Neural, Parallel, and Scientific Computations 18 (2010) 307-332

A THEORETIC STOCHASTIC DYNAMIC CONTROL APPROACH FOR
THE LENDING RATE POLICY

ATHANASIOS A. PANTELOUS’, ALEXANDROS A. ZIMBIDIS?
AND GRIGORIS I. KALOGEROPOULO$%

'Department of Mathematical Sciences, University of Liverpool, UK
“Department of Statistics, Athens University of Economics and Businesscé&
*Department of Mathematics, University of Athens, Greece
E-mails:A.Pantelous@liverpool.ac.ukaz@aueb.gandgkaloger@math.uoa.gr

Abstract: Normally, different financial institutions, i.e. banks, offer a egriof loans
with different lending rates, according to a basic interest rate anapghaence of the
repayment patterns. In this paper, we construct and present dithixoear stochas-
tic control model in order to evaluate the associated crekliand obtain the optimal
strategy for the determination of the level of the lending @ésterates by optimizing
the accumulated profit. Each sub-portfolio of loans is treatedaepaduring a unit
interval while at the end of the each time period there is songed{isolvency inte-
raction. We assume that the repayment pattern follows a Browroéion and using
advanced optimization techniques, the optimal solutions are derived.
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1. Introduction

In the banking system, the determination of the lending rate poloyesof the
most attractive and intrusive problems, as well. Analyticatignlpricing is the de-
termination of the lending rate policy for different banking produttans (e.qg.,
personal loans, business loans, mortgages, overdrafts etc) whioffemesl to cus-
tomers, according to their risk exposure, see Saunders [17]. Trexties literature
is very rich although some of the approaches and the concluding asuitst linked
intuitively to common lending practices, see for instance, S¢a8dyHo and Saund-
ers [7], Slovin and Sushka [19], Allen [1], Zarruk [27], Zarruk and Mad283, Pe-
tersen and Rajan [15], Angbazo [2], Wong [25], Saunders [17], Nakamuna, Qia
Samdoh, and Nakagawa [13], Stanhouse and Stock [20] and Stein [21].
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Quite recently, the lending rate policy via an appropriate invedtsieategy for
an interacted portfolio of different loans into a continuous-time asateate-time sto-
chastic framework has been examined by Zimbidis, Pantelous andek@boulos
[29], and Pantelous [14], respectively. Two interesting bank optimizatamtels with
several variables, stochastic inputs and smoothness criteridbddsby a quadratic
functional have been proposed for managing the task. In both cassttéheariable
of the systems correspond to the accumulated surplus profit/lossy edndoe oscil-
lated deliberately, absorbing fluctuations in the different parameterv@d:ol

Furthermore, the bank institution managers should be compensated wittkthe
that borrowers are not always consistent with the repaymeigsobvious that loans
are priced according to the involved risk, and the capital ptb@isthe management
desires. However, throughout the last decades, a contradictory questeng raised
about whether the financial institutions should provide cheap loans intordéract
more customers for other profitable business or not. Something irgaltgsting has
been shown by Fried and Howitt [6], and Petersen and Rajan [15]. hbexd that
the welfare is enhanced by smoothing of lending rates in relation t@werrrisk
and market interest rates

In this paper, the main object is to extend further the reseandts proposed by
Zimbidis, Pantelous and Kalogeropoulos [29] and Pantelous [14] by developing a
more complicated (and more realistic) stochastic model for smoothing the leatding r
policy for the different sub-portfolios of loans in a way that bankitapagers are
seeking for. Moreover, we consider this problem in a more geinana¢work, letting
some kind of interaction between the different sub-portfolios. This mapeects the
lending rate policy of an interacted portfolio of different loanghwstochastic conti-
nuous-time control theory. Although optimal control theory was developezhbi-
neers in order to investigate the properties of dynamic systéfaence/differential
equations, it has also been applied to financial problems. Tustin [23hedBsst to
spot a possible analogy between the industrial and engineering processes-arat pos
macroeconomic policy-making (see Holly and Hallett [8], for furthistorical de-
tails). More recently, in the vast literature of banking, JobstraMind Zenios [10],
Topaloglou, Vladimirou and Zenios [22fevelop modelling paradigms which inte-
grate credit risk and market risk in random dynamical framewond<use multistage
stochastic programming tools. From this point of view, a method ofattmdy over
time some major variables is introduced buffering any kind ofdatains, in order to
absorb partially or completely the probable unexpectedness in-raiecdéor macro-
economic conditions, in external factors as competition, legal @udiatery require-
ments or other worsen random events. Moreover, we will assume ¢hahahcial
institution managers desire to keep the profit for the bank atoaspecifiedtrajec-
tory.

From this point of view, the financial institution has a certataltcapacity for
providing loans equal taﬁ(t), at timet. We take in mind that the bank’s customers

are not always consistent with their repayments. So, at each tiangifferent amount
say A'(t) is repaid through the installments paid by the customers.

Actually, A'(t) is normally smaller tham (t) (A'(t) <A(t)) but at some excep-

tions may take values greater thAl(ut), whenever the policy holders pay with some

time delay two, three or more installments to the bank or eveniveegehen we ex-
pect bankruptcy or withdrawal of some installments.

Hence, we may visualize the situation above with the following theor€&iigate 1.
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Total amount of loans

T (time)

Figure 1. The financial institution has a certain total agpafor providing loans equal

to A(t), at timet . Moreover, a different amount sady(t) is repaid through the in-

stallments paid by the customers.

A brief outline of the paper is as follows. Section 2 providesrhentives and
the typical modelling features of the problem. Moreover, it is devimtéhe results of
stochastic calculus and control theory for standard Brownian matidrthe respec-
tive linear systems driven by such a process. Section 3 proVidesgpproximation
solution for the matrix Riccati differential equation. In secdonve provide an inter-
esting numerical example with two sub-portfolios of loans with siresesting and
insightful diagrams, while section 5 concludes the whole paper.

2. Lendingrate policy model into a continuous-time stochastic framework

In this part of the paper, we will start to construct oaclsastic control model. It
should be pointed out that we consider a portfoliona§ub-portfolios of loans. First,
we define the necessary symbols and the respective notationgided\.

We assume that thatio p, (t) for the ™ sub-portfolio of loans which is consis-
tently repaid is driven by a standard Brownian motion. This unogrtes modeled by
a probability spac€Q, 7, P). The flow of information is given by the naturdtra-
tion {7}

Without loss of generality, let us assume that {ttfg

o]’ i.e. the P -augmentation of a one dimensional Brownian fiitnat

{or] =F, i.e. the observable
events are eventually known. Hence,

dp (t)=m( 1) dt+o () dW( }, (2.1)

where m (t) and o, (t) represent the drift and the volatility respectivef the ratio

of the total amount of loan which corresponds ®itistallments paid at time over
the total amount of loan which has been placedtima™ sub-portfolio of loans, for
i= 1,2,..nh . Note that we should be very careful with theicbof parameters,
m (t) and g; (t). This stochastic ratig, (t) can take both positive and negative val-

ues. Under the negative values, we assume thdiahle can withdraw some of the
unpaid installments.
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Table A

Accumulated profior loss (state variable) at time for thei™ sub-portfolio of
loans, fori =1,2,...n.

Rate of return(input variable) for the accumulated profit at timdor the i™
sub-portfolio of loans, for =1, 2,...n. In this paper, we assume that the rat

return is adeterministicfunction. Following this assumption, the manage
team should decide to invest conservatively the instaptusas at time in a

pool of different secure products, for instance differeémti& of bank accounts

short-time government T-bond or something equivalent.

b Of
rial

Py

Ratio (input variable) of the total amount of loan which correspondbdadn-
stallments paid at timé& over the total amount of loan which has been pla

into thei™ sub-portfolio of loans, for=1,2,...n .

iced

Ratio (input variable) of the total amount placed to fiffe sub-portfolio of
loans, fori =1,2,...n, over the total amount of I0<31n§”n:l/()i (t) =1 (see be/
low why).

Total amounfor thewhole portfolio of loansit timet, see alséigure 1. This

amount will be invested for loans by the financial institution at timi is pro-
found that the managerial team would be very happy to receive back the v
capital plus the required profit (let us say a profit margin).

vhole

Total amounbf loans(input variable) at timé for thei™ sub-portfolio of
loans i =1,2,...n, whereA, (t) = g (t) A(t) . For that reason, we assume

that Y " o (t)=1.

Total amount of loan@nput variable) that correspondsdiustomers who consis

tently repay their installmentat timet for the i" sub-portfoliq of loan, for
i=1,2,...,n, whereA! (t) = p, (t)A(t).

D

Capital cost(input variable), which includes expenses, operational costgfr
return paid to customers due to bank deposits and the desirabtefqrdfie

bank at timet for thei™ sub-portfolio of loan, foi =1,2,...n.

ate

Lending rate(control variable) at timé for the i"™ sub-portfolio of loans, fof

i=1,2,..n.

Percentage of solvendginput variable) transferred from tH& sub-portfolio to
j™ sub-portfolio of loans at timé. Z?:l/tj (t)=10i=12,..n.

Then the accumulated profit of the total portfdivo the bank at time is given

by
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n(t)=>n(t). (2.2)

We assume that thatio p, (t) for thei™ sub-portfolio of loans which is consis-
tently repaid is driven by a standard Brownian wmiotiThis uncertainty is modeled by
a probability spac€Q, 7, P). The flow of information is given by the naturtra-
tion {f}tD[O,T]’

Without loss of generality, let us assume that {tb@tqoﬂ =F , i.e. the observable

i.e. the P -augmentation of a one dimensional Brownian filtrat

events are eventually known. Hence,

dp (t)=m( 1) dt+o () dW }, (2.1)

where m (t) and o, (t) represent the drift and the volatility respectjvef the ratio

of the total amount of loan which corresponds ®itistallments paid at time over

the total amount of loan which has been placedtima™ sub-portfolio of loans, for
i= 1,2,..n . Note that we should be very careful with theicbof parameters,

m (t) and g; (t). This stochastic ratig, (t) can take both positive and negative val-

ues. Under the negative values, we assume thdiahle can withdraw some of the
unpaid installments.

Then the accumulated profit of the total portfdiio the bank at time is given
by
Mt)=2m(t). (2.2)
Moreover, under the above notation, we may deschbesystem by the follow-
ing stochastic differential equation:
d, (t) = & (t) 1 yg0. M (£) dlt (Investment incomfeom the
fund)
+& ()4 (t)dp (1) - ¢ (14 (1) dt(Profitlossof thei™ sub-portfolio of loans at time)

+A; (), () dt+...+ A ()0, () dt+4 () (1) dt
A ()M (1) dt++ 4 (1)1, (1) dt

golvency interaction

(2.3)
or equivalently, substituting equation (2.1) inPo3) we obtain
dr, (t): ar(t)l m, (1)10.0) | i ( )dt
+& () ()a(t){m () dt+g (9 awW( I - e o ()A()
# 2, (O, () dte 44, (1, () dee 4 (97 (1) dt
+ A (D)Mo () dt+. .+ A, (1)1, (1) dt (2.4

fori=12,3,.. n
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Before we go further, it would be very helpful tma and analyze more the fol-
lowing figure.

Figure 2: The described process for portfoliorodlifferent loans.

As we can see descriptively above, the financiatitution invests a predeter-
mined amount ofA (t) (money-units) into a predefined portfolio miifferent loans.
Into this pool of different products (for differealients and risks), it is provided also
the opportunity to transfer funds (solvency intéag from one product to the other,

see also introduction. At the end of the procds®et things are highly been desired
by the managerial team:

a) To receive back the whole invested capiit) .

b) To obtain the desired capital cost, which inclutles different kind ofex-
pensesandoperational coststherate of returnpaid to customers due to bank
deposits and theesirable profi for the bank.

c) Under the above conditions, at the end of the peechéned time-period, the
financial institution would like to haveim M (t)=lim > " M, (t)=N(T).
t-T toT ~=i=1

Here, we would like to underline that sinEk-.;(t) can be eithepositive(prof-
it) or negative (loss), we are interested about the limit—(T) of the
Zi”:ll'li (t) to tend tol(T) (in some cases, this fund can be equal to zero).

In order to obtain (a)-(c), we should determine aatipular Linear Quadratic
Regulator (LQR) controller, which can transfer iméha the state variable into the
desired-tracking path. In this paper, we will nay@ttention to thpercentage of sol-

vency (4 (t)) transferred from thé" sub-portfolio to j sub-portfolio of loans at

time t. Thus, naturally speaking, the managerial teanulsharedetermine the policy
for the solvency interaction, i.e. which produchdze benefited more or less. As a
further extension of this research work, we arekimg to determine this policy for
the interaction factors among the different poirtfddy using another optimization al-
gorithm.
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In this paper, as we will discuss again later, ssuane that the optimization algo-
rithm has been already applied and the derived eusnior the/, (t) parameters are
the optimal ones; see numerical example in Sedtion

Consequently, see also Zimbidis, Pantelous andge€atpoulos [29], we take in
matrix form the (non homogeneous) linear stochaktferential equation of type

a () ={ AR () + B(Y= () + O3] a2 H (Y= (Yaw( )

(2.5)
M(0)=n,
where
[a, (1) Lo g0y * A (1) A1) 2. (1) |
A(t) - AlZ:(t) az(t) 1I'I2(t)E[:O,oo) +/]22(t) /]n 2(t)
L Aln(t) Azn(t) an(t)lnn(t)c[o,oo)-l_/‘nn(t)_
M, (t) & (1)
=" =&l
n, (1) 0
B(t)=diag{ m(Yo.(JA( ) m(Yo(IA(¥i- m( kou( YA N
S AT I S
c(t)= ‘°2(t)p§(t)A(t) andH (t)=|0 - 0 o () (t)a() 0 - o
-, (1) 21 ()2 (1) 0.0 o 0.0

The functions appearing in stochastic linear eguaf2.5) satisfy
A1), B(1), H; () 01 (0,T:R™") andC(t) O L" (0,T;R").
For anyt[0,T], we denotel “[0,T] the set of all 5-tuple$Q, 7,P W (1, (D)
satisfying the following mathematical conditions

. (Q,]—",P) is a complete probability space.

. {W(t)}tzo is an-dimensional standard Brownian motion defined (@1]—",77)
over [0,T] (with W(0) =0 almost surely), and;, =J{W(I’)ZOS r st} augmented by
all the P -null sets inF .

« g(JoL2(0T;R").
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« Under &(1J, for any M(0)=N,0R" equation (2.3) admits a unique solution
M(Yon(Qr{A}.,.P)

In control theory, the appropriate choice of théroing criterion is more than
important. In our case, we minimize the expresgif) which is aguadratic cost
criterion. In the literature such kind of problems are ahllstochastic) linear qua-
dratic problems StochasticL inear Quadratic (SLQ) problems have been studied by
many authors, among them we mention Wonham [24],avie [12], Davis [5], Ichi-
kawa [9], Chen and Yong [4] etc. In many recentksan mathematical finance (see
option pricing, utility optimization), as well a8) engineering problems (note that,
here, it is sometimes calleshergy cost functigrthis criterion has been applied. Ana-
lytically,

|

=
|

|

5 ()= sf(e( -2 ) (£(9 -2 ) - (7))

'*1

(2.6)
where,T >0, R=1, andG=(1-8)1,, B is a weighting factor i.e0< <1.

This criterion requires a lending rate poligyt), near to the target ra® (de-

sired-tracking path) which is fully acceptable bg tmanagers of the banking system
and it is affordable by the customers while alsonall final value for the surplus fund
M(T) obtained from this operatiomhe weight/ (or 1- 8) measures the impact that

occurs when the control variable and the surplgpeaetively are changed. This pa-
rameter would be obtained after an insightful reseand negotiations with all par-

ties involved in the banking and financial systera. (financial institution managers,

customers, international banking authorities e®ince this work is based on a more
abstract framework, the exact determination of wegyht is beyond its scope.

Now, the above SLQ problem f0,G)0[0,T|xR", whereG (a bounded condi-
tion, see expression (2.10)) is solvable if thediste a control(Q,]—“,P,W([)],E* ([)])
0OU“[0,T] such that

. ; E £
3(0.G;& (D) = 3(0,GE(0)=V(0, 3. 2.7)
We should stress that in the case wha_e*ré;)], see expression (2.12), is an optimal

control; the corresponding” (JJ and (1" (3}, & (1)) are called an optimal state process

and an optimal pair, respectively, to our probl&mally, closing this section, we pro-
vide the optimal controller and the solution of then-homogeneous) linear stochastic

differential equation. Analytically, suppose tha([)]D C([O,T] ;]R”) is symmetric and
w([)]DC([O,T] ;R”) are matrix-stochastic equations of the following

o(0) (9 A+ A () F(Y- Y ) RS A0 RD 008X e)eo

=1

P(T)=G, ae J[0,T]
(2.8)
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{ +iH P(tm(aje(m} )+ /) ¢ }=0

=i
)=0, ae. tD[ 0T
(2.9)
The following three theorems are practically venportant.
Theorem 2.1 (Yong and Zhou [26]).et P(JOC([0,T];R")and ¢(JOC([0,T]:R")
be the solution of (2.8) and (2.9) respectivelgnth
BW(t), DW(t)O L (0,T;R™") , where

n - (2.10)
ORESCHUETEICIIEICEE 210
and
By (t), Dy (t)0L*(0,T;R"), where
2.11)

(//(t)é(R+JZ:HjT(t) P(1) Hj(t)j_ B (o).

The SLQ-problem (see expressions (2.5) and (Z&)plvable with the optimal control
£ () being of a state feedback form

£ (t)=g ~[w()(N(t)-A,)+¢ ()], forto[o,T]. o (2.12)

To find the optimal control (2.12) fer[O,T] , we need the solution of the non li-

near differential matrix equation (2.10R(t), which is discussed extensively in the
next section. Moreover, the solution of equatio®)®as the following form

P(t)=2(6.0)@ + [ £ (tr)P(r)C (r)dr

Now, we define

T

A(s){ﬂ(s— Ew( RYA(F P)s H )} (B)s(a]s,

=1

where the state transition matrix is given by tbkofving expression, which is called
the Peano-Baker series (see Antsaklis and Michgl [3

j dS+IP(§I4§ ds ds-... j (Al)s..?(ph)s ds ,ds.

r

(2.13)
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Theorem 2.2 (see Yong and Zhou [26For the time-varying matrice#\(t), C(t)O
LW(O,T;R“X”) andb(t), d(t)O L“(O,T;R”) the linear equation

ax(9={A) X(9+ 3} - X[ G (X oW E
X (0) = X,
and ®(t) is the solution of the following

do (1) = A (o (1) dt- 3. G () ( vy ( }

= (2.15)
P (0)=1

then the strong solution of can be represented as

t

K(9=0() % so(9fo(3” B(3-3 (¥ ¥ o

0

o (2.16)
) qJ(t)lq’(s)_1 d (9aw( $
where
d(qa(t)‘l):qa(t)'{—A(t)+§(c?(t))2}dt‘§q’(t)_lq(t) w() (2.17)

Now, we can conclude the whole discussion of tegtisn by presenting the fol

lowing Theorem. Under the following result, we acitermine our controller (2.12),
i.e. the lending rate policy for the portfolio mfoans.

Theorem 2.3 Finally, the surplus is given

(1) =00, + (1) [o(9” 5(3-3 G($ d( 3| ds
0 t (2.18)

+an jcp d(9dw( 3

where ®(t) ,CD(t)_lare the solution of the stochastic equations (24%) (2.17) re-
spectively for the following matrices,

A (1) = A(Y) = B() W (9, ' (1) =B()[ W ()T, ~¢ (1) ]+ (Y
C'(t)=H, () W(t) and d" (t) = H, (t)(W (1), —¢ (1)), (2.19)

where
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= (2.20)

In the next section, we describe an analytic mefoo@xpressing the general so-
lution of the nonlinear differential matrix equati®(t).

3. Thegeneral solution of the nonlinear differential matrix equation P(t).

In this section, we present the solution of thelinear differential matrix equation
of P(0IO C([O,T] ;]R”) (note thatP () is symmetric; this assumption is really very
mild), see also Zimbidis, Pantelous and Kalogertpo[29]. We define

P()=(R (1), ., . (3.1)
where P (t) are scalars-continuous functions.

Moreover, in order to simplify our calculations €tlfull extension requires quite
cumbersomealculations), we assume that the matA(d)DR"xk is also symmetric,

ie. A (t)=A; (t), fori# | and we also assume:

a (t) = a(t), the same rate of return for the accumulated fpoofioss at time for the
each sub-portfolio of loan$=1,2,...n,

A; () =A(t), the percentage of profit or loss transferred fthei sub-portfolio to j

sub-portfolio of loans at time, A, (t) =1-(n-1)A(t), and
o (t) = p(t), the ratio of the total amount placed to thiwan sub-

portfolio,i =1,2,...n, over the total amount of loans.
The expression of (2.8) can be rewritten as follows

-1
o0+ A R+ ) Aj- ALY )] #1300 03 WO @) e
=
(3.2)

where the symmetric matriA(t) takes the following format
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Now each element of (3.3) can be written as:

A P)+P() AY=(Q(1),,, (3.4)

where, the above matrix is symmetric, i.e.

(A()P()+P() A9) = AJ R+ Y 4D,

as A(t), P(t) arenx n-symmetric matrices. Thus,

Q =2[a+(1-(k-94)] R +ALZ E+g P- P- “P}/{Zj: ”P+Zk: P Py P]

i<] =1 | 5

(3.5)
Before we go further, we calculate the
DESERETEICIEY
- (m@ear) . |
B+(a,()()8()) R0 68
: : :
. . (m. (9 p(9)a (1)
i B+(0,(t) p(1)A(1))" Pu(t)

a0y RS H (VA WO &3 ) =(50)., @)

We easily prove that (3.7) is also symmetric,Rags symmetric andB, R and
H;, for j=1,2,...n are diagonal matrices. Thus, for1,2,...n,

o AR Ehelamy | Earaay e 38)
i ,3+(U|,OA)2H Y ,8+(gij)Zij i

Substituting the above expressions to (3.2), wainkihe family of the following
ordinary nonlinear differential equations:
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P +2[a+(1—(k—1)/1)] |€+A{Z E+§k: P- P- “P}+/1LZ;: ij+|ij: P=iP-,P

=1 e

cy_ (M) oo (M) oo s (met)

L pr(oaf R pram R & pe(amyp
_(me) PP - (men) PP =0.
B(op)R ,3+(0110A)2Pn‘ H

(3.9)

With the expression (3.9), we succeed in transfgrtine non homogeneous matrix
(Riccati) differential equation (2.8), into a Caygbroblem for a system of first order

differential equations, wherB(T) =G, ae 1[0, T].

Consider the Cauchy problem of the first-orderadghtial equation:

R="f(tR) fori<j,ijk=12.n (3.10)
or equivalently,
P=f(tP) (3.11)
where
P=(RyRorri BB nR)
and
f (6P PPy v )
(3.12)
=(f(t P PoPy B R) L A(tR B B R R)
with the initial condition, after a change of vl
P()=P(T-9 (3.13)
so, R=P(0)=G, aet]0]7
(3.14)

whereG =(1-)1,, B is a weighting factor i.e0< S<1.

The method of successive approximations obtainsstietion P(T-1) as the

limit of a sequence of functione™ (T—t) which are determined by the recurrence
formula.

;
PY(T=1)= P+ [ f(r, P (T-1))ar (3.15)
T-t
It has been shown by Petrovsky [16] that, if trghtdhand term in the domain
QOR“Y|t < k,|P- RB|< k} satisfies the Lipschitz condition with respectRo

‘f (t.P®)-(t.P)

< K‘P@ - Ffz)\, K>0 (3.16)
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then, irrespective of the choice of the initial ¢tion, the consecutive approximations
pl (T - t) converge on some interv[aﬂ),h] to the solution of this Cauchy problem.

Moreover, if f (t,P) is continuous in a rectang@OR**{|t|< k,|P- B < k},

then the error of the approximate solutig! (T—t) on the intervaI[O,h] is esti-
mated by the inequality:

& =|P(T-1)-PY(T- < MK (3.17)

whereM = max |f (t,P)| andh is determined by = min(ki,%j .

(t.P)OR

4. An numerical application for a portfolio of two loans

To derive the loan rate by the method proposecatian 2, we consider the two
dimensional stochastic system, i.e. a portfolio posed by two sub-portfolios of loans
indexed 1 and 2, séggure 3.

Thus, we obtain the following expression,

A () ={AI()+ B(9z()+ o{} ateS H(Dz(Yaw()

(4.1)
m(0)=m,
where
a(t)ll'lltD[O,w) +1—/](t) /](t)
A(t) _[ ()/1 (t) a(t) I, yq0.) +174 (t)}
_ I'Il(t) gl(t)
() [nz(t)] Q Lz (t)

—~ O —~ — 1
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We defineP(t) as follows:

P(t):(l:i)' (t))i,j:l,Z (4'2)
where B, (t) i<j,i,] =1,2are scalars continuous functions and
P(T)=G- R(T)=B(T)=1-Band B J=C (4.3)

Although the parameters, such at), A(t) etc, are time variant functions of
for the simplicity of calculations, we defina(t)=a and A(t)=A to be constant,
a, A>0. Moreover, we obtain the ratio of the total amopticed to thei™ sub-
portfolio of loans, fori =1,2,...n, over the total amount of Ioan;s),(t) and the total
amount for the whole portfolio of loans at timeA(t) to be also constants and equal
to p and A, respectively. Additionally, we compute the daftd the volatility of the
percentage for the two sub-portfolios of loang(t) = m, m,(t)=m and g, (t) =g,

o, (t) = g, respectively.

Consequently, the basic parameters, p and4 set out in the following tables and
the other subsidiary variableg, ny, a1, 02, ¢ Cp, T, also shown as below éble B).

Table B
Application parameters
a 5% p 0.5 T 2
A 0,2 A 1 cl 0,035
ml 0,85 ol 0,055 c2 0.030
m2 0.90 02 0,045 B 0.5

The matrixP([)] (see Appendixd) has the following elements
R, (t) =0.0570+ 1.7946- 1.20Q3,

R, (t)=-0.0828+ 0.8400- 0.5981 and P,,(t) =0.2348+ 1.6300~ 1.16Q2. (4.4)
For convenience, the other coefficients are eqaivi small, for instance
kj, ,=0.1345<<k,, , andk, ; =-0.00012<< K, ..
Moreover,
J(t,0)=1 +AL+AL>+ N L2,
where the desirableapital costis ¢, =0.03 andc, =0.02, respectively

_[0.8294 02335 = [-03241 -0.169% . _[0.1452 0.080
0.2299 0.7549’ ? |-0.1518 - 0.329 >10.0723 0.1569
(4.5)

1

Now, the matrix equatiow([)] is given by the expression



322 ATHANASIOS A. PANTELOUS, et al.

—-0.00024 + 0.044CG - 0.03@d
0.0021 + 0.0391° - 0.0279

N -0.00024 + 0.0448 + 0.0153- 0.05¢2 0.0%23 0. {
0.0021 + 0.0407 + 0.0112- 0.04724 0.04750.006%°

(4.6)

o(t)=[1 +At +/\2t2+/\313]{¢0{

and

_[0.0563 @7
%=0.0537 '

Using the expressions (2.8) and (2.12), the optioatrol & ([)] (being of a state

feedback form) has the following format, whe®eR =T11,/M,, and SR =11,/M,,

is the solvency ratio for the'land the ? sub-portfolio of loans, respectively. Note
that M,, and M, are the required (target) surplus for tikaihd the 2 sub-portfolio,

respectively.

no_,
£ (t):?r—‘P(t)[no’l I_IO} :I” -y(t), (4.8)
T2 _2_1
=

T

0.055
{0 044 is the base lending rate for each sub-portfolitbahs, respectively.

Remark In order to make more insightful implementatiowg, point out two signifi-
cant parameters: a) tisapital cost(including expenses, operational cost, rate afrnet
paid to customers due to bank deposits and theatdssiprofit for the bank etc) is be-
low the earned from (risk-free) investments interate, i.e.a (seeTable B) at timet

for both sub-portfolios of loans. Consequentlycsithe sub-portfolios are profitable,
there is an opportunity of further diminishing ehtling rate policy and b) the borrow-
ers are not consistent, but not very heavily, witbir repayments, as it is also clear
form Table B. Moreover, the first sub-portfolio is most vulniel@ to changes, in all
the following case studies. Analytically,

» For surplusedl1,, =0.01 and I, =0.02, and solvency ratio 0.9 (i.e. the actual

surplus isl1, =0.009< 0.0)) and 1.1 (1, =0.022> 0.07) for each sub-portfolio of
loans, respectivelyfigure 4 (a), (b)).

First Case Study: Both sub-portfolios of loans have positive solsenatios and target
surpluses. For the®Isub-portfolio of loans, the solvency ratio is helh and conse-

quently the actual surplus is below the target,lile<T1 . On the other hand, thd%
sub-portfolio is more profitable, since the solwematio is above 1 and its actual sur-
plus is greater than the target one, ilg.<I1,,. Now, considering also the above
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Figure4 (a), (b): For surplused1,, =0.01and I, =0.02, and solvency ratio 0.9 and 1.1 for each
sub-portfolio of loans, respectively.

Remark, the financial institution managers may decreasthér the lending rates for
both of the sub-portfolios of loans at the begignaf the time-period. However, as the
sight horizon obtain the above limit of 1.5 timetujor three time-unit periods), both
rates tend to follow the same increasing pattesrfigare4 (a), (b) clearly show. Fur-
thermore, since the profit margin between the legdate and the capital cost is small-
er for the 2° sub-portfolio of loans than thé'bne, it is obtained that the lending rate
policy of the 3% is more conservative, see figut¢€a), (b).

* For surplused1,, =0.03 and M., =0.01, and solvency ratio -0.4 (i.e. the actual
surplus isl; =-0.012 and I, =-0.004) for both sub-portfolio of loans, respec-
tively (figure5 (a), (b)).

Second Case Study: Both sub-portfolios of loans have negative sobtyeratios and
positive target surpluses. For th& sub-portfolio of loans, the solvency ratio is nega

tive and consequently, the actual surplus is fésvbehe target, i.el1, <0<, and
|I'I1—I'IT1|:O.O42 (in absolute values). Simultaneously, tH8 @ub-portfolio is less

non-profitable, since the actual surplus is quitbse to the target, i.e.
In,-n,,|=0.014 (in absolute values). Considering also the atitereark, the
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Figure5 (a), (b): For surpluses1,, =0.03 andI1,, =0.01, and solvency ratio -0.4 f for each sub-

portfolio of loans, respectively.

financial institution managers may decrease furthe lending rate policy for both of
the sub-portfolios of loans at the beginning of tinge-period. Afterwards, the lending
rate policy follows an increasing pattern for botlthe sub-portfolios, as a coincidence
of the desired profitable target surpluses; seeré® (a), (b). Note that the lending
rate policy is milder for the" sub-portfolio that the other one. This is a resfiboth
the fact that the borrowers are not consistent,notitvery heavily, with their repay-

ments and thaff,-M,,|<|M,~M,|. Furthermore, as the sight horizon obtain the

above limit of 1.5 time-unit (or three time-unitrels), both rates tend to follow the
same pattern, as figubg(a), (b) clearly show.

» For surplused,, =0.03 and IT,, =0.01, and solvency ratio 2.0 and 1 for each
sub-portfolio of loans, respectivelfidure 6 (a), (b)).

Third Case Study: Both sub-portfolios of loans have positive solsenatios and pos-
itive target surpluses. For th& gub-portfolio of loans, the solvency ratio is &uove

1 and consequently the actual surplus is greatdrthte target, i.el1, >I1_,. On the

other hand, the" sub-portfolio is less profitable, since the solsematio is 1 and its
actual surplusis equal to the target onefige=11_,.
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Figure6 (a), (b): For surplused1,, =0.03 and I1,, = 0.01, and solvency ratio 2.0 and 0.8 for each
sub-portfolio of loans, respectively.

In this last interesting case study, by consideslsg the abov&emark, the financial
institution managers may decrease more highly éhdihg rates for both of the sub-
portfolios of loans in order to reward their custamand possibly attract them for oth-
er more profitable business at the beginning otithe-period. However, as in the first
case study where the solvency ratios and the segplare also positive, the sight hori-
zon obtain the above limit of 1.5 time-unit (oreBrtime-unit periods), both rates tend
to follow the same increasing pattern; see figu(a), (b). Furthermore, since the sol-
vency ratio for the 3 sub-portfolio is higher than thé“one, their customers may be
rewarded more by the lending rate policy.
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5. Conclusions

The paper provides a theoretical model for the ilepdate policy using a sto-
chastic dynamic framework. The assumption thatrdpayment pattern (i.e. the pro-
portion of persons who properly repay their loafatlpws a Brownian motion also
upgrades the realism of the model.

At the end, the full model is proved to be quitenplicated but using advanced
optimization techniques of stochastic control tyeee manage to obtain the solution
of the stochastic differential equations in closaun. The solution is actually an au-
tomatic controller which determines the level ofidang rate policy for each sub-
portfolio of loans. Then standard approximationgedures (as the method of succes-
sive approximations of Picard) are employed in ptdeobtain analytical solution in
open form.

Furthermore, by applying the optimal controlleraircertain banking system with
two sub-portfolios of loans we gain some insightfxiperience, by answering the
guestion of whether the banks should provide cheaps, (i.e. with smaller lending
rates), in order to attract more customers for ophefitable business or not. It is evi-
dent from the numerical example that solvency adgon smooth out the lending
rates and the respective results.
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Appendix A

In this appendix, some significant details for thenerical calculations of the ap-
plication of two sub-portfolios of loans are dissed. However, before we go further,
we should express

(ma)  _(man) &, o (@on)*) o ye_ (man)®[ (o)’
/3+(UkpA)ZPkk_ B ;( l)[ g ](R(k) g { g Pkk} (A1)

where, k =1,2 and =% % <<1.

By the expression (4.2), we obtain the followingteyn of nonlinear first order
ordinary differential equations.

Py(T-t)=-2[a+(1-2) | R(T- - 21 R,(T-)

e G L )

B

f(t.P)

(A.2)
Pzz(T t _2[a+1 /‘)} 22(T ') 2’”?2( )

(meen)* e o (aPB) ol (men)' ] (o) _y
Al e -9 o oy ) gy g

f2(t.P)

(A.3)
Ro(T-t)=-2[a+(1-A) | R(T-J-A(R(T- )+ B( T })

Ll 1900 ) 9] ey gy

(A.4)
The method of successive approximations of Picasdthe following general form

R"(T-1)= k°+j' (rP(”1 r))dr,

for k=11, 12, 22 and | =1,2,3, respectively.

In what it follows, we assume that our time horizsrshort, for instancd <3
(which is quite acceptable as the financial condgi change dramatically fast). We
make this is assumption only for calculation’s #igance, since the next step of cal-
culations is more demanding, and with that restmcive may consider the functions

R.(T-1), P,(T-t) and B,(T-1) as 2 order polynomials. Longer time period is

regarded to higher order polynomials. Consequeattgr some calculation, the analyt-
ical formulae for the ¥ step are provided, in the next lines. Thus,

PO (1) =« + K1+ k22, (A.5)

where the coefficients are provided as follows
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k2 =R -p, T- P,,- B, P.T, k& =R, ,+2P, ,T+3P, ;F+4P, T,
and k{, =-{B,,+3B, T+6P,.T.
Moreover, we calculate the other two parametersatfix P([)]
PY (1) =k + kD 3+ k1 (A.6)
k2 =P -B, T- P,, - P,,F— P,,T, ki, =P,,+2P,, T+3P, ;P + 4P, T,
and k2, =—{P,,,+3P, T+6P, T}

Finally R () = g+ 120
(A.7)
where the coefficients are provided as follows

A~

k:g,)l = _Plz,lT Pl - 12 3-Ie P12 4T4 k122 Plz,1+ 2P:I.2,2T+ 3P:I.2,3T2 +4 I:)12,418’
andk{, =—{R, , +3R, T+ 6P, T} .

Now, the solution of equation (2.12) is providedusing also the successive ap-
proximation method of Picard, where

T

A(s)=[A<s>— q #[ =3 (b b H )} (B)s(P)]s-

t
Suppose that Z(tr)=I +IA s)ds
(A.8)
where A(t) is given by (A.9)

[A— B[R+§ H A 9 HT BF )s]T

i (mAV RS (me) B(}

_ B+(0,) Py(s) B(om) P9 | (A.9)
( APR(Y L, () B}
B+(a,m) Py(s) B+(o,0)" By( 9
Thus, after some algebraic calculations, we obtain
Z(tr)=1+A(t —r)+/\2(t2—r2)+/\3(t3—r 3) (A.10)

where/\;, A, and /A, are constant matrices as follows
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o (ma) _(ma)’ -
é{A; Aiz}z(aﬂ N a A
/\21 /\22 /]—(mZA)ZCl (a+1_/])_(n}?)2a
(men)” - (man)
AQ{A; A;}_; s i
Mo Mol 2 (mes)” - (mes)’
g B
(maa)” . (ma)” -
3 3 aS d3
o e R ey, (e |
n Nz ma)’ | (ma)’
R
while J(t0) =1 +AL+ALZ+A L3,

Finally, after some calculations, we obtain a masipression fogp([}

At +%/12t2 +%/l3t3

o) =[1erensteng oo 2 3
Mt +E,Uzt2 +§,U3t3
(A.11)
|/1t+£|/2t2 +iL|/3t3 +—1|/4t4+—1|/E.,t5+—1vbt6
27 37 4" 5T e
1

1 1 1 1
R Rr A Sy Sy Sy Sy
9 262 363 454 5£5t 664

where the respective coefficients are
Vi :/11’ V, :/12'*'/11/\111-"#{\112’ Vs =A3+z/]i/\il "'Z/Ji/\el‘_zI J
i=1 i=1
3 4-i 2 4 > 4- S 4 3 3
Vy :Z:/‘i/\nI -I_Z::ui/\lzI » Vs :Z/]i/\nI +Z:Ui/\12| ' Ve :/]3/\11"'/13/\ 12
i=1 i=1 i=2 i=2
and
&=, &= 1, +/J1/\122+/]!\121' ¢ :,U3+ZM/\322' "'Z:/‘i/\gzlI ,
i=1 i=1
S 4-i 2 4 S 4-i S 4 3 3
54 :Z::ui/\zzI +z/1i/\2:l.l 1 55 :Z/Ji/\zzI +Z/‘i/\nI , fe :/J3/\22+A3/\ 21
i=1 i=1 i=2

i=2

where, for the terminal condition of equation (2$QT) =0, it follows
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T +1|/2T2+}|/3T3+—1|/4T4+—1|/5T5+—1|/6T6

@=-[1+AT +AT?+AT] 2 3° 4 5 6
! 2 s 1o, o, loqe, 1o 1o

<(1T+§<(2T +§£3T +254T +_5<(5T +_6<ze

AT +1/12T2 +—1/13T3
+ 2 3
1 1 '
,UlT +E/'12T2 +§/'I3T3

Finally, combining equations (2.9), (2.11) with - (A.11), it is derived that

mpA moA
_| BH(am) Pu(t)  B+(0:0) Pu(t) [[RL(t) Pu(Y)
YO e myo [Pﬁ(t) Pzz(t)}
/3+(0sz)2 Pzz(t) :3+(0210A)2 Pzz(t)
m oA
_ ,8+(01,OA)2 Pa(t) [ a(t)
and 4= m,o0 [@(t)]

B+(a,00) Py(1)









