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Abstract: Normally, different financial institutions, i.e. banks, offer a variety of loans 
with different lending rates, according to a basic interest rate and the experience of the 
repayment patterns. In this paper, we construct and present a theoretic linear stochas-
tic control model in order to evaluate the associated credit risk and obtain the optimal 
strategy for the determination of the level of the lending interest rates by optimizing 
the accumulated profit. Each sub-portfolio of loans is treated separately during a unit 
interval while at the end of the each time period there is some kind of solvency inte-
raction. We assume that the repayment pattern follows a Brownian motion and using 
advanced optimization techniques, the optimal solutions are derived. 
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1. Introduction 

In the banking system, the determination of the lending rate policy is one of the 
most attractive and intrusive problems, as well. Analytically, loan pricing is the de-
termination of the lending rate policy for different banking products of loans (e.g., 
personal loans, business loans, mortgages, overdrafts etc) which are offered to cus-
tomers, according to their risk exposure, see Saunders [17]. The respective literature 
is very rich although some of the approaches and the concluding results are not linked 
intuitively to common lending practices, see for instance, Sealey [18], Ho and Saund-
ers [7], Slovin and Sushka [19], Allen [1], Zarruk [27], Zarruk and Madura [28], Pe-
tersen and Rajan [15], Angbazo [2], Wong [25], Saunders [17], Nakamura, Qian, 
Samdoh, and Nakagawa [13], Stanhouse and Stock [20] and Stein [21].  
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Quite recently, the lending rate policy via an appropriate investment strategy for 
an interacted portfolio of different loans into a continuous-time and discrete-time sto-
chastic framework has been examined by Zimbidis, Pantelous and Kalogeropoulos 
[29], and Pantelous [14], respectively. Two interesting bank optimization models with 
several variables, stochastic inputs and smoothness criteria described by a quadratic 
functional have been proposed for managing the task. In both cases, the state variable 
of the systems correspond to the accumulated surplus profit/loss, which can be oscil-
lated deliberately, absorbing fluctuations in the different parameters involved.  

Furthermore, the bank institution managers should be compensated with the risk 
that borrowers are not always consistent with the repayments. It is obvious that loans 
are priced according to the involved risk, and the capital profits that the management 
desires. However, throughout the last decades, a contradictory question is being raised 
about whether the financial institutions should provide cheap loans in order to attract 
more customers for other profitable business or not. Something really interesting has 
been shown by Fried and Howitt [6], and Petersen and Rajan [15]. They showed that 
the welfare is enhanced by smoothing of lending rates in relation to borrower risk 
and market interest rates.  

In this paper, the main object is to extend further the research works proposed by 
Zimbidis, Pantelous and Kalogeropoulos [29] and Pantelous [14] by developing a 
more complicated (and more realistic) stochastic model for smoothing the lending rate 
policy for the different sub-portfolios of loans in a way that banking managers are 
seeking for. Moreover, we consider this problem in a more general framework, letting 
some kind of interaction between the different sub-portfolios. This paper connects the 
lending rate policy of an interacted portfolio of different loans with stochastic conti-
nuous-time control theory. Although optimal control theory was developed by engi-
neers in order to investigate the properties of dynamic systems difference/differential 
equations, it has also been applied to financial problems. Tustin [23] was the first to 
spot a possible analogy between the industrial and engineering processes and post-war 
macroeconomic policy-making (see Holly and Hallett [8], for further historical de-
tails). More recently, in the vast literature of banking, Jobst, Mitra and Zenios [10], 
Topaloglou, Vladimirou and Zenios [22] develop modelling paradigms which inte-
grate credit risk and market risk in random dynamical framework and use multistage 
stochastic programming tools. From this point of view, a method of controlling over 
time some major variables is introduced buffering any kind of fluctuations, in order to 
absorb partially or completely the probable unexpectedness in micro- and/or macro-
economic conditions, in external factors as competition, legal and regulatory require-
ments or other worsen random events. Moreover, we will assume that the financial 
institution managers desire to keep the profit for the bank close to a specified trajec-
tory. 

From this point of view, the financial institution has a certain total capacity for 
providing loans equal to ( )t∆ , at time t . We take in mind that the bank’s customers 

are not always consistent with their repayments. So, at each time t , a different amount 
say ( )t′∆  is repaid through the installments paid by the customers.  

Actually, ( )t′∆  is normally smaller than ( )t∆  ( ( ) ( )t t′∆ < ∆ ) but at some excep-

tions may take values greater than ( )t∆ , whenever the policy holders pay with some 

time delay two, three or more installments to the bank or even negative when we ex-
pect bankruptcy or withdrawal of some installments.  

Hence, we may visualize the situation above with the following theoretical Figure 1. 
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A brief outline of the paper is as follows. Section 2 provides the incentives and 
the typical modelling features of the problem. Moreover, it is devoted to the results of 
stochastic calculus and control theory for standard Brownian motion and the respec-
tive linear systems driven by such a process. Section 3 provides the approximation 
solution for the matrix Riccati differential equation. In section 4, we provide an inter-
esting numerical example with two sub-portfolios of loans with some interesting and 
insightful diagrams, while section 5 concludes the whole paper.   

 

2. Lending rate policy model into a continuous-time stochastic framework 

In this part of the paper, we will start to construct our stochastic control model. It 
should be pointed out that we consider a portfolio of n  sub-portfolios of loans. First, 
we define the necessary symbols and the respective notation; see Table A.  

We assume that the ratio ( )ip t  for the thi  sub-portfolio of loans which is consis-

tently repaid is driven by a standard Brownian motion. This uncertainty is modeled by 
a probability space ( ), ,Ω F P . The flow of information is given by the natural filtra-

tion { } [ ]0,t T∈
F , i.e. the P -augmentation of a one dimensional Brownian filtration. 

Without loss of generality, let us assume that the { } [ ]0,t T∈
=F F , i.e. the observable 

events are eventually known. Hence, 

( ) ( ) ( ) ( )i i i idp t m t dt t dW tσ= + ,   (2.1) 

where ( )im t  and ( )i tσ  represent the drift and the volatility respectively of the ratio 

of the total amount of loan which corresponds to the installments paid at time t  over 
the total amount of loan which has been placed into the thi  sub-portfolio of loans, for 

=i   1,2,...,n  . Note that we should be very careful with the choice of parameters, 

( )im t  and ( )i tσ . This stochastic ratio ( )ip t  can take both positive and negative val-

ues. Under the negative values, we assume that the bank can withdraw some of the 
unpaid installments.  

Figure 1: The financial institution has a certain total capacity for providing loans equal 

to ( )∆ t , at time t . Moreover, a different amount say ( )′∆ t  is repaid through the in-

stallments paid by the customers.  



  

   

310        ATHANASIOS A. PANTELOUS, et al. 

 

Table A 

( )i tΠ  Accumulated profit or loss (state variable) at time t  for the thi  sub-portfolio of 
loans, for 1,2,...,i n= . 

( )ia t  Rate of return (input variable) for the accumulated profit at time t  for the thi  
sub-portfolio of loans, for 1,2,...,i n= . In this paper, we assume that the rate of 
return is a deterministic function. Following this assumption, the managerial 
team should decide to invest conservatively the instant surpluses at time t  in a 
pool of different secure products, for instance different kinds of bank accounts, 
short-time government T-bond or something equivalent.      

( )ip t  Ratio (input variable) of the total amount of loan which corresponds to the in-
stallments paid at time t  over the total amount of loan which has been placed 

into the thi  sub-portfolio of loans, for 1,2,...,i n=  . 

( )i tρ  Ratio (input variable) of the total amount placed to the thi  sub-portfolio of 

loans, for 1,2,...,i n= , over the total amount of loans, ( )
1

1ρ
=

=∑
n

ii
t  (see be-

low why).  

( )t∆  Total amount for the whole portfolio of loans at time t , see also figure 1. This 
amount will be invested for loans by the financial institution at time t . It is pro-
found that the managerial team would be very happy to receive back the whole 
capital plus the required profit (let us say a profit margin).    

( )i t∆  Total amount of loans (input variable) at time t  for the thi  sub-portfolio of 

loans, 1,2,...,i n= , where ( ) ( ) ( )i it t tρ∆ = ∆ . For that reason, we assume 

that ( )
1

1ρ
=

=∑
n

ii
t . 

( )i t′∆  Total amount of loans (input variable) that corresponds to customers who consis-

tently repay their installments at time t  for the thi  sub-portfolio, of loan, for  

1,2,=i ...,n , where ( )i t′∆ = ( ) ( )ip t t∆ . 

( )ic t  Capital cost (input variable), which includes expenses, operational costs, rate of 
return paid to customers due to bank deposits and the desirable profit for the 

bank at time t  for the thi  sub-portfolio of loan, for 1,2,...,i n= . 

( )i tε  Lending rate (control variable) at time t  for the thi  sub-portfolio of loans, for 
1,2,...,i n= . 

( )ij tλ  Percentage of solvency (input variable) transferred from the thi  sub-portfolio to 
thj  sub-portfolio of loans at time t . ( )

1
1λ

=
=∑

n

ijj
t  1,2,...,i n∀ = . 

 

Then the accumulated profit of the total portfolio for the bank at time t  is given 
by 
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( ) ( )
1

n

i
i

t t
=

Π = Π∑ .    (2.2)  

 

We assume that the ratio ( )ip t  for the thi  sub-portfolio of loans which is consis-

tently repaid is driven by a standard Brownian motion. This uncertainty is modeled by 
a probability space ( ), ,Ω F P . The flow of information is given by the natural filtra-

tion { } [ ]0,t T∈
F , i.e. the P -augmentation of a one dimensional Brownian filtration. 

Without loss of generality, let us assume that the { } [ ]0,t T∈
=F F , i.e. the observable 

events are eventually known. Hence, 

( ) ( ) ( ) ( )i i i idp t m t dt t dW tσ= + ,   (2.1) 

where ( )im t  and ( )i tσ  represent the drift and the volatility respectively of the ratio 

of the total amount of loan which corresponds to the installments paid at time t  over 
the total amount of loan which has been placed into the thi  sub-portfolio of loans, for 

=i   1,2,...,n  . Note that we should be very careful with the choice of parameters, 

( )im t  and ( )i tσ . This stochastic ratio ( )ip t  can take both positive and negative val-

ues. Under the negative values, we assume that the bank can withdraw some of the 
unpaid installments.  

Then the accumulated profit of the total portfolio for the bank at time t  is given 
by 

( ) ( )
1

n

i
i

t t
=

Π = Π∑ .    (2.2)  

Moreover, under the above notation, we may describe the system by the follow-
ing stochastic differential equation:  

( )id tΠ = ( ) ( ) ( )[0, )Π ∈ ∞ Π
ii ita t t dt1    (Investment income from the 

fund) 

( ) ( ) ( ) ( ) ( )i i i i it t dp t c t t dtε+ ∆ − ∆ (Profit/loss of the thi  sub-portfolio of loans at time t )  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

1 1

i i i i ii i

i i i ni n

t t dt t t dt t t dt

t t dt t t dt

λ λ λ
λ λ

− −

+ +

+ Π + + Π + Π

+ Π + + Π

…

…
             (solvency interaction)  

(2.3) 

or equivalently, substituting equation (2.1) into (2.3) we obtain 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[0, )

1 1 1 1

1 1

              

              

                                                      

ii i it

i i i i i i i

i i i i ii i

i i i ni n

d t a t t dt

t t t m t dt t dW t c t t t dt

t t dt t t dt t t dt

t t dt t t dt

ε ρ σ ρ

λ λ λ
λ λ

Π ∈ ∞

− −

+ +

Π = Π

+ ∆ + − ∆

+ Π + + Π + Π

+ Π + + Π

1

…

…              (2.4)

 

for 1,2,3, ,i n= … . 
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Before we go further, it would be very helpful to draw and analyze more the fol-
lowing figure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see descriptively above, the financial institution invests a predeter-
mined amount of ( )∆ t  (money-units) into a predefined portfolio of n different loans. 

Into this pool of different products (for different clients and risks), it is provided also 
the opportunity to transfer funds (solvency interaction) from one product to the other, 
see also introduction. At the end of the process, three things are highly been desired 
by the managerial team: 

a) To receive back the whole invested capital ( )∆ t . 

b) To obtain the desired capital cost, which includes the different kind of ex-
penses, and operational costs; the rate of return paid to customers due to bank 
deposits and the desirable profit for the bank. 

c) Under the above conditions, at the end of the predetermined time-period, the 

financial institution would like to have ( ) ( ) ( )
1

lim lim
=→ →

Π = Π = Π∑
n

iit T t T
t t T . 

Here, we would like to underline that since ( )Π i t  can be either positive (prof-

it) or negative (loss), we are interested about the limit (→t T ) of the 

( )
1=
Π∑

n

ii
t  to tend to ( )Π T  (in some cases, this fund can be equal to zero).  

In order to obtain (a)-(c), we should determine a particular Linear Quadratic 
Regulator (LQR) controller, which can transfer instantly the state variable into the 
desired-tracking path. In this paper, we will not pay attention to the percentage of sol-
vency ( ( )ij tλ ) transferred from the thi  sub-portfolio to thj  sub-portfolio of loans at 

time t . Thus, naturally speaking, the managerial team should predetermine the policy 
for the solvency interaction, i.e. which product can be benefited more or less. As a 
further extension of this research work, we are thinking to determine this policy for 
the interaction factors among the different portfolio by using another optimization al-
gorithm.  

 

Figure 2: The described process for portfolio of n different loans.   

( )1 tΠ  
( )2 tΠ  

( )3 tΠ  ( )n tΠ  ��  

( )2 tε  

( )21 tλ  

( )31 tλ  ( )13 tλ  
( )1n tλ  

( )1n tλ  
( )23 tλ  

( )32 tλ  
( )2n tλ  

( )2n tλ  

( ) ( )11 [0, )ta t Π ∈ ∞1  

( )1c t  

( ) ( )33 [0, )ta t Π ∈ ∞1  

( )3c t  

( ) ( )22 [0, )ta t Π ∈ ∞1  

( )2c t  

( ) ( ) [0, )nn ta t Π ∈ ∞1  

( )nc t  

( )1 tε  
( )2 tε  

( )3 tε  ( )n tε  

( )t∆  

( )t∆  

( ) ( )
t T

t T
→

Π → Π  

( ) ( )
1

n

i
i

c t c t
=

=∑
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In this paper, as we will discuss again later, we assume that the optimization algo-
rithm has been already applied and the derived numbers for the ( )ij tλ  parameters are 

the optimal ones; see numerical example in Section 4.       

Consequently, see also Zimbidis, Pantelous and Kalogeropoulos [29], we take in 
matrix form the (non homogeneous) linear stochastic differential equation of type 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

( )
1

00

n

j j
j

d t A t t B t t C t dt H t t dW tε ε
=

 Π = Π + + +

Π = Π

∑
,        (2.5) 

where  

( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2

1 11 21 1[0, )

12 2 22 2[0, )

1 2 [0, )

λ λ λ

λ λ λ

λ λ λ

Π ∈ ∞

Π ∈ ∞

Π ∈ ∞

+ 
 

+ 
=  
 
 + 

�

�

� � � �

�
n

nt

nt

n n n nnt

a t t t t

t a t t t
A t

t t a t t

1

1

1

, 

( )

( )
( )

( )

1

2

n

t

t
t

t

Π 
 Π Π =
 
 
Π  

�
, ( )

( )
( )

( )

1

2

n

t

t
t

t

ε
ε

ε

ε

 
 
 =
 
 
  

�
,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2; ; ; n nB t diag m t t t m t t t m t t tρ ρ ρ= ∆ ∆ ∆� ,    

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

n n

c t t t

c t t t
C t

c t t t

ρ
ρ

ρ

− ∆ 
 − ∆ =
 
 
− ∆  

�
  and ( ) ( ) ( ) ( )

0 0 0 0 0

.0 0 0 0

0 0 0 0 0

j j iH t t t tσ ρ

 
 
 
 = ∆
 
 
  

� �

� � � � � � �

� �

� � � � � � �

� �

 

The functions appearing in stochastic linear equation (2.5) satisfy  

( ) ( ) ( ) ( ), , 0, ; n n
jA t B t H t L T∞ ×∈ �  and ( ) ( )0, ; nC t L T∞∈ � . 

For any [ ]0,t T∈ , we denote [ ]0,U Tω  the set of all 5-tuples ( ) ( )( ), , , ,W εΩ ⋅ ⋅F P  

satisfying the following mathematical conditions 

• ( ), ,Ω F P  is a complete probability space. 

• ( ){ }
0t

W t
≥

 is a n-dimensional standard Brownian motion defined on ( ), ,Ω F P  

over  [ ]0,T  (with ( )0 0W =  almost surely), and ( ){ }: 0t W r r tσ= ≤ ≤F  augmented by 

all the P -null sets in F . 

• ( ) ( )2 0, ; n
FL Tε ⋅ ∈ � . 
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• Under ( )ε ⋅ , for any ( ) 00 nΠ = Π ∈�  equation (2.3) admits a unique solution 

( )Π ⋅  on { }( )0
, , ,t t≥

Ω F F P . 

In control theory, the appropriate choice of the optimizing criterion is more than 
important.  In our case, we minimize the expression (2.6) which is a quadratic cost 
criterion. In the literature such kind of problems are called (stochastic) linear qua-
dratic problems. Stochastic Linear Quadratic (SLQ) problems have been studied by 
many authors, among them we mention Wonham [24], McLane [12], Davis [5], Ichi-
kawa [9], Chen and Yong [4] etc. In many recent works on mathematical finance (see 
option pricing, utility optimization), as well as, in engineering problems (note that, 
here, it is sometimes called energy cost function) this criterion has been applied. Ana-
lytically,  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ),

0

, 1ε
τ τ τ τβ ε ε ε ε βΠ  

Π = − − + − Π Τ − Π Π Τ − Π 
 
∫
T

TTtJ t t t dtE  

(2.6) 

where, 0T > , nR Iβ=  and ( )1 nG Iβ= − , β   is a weighting factor i.e. 0 1β≤ ≤ . 

This criterion requires a lending rate policy ( )tε , near to the target rate τε  (de-

sired-tracking path) which is fully acceptable by the managers of the banking system 
and it is affordable by the customers while also a small final value for the surplus fund 

( )TΠ  obtained from this operation. The weight β  (or 1 β− ) measures the impact that 

occurs when the control variable and the surplus respectively are changed. This pa-
rameter would be obtained after an insightful research and negotiations with all par-
ties involved in the banking and financial system (i.e. financial institution managers, 
customers, international banking authorities etc.). Since this work is based on a more 
abstract framework, the exact determination of this weight is beyond its scope. 

Now, the above SLQ problem at ( ) [ ]0, 0, nG T∈ ×� , where G  (a bounded condi-

tion, see expression (2.10)) is solvable if there exists a control ( ) ( )( )*, , , ,W εΩ ⋅ ⋅F P  

[ ]0,U Tω∈  such that 

( )( )
( ) [ ]

( )( ) ( )*

0,
0, ; inf 0, ; 0,

U T
J G J G V G

ωε
ε ε

∆

⋅ ∈
⋅ = ⋅ = .     (2.7) 

We should stress that in the case where ( )*ε ⋅ , see expression (2.12), is an optimal 

control; the corresponding ( )*Π ⋅  and ( ( )*Π ⋅ , ( )*ε ⋅ ) are called an optimal state process 

and an optimal pair, respectively, to our problem. Finally, closing this section, we pro-
vide the optimal controller and the solution of the (non-homogeneous) linear stochastic 

differential equation. Analytically, suppose that ( ) [ ]( )0, ; nP C T⋅ ∈ �  is symmetric and 

( ) [ ]( )0, ; nC Tφ ⋅ ∈ �  are matrix-stochastic equations of the following form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]

1

1

0

,      . . 0,

n
T T

j j
j

P t P t A t A t P t P t B t R H t P t H t B t P t

P T G a e t T

−

=

  
 + + − + =  
  
 = ∈

∑�
 

(2.8) 
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and   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]

1

1

0

0,      . . 0,

T
n

T
j j

j

t A t B t R H t P t H t B t P t t P t C t

T a e t T

φ φ

φ

−

=

     + − + + =   
    


= ∈

∑�
 

(2.9) 

The following three theorems are practically very important. 

Theorem 2.1 (Yong and Zhou [26]) Let ( ) [ ]( )0, ; nP C T⋅ ∈ � and ( ) [ ]( )0, ; nC Tφ ⋅ ∈ �  

be the solution of (2.8) and (2.9) respectively, then 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

1

, 0, ; ,n n

n
T T
j j

j

B t D t L T where

t R H t P t H t B t P t

∞ ×

−

=

 Ψ Ψ ∈

  

Ψ +  
  

∑

�

�
    (2.10) 

and  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

1

1

, 0, ; ,

.

ψ ψ

ψ φ
−

=

 ∈

  

+  
  

∑

�

�

n

n
T T
j j

j

B t D t L T where

t R H t P t H t B t t
   (2.11) 

The SLQ-problem (see expressions (2.5) and (2.6)) is solvable with the optimal control 

( )*ε ⋅  being of a state feedback form 

( ) ( ) ( )( ) ( )* t t t tτ τε ε ψ = − Ψ Π − Π +  ,  for [ ]0,t T∈ . �            (2.12) 

To find the optimal control (2.12) for [ ]0,t T∈ , we need the solution of the non li-

near differential matrix equation (2.10), ( )P t , which is discussed extensively in the 

next section. Moreover, the solution of equation (2.9) has the following form 

( ) ( ) ( ) ( ) ( )0

0

,0 ,
t

t t t r P r C r drφ ζ φ ζ= + ∫ . 

Now, we define 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1

T
n

T
j j

j

A s A s B s R H s P s H s B s P s

−

=

  
 = − + 
   

∑	 , 

where the state transition matrix is given by the following expression, which is called 
the Peano-Baker series (see Antsaklis and Michel [3]).    

( ) ( ) ( ) ( ) ( ) ( )
1

1 2 2 1 1 1, ...
nsst t t

n n

r r r r r

t r I A s ds A s A s ds ds A s A s ds dsζ = + + + + +∫ ∫ ∫ ∫ ∫	 	 	 	 	… … …  

(2.13) 

 

 



  

   

316        ATHANASIOS A. PANTELOUS, et al. 

 

Theorem 2.2 (see Yong and Zhou [26]) For the time-varying matrices ( ) ( ),  ∈A t C t  

( )0, ;∞ ×�n nL T  and ( ) ( ),  ∈b t d t  ( )0, ;∞ �nL T  the linear equation  

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( )
1

00

n

j j
j

dX t A t X t b t dt C t X t d t dW t

X X

=


 = + − +  


 =

∑
,        (2.14) 

and ( )tΦ  is the solution of the following 

( ) ( ) ( ) ( ) ( ) ( )

( )

* *

1

0

n

j j
j

d t A t t dt C t t dW t
=

 Φ = Φ − Φ

Φ = Ι

∑
  (2.15) 

then the strong solution of X can be represented as  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 * * *
0

10

1 *

1 0

                                                    ,

−

=

−

=

 
= Φ + Φ Φ − 

 

+ Φ Φ

∑∫

∑ ∫

t n

j j
j

tn

j j
j

X t t X t s b s C s d s ds

t s d s dW s

     (2.16) 

where 

  
( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

21 1 1* * *

1 1

1

.

0

n n

j j j
j j

d t t A t C t dt t C t dW t
− − −

= =

−

  
Φ = Φ − + − Φ  

 
Φ = Ι

∑ ∑
  (2.17) 

�  

Now, we can conclude the whole discussion of this section by presenting the fol-
lowing Theorem. Under the following result, we can determine our controller (2.12), 
i.e. the lending rate policy for the portfolio of n loans.    

Theorem 2.3 Finally, the surplus is given 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 * * *
0

10

1 *

1 0

                                                          ,

−

=

−

=

 
Π = Φ Π + Φ Φ − 

 

+ Φ Φ

∑∫

∑ ∫

t n

j j
j

tn

j j
j

t t t s b s C s d s ds

t s d s dW s

     (2.18) 

where ( )tΦ , ( ) 1
t

−Φ are the solution of the stochastic equations (2.15) and (2.17) re-

spectively for the following matrices, 

    ( ) ( ) ( ) ( )*A t A t B t t= − Ψ , ( ) ( ) ( ) ( ) ( )*b t B t t t C tτ ψ= Ψ Π −  +  , 

( ) ( ) ( )*
jC t H t t= Ψ  and ( ) ( ) ( ) ( )( )*

jd t H t t tτ ψ= Ψ Π − ,  (2.19) 

where 
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( ) ( ) ( ) ( ) ( ) ( )

( )

* *

1

0

n

j j
j

d t A t t dt C t t dW t
=

 Φ = Φ − Φ

Φ = Ι

∑
  (2.20) 

and   

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )

21 1 1* * *

1 1

1
0

n n

j j j
j j

d t t A t C t dt t C t dW t
− − −

= =

−

  
Φ = Φ − + − Φ  

 
Φ = Ι

∑ ∑
.   (2.21) 

�  

In the next section, we describe an analytic method for expressing the general so-
lution of the nonlinear differential matrix equation ( )P t . 

 

3. The general solution of the nonlinear differential matrix equation ( )P t . 

In this section, we present the solution of the nonlinear differential matrix equation 

of ( ) [ ]( )0, ; nP C T⋅ ∈ �  (note that ( )⋅P  is symmetric; this assumption is really very 

mild), see also Zimbidis, Pantelous and Kalogeropoulos [29]. We define  

( ) ( )( )
, 1,2, ,ij i j n

P t P t
=

=
…

         (3.1) 

where ( )ijP t  are scalars t -continuous functions. 

Moreover, in order to simplify our calculations (the full extension requires quite 
cumbersome calculations), we assume that the matrix ( ) ×∈�k kA t  is also symmetric, 

i.e. ( ) ( )ij jit tλ λ= , for i j≠  and we also assume:  

( ) ( )ia t a t= , the same rate of return for the accumulated profit or loss at time t  for the 

each sub-portfolio of loans, 1,2,...,i n= , 

( ) ( )ij t tλ λ= , the percentage of profit or loss transferred from the i  sub-portfolio to j  

sub-portfolio of loans at time t , ( ) ( ) ( )1 1ii t n tλ λ= − − , and 

( ) ( )i t tρ ρ= , the ratio of the total amount placed to the i  loan sub-

portfolio, 1,2,...,i n= , over the total amount of loans. 

The expression of (2.8) can be rewritten as follows.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1

0,
n

T
j j

j

P t A t P t P t A t P t B t R t H t P t H t B t P t

−

=

 
+ + − + = 

 
∑�

 

(3.2) 

where the symmetric matrix ( )A t  takes the following format 
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( )
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

1

2

[0, )

[0, )

[0, )

1 1

1 1
.

1 1
n

t

t

t

A t

a t n t t t

t a t n t t

t t a t n t

λ λ λ

λ λ λ

λ λ λ

Π ∈ ∞

Π ∈ ∞

Π ∈ ∞

=

 + − −
 

+ − − 
 
 
 + − − 

1

1

1

�

�

� � � �

�

 
           (3.3) 

Now each element of (3.3) can be written as: 

• ( ) ( ) ( ) ( ) ( )( )
1,2, ,ij ij n

A t P t P t A t Q t
=

+ =
…

        (3.4) 

where, the above matrix is symmetric, i.e.  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )T
A t P t P t A t A t P t P t A t+ = + , 

as ( ) ( ),  A t P t  are n n× -symmetric matrices. Thus, 

( )( )
1 1

2 1 1
ji k k

ij ij li il ij ii lj jl ij jj
l l i l l ji j

Q a k P P P P P P P P Pλ λ λ
= = = =≤

  
 = + − − + + − − + + − −   

   
∑ ∑ ∑ ∑ . 

(3.5) 

Before we go further, we calculate the  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

1

1

2

1

2

1 11

2

2

0 0

0 0

0 0

ρ

β σ ρ

ρ

β σ ρ

−

=

 
+ 

 

 ∆
 
 + ∆
 
 =  
 
 ∆
 
 + ∆ 

∑

�

� �

� � � �

�

n
T
j j

j

n

n nn

B t R H t P t H t B t

m t t t

t t t P t

m t t t

t t t P t

.  (3.6) 

• ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

, 1,2, ,
1

n
T
j j ij i j n

j

P t B t R H t P t H t B t P t S t

−

=
=

 
+ = 

 
∑ …

  (3.7) 

We easily prove that (3.7) is also symmetric, as P  is symmetric and B , R  and 

jH , for 1,2,...,j n=  are diagonal matrices. Thus, for 1,2,...,i n= , 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 2

2 2 2
1

22

2 2

.

ji k
l l l

li lj il lj il jl
l l i l jl ll l ll l ll

ij
i j ji

ii ij ij jj

i ii j jj

m m m
P P P P P P

P P P
S

mm
P P P P

P P

ρ ρ ρ
β σ ρ β σ ρ β σ ρ

ρρ
β σ ρ β σ ρ

= = =

≤

 ∆ ∆ ∆
+ + 

+ ∆ + ∆ + ∆ 
 =
 ∆∆
− − 

+ ∆ + ∆ 

∑ ∑ ∑
  (3.8) 

Substituting the above expressions to (3.2), we obtain the family of the following 
ordinary nonlinear differential equations: 
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( )( )

( )
( )

( )
( )

( )
( )

1 1

2 2 2

2 2 2
1

2 1 1

                

                

λ λ λ

ρ ρ ρ
β σ ρ β σ ρ β σ ρ

= = = =

= = =

  
 + + − − + + − − + + − −   

   

∆ ∆ ∆
+ + +

+ ∆ + ∆ + ∆

∑ ∑ ∑ ∑

∑ ∑ ∑

�
ji k k

ij ij li il ij ii lj jl ij jj
l l i l l j

ji k
l l l

li lj il lj il jl
l l i l jl ll l ll l ll

P a k P P P P P P P P P

m m m
P P P P P P

P P P

( )
( )

( )
( )

22

2 2 0.
ρρ

β σ ρ β σ ρ

∆∆
− − =

+ ∆ + ∆
ji

ii ij ij jj

i ii j jj

mm
P P P P

P P

(3.9) 

With the expression (3.9), we succeed in transferring the non homogeneous matrix 
(Riccati) differential equation (2.8), into a Cauchy problem for a system of first order 
differential equations, where ( ) [ ],  . . 0,= ∈P T G a e t T . 

Consider the Cauchy problem of the first-order differential equation: 

( ),k k ijP f t P=� , for ,  , , 1,2,...,i j i j k n≤ =   (3.10) 

or equivalently,  

( ),P f t P=�      (3.11) 

where  

( )11 12 1, ,..., ,..., ,...,n ij nnP P P P P P=  

and   

( )
( ) ( )( )

11 12 1

1 11 12 1 11 12 1

, , ,..., ,..., ,...,

           , , ,..., ,..., ,..., ,..., , , ,..., ,..., ,...,=

n ij nn

n ij nn n n ij nn

f t P P P P P

f t P P P P P f t P P P P P
(3.12) 

with the initial condition, after a change of variable, 

( ) ( )P t P T t= −     (3.13) 

so,     ( ) [ ]0 0 ,      . . 0,P P G a e t T= = ∈     

(3.14) 

where ( )1 nG Iβ= − , β   is a weighting factor i.e. 0 1β≤ ≤ . 

The method of successive approximations obtains the solution ( )P T t−  as the 

limit of a sequence of functions ( ) ( )kP T t−  which are determined by the recurrence 

formula. 

( ) ( ) ( ) ( ) ( )( )0 1,
T

k k

T t

P T t P f r P T r dr−

−

− = + −∫    (3.15) 

It has been shown by Petrovsky [16] that, if the right-hand term in the domain 

{ }1
1 0 2,kQ t k P P k+∈ ≤ − ≤�  satisfies the Lipschitz condition with respect to P  

( )( ) ( )( ) ( ) ( )1 2 1 2, ,f t P f t P K P P− ≤ − , 0K >   (3.16) 
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then, irrespective of the choice of the initial function, the consecutive approximations 
( ) ( )kP T t− converge on some interval [ ]0,h  to the solution of this Cauchy problem.  

Moreover, if ( ),f t P  is continuous in a rectangle { }1
1 0 2,kQ t k P P k+∈ ≤ − ≤� , 

then the error of the approximate solution ( ) ( )kP T t−  on the interval [ ]0,h  is esti-

mated by the inequality: 

( ) ( ) ( ) ( )
( )

1

1 !

k

k k
k

T t
P T t P T t MK

k
ε

+−
= − − − ≤

+
,   (3.17) 

where 
( )

( )
1,

max ,
kt P

M f t P
+∈

=
�

 and h  is determined by 2
1min ,

k
h k

M
 =  
 

. 

 

4. An numerical application for a portfolio of two loans 

To derive the loan rate by the method proposed in section 2, we consider the two 
dimensional stochastic system, i.e. a portfolio composed by two sub-portfolios of loans 
indexed 1 and 2, see figure 3.   

 

 

 

 

 

 

 

 

Thus, we obtain the following expression, 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )

( )

2

1

00

j j
j

d t A t t B t t C t dt H t t dW tε ε
=

 Π = Π + + +

Π = Π

∑
     (4.1) 

where                

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

2

[0, )

[0, )

1

1

λ λ

λ λ
Π ∈ ∞

Π ∈ ∞

 + − 
=  

+ −  

t

t

a t t t
A t

t a t t

1

1
, 

( ) ( )
( )

1

2

t
t

t

Π 
Π =  Π 

,  ( ) ( )
( )

1

2

t
t

t

ε
ε

ε
 

=  
 

,  

 ( ) ( ) ( ){ } ( ) ( )1 2;B t diag m t m t t tρ= ∆ , 

( ) ( )
( ) ( ) ( )1

2

c t
C t t t

c t
ρ

 
= − ∆ 

 
  and ( ) ( ) ( ) ( )

0 0

0j
j

H t t t
t

ρ
σ

 
= ∆ 
 

. 

( )1Π t  
( )2Π t  ( )λ t  

( ) ( )1 [0, )Π ∈ ∞ta t 1  

( )1c t  
( ) ( )2 [0, )Π ∈ ∞ta t 1  

( )2c t  

( )1ε t  
( )2ε t  

( )∆ t  

( )∆ t  

( ) ( )
→

Π → Π
t T

t T
 

( ) ( )
2

1=

=∑ i
i

c t c t
 

( )λ t  

Figure 3 The described process for portfolio of 2 different loans.   
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We define ( )P t  as follows:    

( ) ( )( )
, 1,2ij i j

P t P t
=

=                 (4.2) 

where ( )ijP t , ,  , 1,2i j i j≤ =  are scalars continuous functions and 

  ( ) ( ) ( ) ( )11 22 121  and 0P T G P T P T P Tβ= ⇔ = = − = .  (4.3) 

Although the parameters, such as ( ) ( ),  a t tλ  etc, are time variant functions of t , 

for the simplicity of calculations, we define ( )a t a=  and ( )tλ λ=  to be constant, 

,  0a λ > . Moreover, we obtain the ratio of the total amount placed to the thi  sub-

portfolio of loans, for 1,2,...,i n= , over the total amount of loans, ( )tρ  and the total 

amount for the whole portfolio of loans at time t , ( )t∆  to be also constants and equal 

to ρ  and ∆ , respectively. Additionally, we compute the drift and the volatility of the 

percentage for the two sub-portfolios of loans, ( )1 1m t m= , ( )2 2m t m=  and ( )1 1tσ σ= , 

( )2 2tσ σ=  respectively.  

Consequently, the basic parameters α, λ, ρ and ∆ set out in the following tables and  
the other subsidiary variables m1, m2, σ1, σ2, c1, c2, T, β also shown as below (Table B).  

α 5% ρ 0.5 Τ 2
λ 0,2 ∆ 1 c1 0,035

m1 0,85 σ1 0,055 c2 0.030
m2 0.90 σ2 0,045 β 0.5

Table B
Application parameters

 

The matrix ( )P ⋅  (see Appendix A) has the following elements  

( ) 2
11 0.0570 1.7945 1.2009P t t t= + − , 

( ) 2
12 0.0828 0.8400 0.5981P t t t= − + −  and ( ) 2

22 0.2348 1.6300 1.1602P t t t= + − . (4.4) 

For convenience, the other coefficients are equivalently small, for instance  

11,4 11,30.1345k k= << , and 11,5 11,30.00012k k= − << . 

Moreover,                                 

( ) 2 3
1 2 3,0t I t t tζ = + Λ + Λ + Λ , 

where the desirable capital cost is 1 0.03c =  and 2 0.02c = , respectively 

1

0.8294 0.2335

0.2299 0.7549

 
Λ =  

 
, 2

0.3241 0.1698

0.1518 0.3299

− − 
Λ =  − − 

 and 2

0.1452 0.0809

0.0723 0.1569

 
Λ =  

 
. 

(4.5) 

Now, the matrix equation ( )φ ⋅  is given by the expression  

 

 



  

   

322        ATHANASIOS A. PANTELOUS, et al. 

 

( )
2 3

2 3
1 2 3 0 2 3

2 3 4 5 6

2 3 4

0.00024 0.0440 0.0300

0.0021 0.0391 0.0279

0.00024 0.0443 0.0154 0.0522 0.0523 0.0066
         

0.0021 0.0407 0.0112 0.04724 0.0475

φ φ
  − + − 

 = + Λ + Λ + Λ −    + −   

− + + − − −
+

+ + − −

t t t
t I t t t

t t t

t t t t t t

t t t t t 5 60.0065

 
 − t

 

(4.6) 

and       

0

0.0563

0.0537
φ  

=  
 

.              (4.7) 

Using the expressions (2.8) and (2.12), the optimal control ( )*ε ⋅  (being of a state 

feedback form) has the following format, where 1 1 1. /S R τ= Π Π  and 2 2 2. /S R τ= Π Π  

is the solvency ratio for the 1st and the 2nd sub-portfolio of loans, respectively. Note 
that 1τΠ  and 2τΠ  are the required (target) surplus for the 1st and the 2nd sub-portfolio, 

respectively.  

( ) ( ) ( )
1

11*

2 2

2

1
0

0
1

t t tττ
τ

τ

τ

ε ε ψ

Π − ΠΠ   = − Ψ − Π Π   − Π 

,   (4.8) 

0.055

0.045τε  
=  
 

 is the base lending rate for each sub-portfolio of loans, respectively. 

 

Remark In order to make more insightful implementations, we point out two signifi-
cant parameters: a) the capital cost (including expenses, operational cost, rate of return 
paid to customers due to bank deposits and the desirable profit for the bank etc) is be-
low the earned from (risk-free) investments interest rate, i.e. a  (see Table B) at time t  
for both sub-portfolios of loans. Consequently, since the sub-portfolios are profitable, 
there is an opportunity of further diminishing of lending rate policy and b) the borrow-
ers are not consistent, but not very heavily, with their repayments, as it is also clear 
form Table B. Moreover, the first sub-portfolio is most vulnerable to changes, in all 
the following case studies. Analytically,  

• For surpluses 1 0.01τΠ =  and 2 0.02τΠ = , and solvency ratio 0.9 (i.e. the actual 

surplus is 1 0.009 0.01Π = < ) and 1.1 ( 1 0.022 0.02Π = > ) for each sub-portfolio of 

loans, respectively (figure 4 (a), (b)).  

 

First Case Study: Both sub-portfolios of loans have positive solvency ratios and target 
surpluses. For the 1st sub-portfolio of loans, the solvency ratio is below 1 and conse-
quently the actual surplus is below the target, i.e. 1 1τΠ < Π . On the other hand, the 2nd 

sub-portfolio is more profitable, since the solvency ratio is above 1 and its actual sur-
plus is greater than the target one, i.e. 2 2τΠ < Π . Now, considering also the above 
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Figure 4 (a), (b): For surpluses 1 0.01τΠ =  and 2 0.02τΠ = , and solvency ratio 0.9 and 1.1 for each 

sub-portfolio of loans, respectively. 

 

Remark, the financial institution managers may decrease further the lending rates for 
both of the sub-portfolios of loans at the beginning of the time-period. However, as the 
sight horizon obtain the above limit of 1.5 time-unit (or three time-unit periods), both 
rates tend to follow the same increasing pattern, as figure 4 (a), (b) clearly show. Fur-
thermore, since the profit margin between the lending rate and the capital cost is small-
er for the 2nd sub-portfolio of loans than the 1st one, it is obtained that the lending rate 
policy of the 2nd is more conservative, see figure 4 (a), (b).   

 

• For surpluses 1 0.03τΠ =  and 2 0.01τΠ = , and solvency ratio -0.4 (i.e. the actual 

surplus is 1 0.012Π = −  and 2 0.004Π = − ) for both sub-portfolio of loans, respec-

tively (figure 5 (a), (b)).  

 

Second Case Study: Both sub-portfolios of loans have negative solvency ratios and 
positive target surpluses. For the 1st sub-portfolio of loans, the solvency ratio is nega-
tive and consequently, the actual surplus is far below the target, i.e. 1 10 τΠ < < Π  and 

1 1 0.042τΠ − Π =  (in absolute values). Simultaneously, the 2nd sub-portfolio is less 

non-profitable, since the actual surplus is quite close to the target, i.e. 

2 2 0.014τΠ − Π =    (in absolute values). Considering also the above Remark,  the  
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Figure 5 (a), (b): For surpluses 1 0.03τΠ =  and 2 0.01τΠ = , and solvency ratio -0.4 f for each sub-

portfolio of loans, respectively. 

 

financial  institution managers may decrease further the lending rate policy for both of 
the sub-portfolios of loans at the beginning of the time-period. Afterwards, the lending 
rate policy follows an increasing pattern for both of the sub-portfolios, as a coincidence 
of the desired profitable target surpluses; see figure 5 (a), (b). Note that the lending 
rate policy is milder for the 2nd sub-portfolio that the other one. This is a result of both 
the fact that the borrowers are not consistent, but not very heavily, with their repay-
ments and that 2 2 1 1τ τΠ − Π < Π − Π . Furthermore, as the sight horizon obtain the 

above limit of 1.5 time-unit (or three time-unit periods), both rates tend to follow the 
same pattern, as figure 5 (a), (b) clearly show. 

 

• For surpluses 1 0.03τΠ =  and 2 0.01τΠ = , and solvency ratio 2.0 and 1 for each 

sub-portfolio of loans, respectively (figure 6 (a), (b)).  

 

Third Case Study: Both sub-portfolios of loans have positive solvency ratios and pos-
itive target surpluses. For the 1st sub-portfolio of loans, the solvency ratio is far above 
1 and consequently the actual surplus is greater that the target, i.e. 1 1τΠ > Π . On the 

other hand, the 2nd sub-portfolio is less profitable, since the solvency ratio is 1 and its 
actual  surplus is  equal to the target  one, i.e. 2 2τΠ = Π .   
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Figure 6 (a), (b): For surpluses 1 0.03τΠ =  and 2 0.01τΠ = , and solvency ratio 2.0 and 0.8 for each 

sub-portfolio of loans, respectively. 

 

 
 
 

In this last interesting case study, by considering also the above Remark, the financial 
institution managers may decrease more highly the lending rates for both of the sub-
portfolios of loans in order to reward their customers and possibly attract them for oth-
er more profitable business at the beginning of the time-period. However, as in the first 
case study where the solvency ratios and the surpluses are also positive, the sight hori-
zon obtain the above limit of 1.5 time-unit (or three time-unit periods), both rates tend 
to follow the same increasing pattern; see figure 6 (a), (b). Furthermore, since the sol-
vency ratio for the 1st sub-portfolio is higher than the 2nd one, their customers may be 
rewarded more by the lending rate policy.   
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5. Conclusions 

The paper provides a theoretical model for the lending rate policy using a sto-
chastic dynamic framework. The assumption that the repayment pattern (i.e. the pro-
portion of persons who properly repay their loans) follows a Brownian motion also 
upgrades the realism of the model.   

At the end, the full model is proved to be quite complicated but using advanced 
optimization techniques of stochastic control theory we manage to obtain the solution 
of the stochastic differential equations in closed form. The solution is actually an au-
tomatic controller which determines the level of lending rate policy for each sub-
portfolio of loans. Then standard approximation procedures (as the method of succes-
sive approximations of Picard) are employed in order to obtain analytical solution in 
open form.   

Furthermore, by applying the optimal controller in a certain banking system with 
two sub-portfolios of loans we gain some insightful experience, by answering the 
question of whether the banks should provide cheap loans, (i.e. with smaller lending 
rates), in order to attract more customers for other profitable business or not. It is evi-
dent from the numerical example that solvency interaction smooth out the lending 
rates and the respective results. 
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Appendix A 

In this appendix, some significant details for the numerical calculations of the ap-
plication of two sub-portfolios of loans are discussed. However, before we go further, 
we should express 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2

2
0

1 1

s

s sk k k k k
kk kk

sk kk

m m m
P P

P

ρ ρ σ ρ ρ σ ρ
β β β ββ σ ρ

∞

=

   ∆ ∆ ∆ ∆ ∆ 
 = − ≈ −  + ∆     

∑    (A.1) 

where, 1,2k =  and 1kσ
β

<< . 

By the expression (4.2), we obtain the following system of nonlinear first order 
ordinary differential equations. 
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(A.4) 

The method of successive approximations of Picard has the following general form  

( ) ( ) ( ) ( ) ( )( )0 1,
n

T
n

k k l

T t

P T t P f r P T r dr−

−

− = + −∫ , 

for  11,  12,  22k =   and  1,2,3l = , respectively. 

In what it follows, we assume that our time horizon is short, for instance 3T <  
(which is quite acceptable as the financial conditions change dramatically fast). We 
make this is assumption only for calculation’s significance, since the next step of cal-
culations is more demanding, and with that restriction we may consider the functions 

( )11P T t− , ( )12P T t−  and ( )22P T t−  as 2nd order polynomials. Longer time period is 

regarded to higher order polynomials. Consequently, after some calculation, the analyt-
ical formulae for the 2nd step are provided, in the next lines. Thus, 

         ( ) ( ) ( ) ( ) ( )2 2 2 2 2
11 11,1 11,2 11,3P t t tκ κ κ= + + ,                (A.5) 

where the coefficients are provided as follows 
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( ) ( )0 2 3 4
11 11,1 11,2 11,3 11,4

ˆ ˆ ˆ ˆP P T P T P T P T= − − − −2
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Moreover, we calculate the other two parameters of matrix ( )P ⋅          
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Finally            ( ) ( ) ( ) ( ) ( )2 2 2 2 2
12 12,1 12,2 12,3P t t tκ κ κ= + + ,                 

(A.7) 

where the coefficients are provided as follows 
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12,3k . 

Now, the solution of equation (2.12) is provided by using also the successive ap-
proximation method of Picard, where 
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where ( )A t	  is given by (A.9) 
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Thus, after some algebraic calculations, we obtain      

( ) ( ) ( ) ( )2 2 3 3
1 2 3,t r I t r t r t rζ = + Λ − + Λ − + Λ −       (A.10) 

where 1 2,  Λ Λ  and 3Λ  are constant matrices as follows 
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while     ( ) 2 3
1 2 3,0t I t t tζ = + Λ + Λ + Λ  . 

Finally, after some calculations, we obtain a matrix expression for ( )φ ⋅  
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where the respective coefficients are  
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where, for the terminal condition of equation (2.9), ( ) 0Tφ = , it follows  
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Finally, combining equations (2.9), (2.11) with (A.5) - (A.11), it is derived that  
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