dodds, 2001 [26]. In 

Figure 10 is presented the results of the calibrated cohesive zone model and compared with the 

experimental data. The mid-plane crack propagation accorded well with the experimental results. 

The outside crack simulation appeared rigid in the beginning, although an initiation load of 7.0 

kN and a peak load of 10.485 kN accord well with the experimentally obtained values. 

 

The crack plane profile ahead of the initial crack front after a certain amount of crack 

extension is shown in Figure 11(a). Strong crack-front tunneling for the thin compact tension 

(CT) specimen reveals that the crack growth started at the mid plane, and crack extension 

gradually decreased from the mid-plane to the outside surface.   

 

In Figure 11(b) is shown crack tunneling with respect to propagation length and 

compared with the experimental test results obtained by Dawicke and Sutton, 1994 [5]. For the 

Longitudinal-Transverse (L-T) orientation of aluminum alloy (2024-T3) sheet, the crack front 

transformed into a visible „shear‟ mode of ductile tearing following crack propagation for a short 

length along the center plane. However, in the numerical  model the cohesive elements are placed  
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along the center plane and crack propagation is restricted to the „flat‟ mode. The simulated 

tunneling does not represent the complete tunneling behavior but is effective only for the early 

stages of crack propagation.   

 

 

 
Figure 9. The effect of the cohesive energy on predicted load vs. crack extension 

response. 

 

 

 
Figure 10. Cohesive zone model (CZM) simulation results of the compact tension (CT) 

test specimen compared with the experiments  
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Figure 11. (a) Profile of the crack surface;  

(b) Tunneling effect compared with fracture test,  

where ai represents the crack length at the mid-plane and as 

represents the crack length at the side surface. 

  

3.2.2 Cohesive zone modeling for the MT specimens 

 

The Middle-cracked Tension (MT) specimens having a dimension of 2W=300mm, and 

crack length to specimen width ratios of a/W = 0.33, a/W = 0.4 and a/W = 0.56 have been 

modeled using the same cohesive parameters that were calibrated from simulation results on the 

CT specimen. Symmetry was applied so that one fourth of the specimen is modeled. The same 

mesh refinement is adopted here, i.e., the size of the cohesive element is 0.1 along the crack path 

direction and four layers of elements are placed in the thickness direction over half thickness of 

the specimen. In Figure 12 is shown a typical mesh. The cohesive zone was properly resolved 

with such considerations for the mesh, thereby avoiding dependency on the mesh. A typical MT 

model for crack growth simulation contained 47,000 solid elements and 1,984 cohesive elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Finite Element model of the Middle Tension (MT) specimen  

 

∆as(mm) Mid-plane 

thickness 

Side surface 

Simulation result 

Fracture test 

∆as(mm) 

(ai-as)/B 

Crack tip  



  

 

304        H. JIANG, X. GAO AND  T. S. SRIVATSAN 

 

Results of the numerical simulation are shown in Figure 13. The curves plotted are for 

crack extension on the outside surface of the specimen. Experiments for different ratios of the 

crack length are also shown for purpose of comparison. Using the same cohesive parameters that 

were calibrated from the results of simulation of the C(T) specimen, the MT simulation fits well 

with the experimental results. Larger ratios of the crack length correspond to an overall higher 

value for the curve, i.e. a lower remote stress is needed for both crack initiation and subsequent 

crack propagation for the case of the longer cracks.  

 

 
 

Figure 13. CZM simulation results of MT specimens compared with the experiments  

 

It is to be noted that the finite element simulations were at times terminated due to 

convergence issues after the cracks had propagated to a certain length.  The numerical 

considerations concerning convergence and related to non-linear material behavior will be 

addressed in a companion paper (Haodan and co-workers, 2010 [12]) and evidently reveal 

improved computational capacity. 

 

4.  DISCUSSIONS AND FUTURE CONSIDERATIONS 

 
 A cohesive zone model with an exponential traction-separation law was implemented in a 

finite element software ABAQUS via a user defined subroutine for simulation of crack growth 

under monotonic loading. The cohesive zone model is governed by two key parameters: (i) the 

cohesive energy, and (ii) the cohesive strength.  Parameter study suggests the influence of the 

cohesive strength is much stronger. The cohesive zone model is applied to simulate crack 

propagation in specimens made from thin 2024 aluminum panels. The cohesive parameters are 

calibrated using the C(T) specimen and then used to predict crack growth in the MT specimens. 

The cohesive zone model (CZM) simulation results accord well with the experiments by 

capturing the essential crack growth behavior from initiation throughout the process of 

propagation.  

 

Numerical applications proved the cohesive zone model to be an effective tool for crack 

growth study under conditions of monotonic loading. For crack growth under cyclic loading, 

degradation of the material needs to be taken into account. A companion technical manuscript 

(Jiang, Gao and Srivatsan, 2010 [12]) presents and discusses an irreversible cohesive zone model 

and crack growth under the different modes of loading. 

σ
R

 (
M

P
a)

 

∆a (mm) 



  

 

CRACK GROWTH IN MATERIALS AND STRUCTURES                305 
 

Future work needs to look further into numerical problems and careful considerations 

must be provided for the individual modeling case, especially for three-dimensional simulations 

where the burden of computation increases significantly. The influence of local constraint, mixed-

mode loading, and normal/shear coupling also deserve continued investigation.  
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