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ABSTRACT. We study the network systems in which the nodes and their interconnections are

subject to random dynamics. Both static and moving nodes models are considered in the context of

network reliability in the steady-state. Potential applications range from transport to communication

networks.

AMS (MOS) Subject Classification. 60K20, 90B15, 90B18.

1. INTRODUCTION

In this article we introduce two distinctively different models of random network
dynamics in which both the nodes and their interconnections are subject to random
perturbations. First kind, a static model, is concerned with a set of nodes at fixed
locations and the corresponding fixed (rigid) interconnections. Examples and termi-
nology for these types of networks are application specific: transportation (distribu-
tion centers/routes), water utilities (towers/pipes), power grids (transformers/lines),
electric or electronic systems (relay switches/wiring). In a mobile model, aside from
an internal random dynamics of nodes and interconnections, the nodes themselves are
subject to random displacements. Typical applications include telecommunication,
satellite navigational systems and wireless mobile networks. This is a continuation of
our work initiated in [9], where a single node random dynamics for stationary nodes
was studied in the context of stability and steady-state network reliability, for the
case where the node interconnections were assumed to be operational at all times.
Before defining the static model, the next section starts with an example to set forth
the underlying ideas.

2. PRELIMINARIES

We begin with a prototype network, illustrated by several figures, whose formula-
tion within a general framework will be given in the following section. Let’s consider
a network flow in Fig. 1 with input nodes = {1, 2} and output nodes = {6}, which
in Fig. 2 constitute the boundary nodes along with the internal nodes = {3, 4, 5},
and can be viewed as a cluster of a larger network configuration with boundary nodes
serving as interconnecting bridges. The naming input-output is immaterial and can
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be interchanged (it indicates the direction of the flow, e.g., in electrical networks
from + to - ). The nodes within the input set and output set are assumed to have
no interconnections between themselves while being connected to the internal nodes.
A directed chain from an input node to an output node (with non-repeating internal
nodes) is called a path, shown in Fig. 3 in a parallel-serial paths decomposition.
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Figure 1. standard network flow diagram
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Figure 2. graph representation (nodes-edges)
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Figure 3. parallel-serial paths representation

Fig. 4 below will be considered a prototype of a generic network with interacting
nodes. Such representation will allow us to employ 0 − 1 valued structure functions
corresponding to Off-On states, which in classical setting are utilized exclusively
for nodes with interconnections being always On, as done in [9]. Here, the set of
nodes {1,...,6} and corresponding connections {7,...,16} are subject to their own,
time dependent, random dynamics which determine the network evolution. Formal
definitions, assumptions and notational details are given in the next section.
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Figure 4. generic node interacting network

3. STATIC MODEL

We now define a network whose nodes and interconnections alternate between
On-Off states and derive explicit formulas for network reliability in the steady-state.
A convenient way to describe these networks is to use a graph-theoretical notation of
nodes-edges (random processes themselves) and express the underlying dynamics in
terms of random graphs (Fig. 2 and Fig. 4 may serve as a visualization in the case
of a simple random network).

Definition 3.1. (general) Random network is a pair {η(t), ε(t)} describing the states
of the nodes and edges, where

(3.1) η(t) = (η1(t), ..., ηN(t)) , ηi(t) ∈ {0, 1}

is a random process whose components govern the dynamics of nodes {1, ..., N},
whereas a random adjacency matrix

(3.2) ε(t) =


ε11(t) · · · ε1N(t)
· · ·
· · ·
· · ·

εN1(t) · · · εNN(t)

 , εij(t) ∈ {0, 1}

incorporates the dynamics of the existing (non-empty) interconnections (edges) be-
tween the nodes. It is assumed that the edges of {η(t), ε(t)} are Alternating Renewal
Processes [10], each having a stationary On-Off distribution, to which the corre-
sponding longtime frequencies settle down when approaching the steady-state.

In order to study longtime behavior of random networks one takes advantage of
paths decomposition presented in Fig. 4. Namely, the alternating node-edge nature
of the paths, arranged in parallel and clamped to input and output nodes, makes
the analysis tractable by exploiting closed form representations of the corresponding
structure functions which are suitable for reliability calculations. To this end we
replace η(t) by
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(3.3) x(t) = (x1(t), ..., xN(t))

arrange all non-empty entries of ε(t) linearly by introducing

(3.4) y(t) = (y1(t), ..., yM(t)), 1 ≤M = # of interconnections ≤
(
N

2

)
which can be merged into N +M component system

(3.5) z(t) = (x(t), y(t)) ≡ (z1(t), ..., zN+M(t))

Definition 3.2. (path representation) Let us label N = N1 + N2 + N3 nodes of the
network by {1, ..., N1} ∪ {N1 + 1, ..., N1 + N2} ∪ {N1 + N2 + 1, ..., N1 + N2 + N3} =
{1, ..., N} which correspond to input, internal and output nodes respectively. Then
by (3.3)-(3.4) the network has the following path representation

(3.6) {(xi(t), yk1(t), xl1(t), ... xlij(t), ykij(t), xj(t))}

with the indices of input, internal and output nodes satisfying

(3.7) i ∈ {1, ..., N1}, {l1, ..., lij} ⊂ {N1 + 1, ..., N1 +N2}, j ∈ {N1 +N2 + 1, ..., N}

whereas the indices of node interconnections satisfy

(3.8) {k1, ..., kij} ⊂ {1, ...,M}

For computational purposes, which will become clear later on, we use (3.5) and com-
bine the notation of nodes and their interconnections to represent the network as
follows

(3.9) N (t) = {(zi(t), zk1(t), zl1(t), ... zlij(t), zkij(t), zj(t)) , I}

where the index set I = {(i, j, l1, ..., lij, k1, ..., kij)} satisfies (3.7) with (3.8) replaced
by {k1, ..., kij} ⊂ {N + 1, ..., N +M}.

Let φ be the structure function for the network N (t)

(3.10) φ(z(t)) = φ(z1(t), ..., zN+M(t)) , z1(t) ∈ {0, 1}

We recall that by definition a structure function φ(u1, ..., un) : {0, 1}n → {0, 1} takes
value 1 when the system is On and becomes 0 when the system is Off. We assume
that φ is increasing, i.e., φ(u1, ..., un) ≤ φ(v1, ..., vn), whenever ui ≤ vi, i = 1, ..., n.
This is intuitively clear in the sense that replacing any Off component by On com-
ponent will make the system more likely to be On (if the system was Off ) and the
system will continue to stay On when already On. In the case of our network, φ = 1
means that there is a flow from the input nodes to the output nodes through at least
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one path, whereas φ = 0 means that there is no such path. It turns out that for
the networks under consideration the structure functions are polynomials in the vari-
ables {u1, ..., un} with ±1 coefficients. This allows for calculations of expected values
Eφ(U1, ..., Un) whenever ui is a realization of a random variable Ui, as is always the
case for random networks. We remark that the pair {N (t), φ(·)} completely deter-
mines the network.

By stationarity of alternating renewal processes of nodes and interconnections we
have by (3.5)

(3.11) lim
t→∞

P ( zi(t) = 1 ) = pi , i = 1, ..., N +M

To distinguish usually different characteristics of nodes and interconnections, we di-
vide the steady-state probabilities pi into two groups as follows

(3.12) pi =
E Servicei

E Servicei + E Repairi
=

1

1 + ρi
, ρi =

E Repairi
E Servicei

, i = 1, ..., N

with ρi called Repair to Service frequency ratio for nodes. Similarly,

(3.13) pi =
E Upi

E Upi + E Downi
=

1

1 + δi
, δi =

E Downi
E Upi

, i = N + 1, ..., N +M

and δi called Down to Up frequency ratio for interconnections.

By an alternating renewal process we mean a sequence of i.i.d. (Xi, Yi) ∼ (X, Y )
whose sums Xi + Yi constitute a renewal cycle (Xi and Yi may be dependent!). In
our case (X, Y ) correspond to (Service, Repair) and (Up, Down) periods, for nodes
and interconnections respectively. The idea behind the introduced characteristics ρi
and δi is that if they are sufficiently small then the network components probabilities
to be On will be close to 1, and will ultimately lead to a high reliability network.

Definition 3.3. (dynamic reliability) Given a random network {N (t), φ(·)}

(3.14) r(t) = P (φ(z(t)) = 1) = Eφ(z(t))

with φ(z(t)) in (3.10) is called a network reliability at time t.

Lemma 3.4. (structure function representation ) The function φ(·) in {N (t), φ(·)}
has the following form

φ(z(t)) = max{zi(t)zk1(t)zl1(t) ... zlij(t)zkij(t)zj(t)}

= 1−
∏

(1− zi(t)zk1(t)zl1(t) ... zlij(t)zkij(t)zj(t))
(3.15)

where the max and the product is over all indices from I described by (3.9).
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Proof. Observe that the network is On ⇔ ∃ a path from the set of input nodes
to the set of output nodes ⇔ ∃ (i, j, l1, ..., lij, k1, ..., kij) ∈ I with all z·(t) = 1 ⇔
φ(z(t)) = 1. This verifies the first equality. To show the second equality, notice
that if ∃ a path (zi(t), zk1(t), zl1(t), ... zlij(t), zkij(t), zj(t)) with all z·(t) = 1 then
(1−zi(t)zk1(t)zl1(t) ... zlij(t)zkij(t)zj(t)) = 0 turns the

∏
into 0 and the last expression

in (3.15) is reduced to 1.

To derive a closed form representation for reliability function r(t) we need to re-
arrange the network linearly and identify the paths with the product of their elements
as follows

(3.16) N (t) = {ak , k = 1, ...,m} , m = Card [ I ]

where

(3.17) ak = zi(t)zk1(t)zl1(t) ... zlij(t)zkij(t)zj(t)

for some index (i, j, l1, ..., lij, k1, ..., kij) ∈ I. Then we have

1−
m∏
k=1

(1− ai) =
∑
i

ai −
∑
i<j

aiaj + ...+ (−1)m+1a1a2...am

=
∑
i

bi −
∑
i<j

bij + ...+ (−1)m+1b12...m

(3.18)

with the blocks

(3.19) b· = zα1(t)zα2(t) ... zα·(t) , α1 < α2... < α· , αi ∈ {1, ..., N +M}

because zαi
(t)n = zαi

(t) for any power n, thanks to zαi
(t) ∈ {0, 1}.

Theorem 3.5. Random Network {N (t), φ(·)} with mutually independent nodes and
interconnections has the following reliability function in the limit as t→∞

r =
∑
i

bi −
∑
i<j

bij + ...+ (−1)m+1b12...m

b· = pα1pα2 ... pα· , α1 < α2... < α· , αi ∈ {1, ..., N +M}

(3.20)

Proof. Taking the expected value in (3.19) and using independence, E zαi
(t) → pαi

by (3.11) and continuity of φ(·) in variables zi completes the proof.
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Example 1. Consider the network illustrated in Fig. 4 with N = 6 nodes, M = 10
interconnections and m = 4 paths for which (3.17) reads

a1 = z1(t)z7(t)z3(t)z8(t)z4(t)z9(t)z6(t)

a2 = z2(t)z10(t)z3(t)z11(t)z4(t)z12(t)z6(t)

a3 = z1(t)z13(t)z5(t)z14(t)z6(t)

a4 = z2(t)z15(t)z5(t)z16(t)z6(t)

Assuming the nodes and interconnections have the same characteristics ρi = ρ,
δi = δ and calculating b·’s defined in (3.19), Theoreom 3.5 yields the following steady-
state reliability

r = 2( 1
1+ρ

)4( 1
1+δ

)3 + 2( 1
1+ρ

)3( 1
1+δ

)2 − ( 1
1+ρ

)8( 1
1+δ

)6 − 4( 1
1+ρ

)7( 1
1+δ

)5

− ( 1
1+ρ

)6( 1
1+δ

)4 + 2( 1
1+ρ

)11( 1
1+δ

)8 + 2( 1
1+ρ

)10( 1
1+δ

)7 − ( 1
1+ρ

)14( 1
1+δ

)10

Remark 1. Notice that for ρ = δ = 0 we have r = 1. By continuity, any desired
reliablity can be achieved by choosing sufficiently small Repair to Service frequency
ratio ρ for nodes and Down to Up frequency ratio δ for interconnections. In fact,
since φ(·) is increasing in z = (z1, ..., zn), by conditioning on Zi and independence of
network components, one checks that r(p1, ..., pn) is increasing in pi for each i.

4. MOBILE MODEL

We shall consider the nodes moving freely till their steady-state spatial location
distribution is reached. Some special cases in one and two dimensions were treated
in [2, 3] and [6], however from our standpoint (due to intractability of spatial nodes
distribution) we concentrate on uniform distribution resulting from Brownian motion
with reflecting boundary in bounded regions of R2. Our considerations will be based
on Binomial Random Graphs, for which one may consult the monograph [1] or [7, 8]
for Eulerian Graphs and related representations. We begin by stating a classical
result due to Gilbert [5], which provides a recursive formula for a probability PN(p)
that a graph G with N vertices is connected, given a connection between any two
vertices (nodes) is made at random (independently) with probability p. Namely, the
following recursion formula holds

(4.1) PN(p) = 1−
N−1∑
k=1

(
N − 1

k − 1

)
(1− p)k(N−k)Pk(p) , N = 2, 3, ..., P1(p) = 1

and in particular we have for large N

(4.2) PN(p) ∼ 1−N(1− p)N−1 , 1− (N + 1)(1− p)N−1 ≤ PN(p)
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To develop a better understanding of the quantitative behavior of PN(p), using (4.1)
we have calculated the probability that all N nodes inter-communicate as follows

P2(p) = p

P3(p) = 3p2 − 2p3

P4(p) = 16p3 − 33p4 + 24p5 − 6p6

P5(p) = 125p4 − 528p5 + 970p6 − 980p7 + 570p8 − 180p9 + 24p10

P10(p) = 362880p45 − 14515200p44 + 282592800p43

− 3567715200p42 + 32833495800p41 − 234748765440p40

+ 1357020856800p39 − 6517548349200p38 + 26521978127400p37

− 92792729053500p36 + 282287441908080p35 − 753273866698920p34

+ 1775448575926410p33 − 3716558335019880p32 + 6939551178972720p31

− 11596879696617600p30 + 17388982649046960p29 − 23437879996999860p28

+ 28429756177413360p27 − 31050312703343640p26 + 30532209914200806p25

− 27011077082801580p24 + 21469710851551800p23 − 15300758477189520p22

+ 9748958193896580p21 − 5532426738592740p20 + 2782630494934920p19

− 1232671556293800p18 + 477077447178540p17 − 159642667620135p16

+ 45558310696800p15 − 10884316965480p14 + 2121183237600p13

− 324496267200p12 + 36628300800p11 − 2719892160p10 + 100000000p9

(P10(
1
8
), P10(

2
8
), P10(

3
8
), P10(

4
8
), P10(

5
8
), P10(

6
8
))

= (0.0241, 0.4378, 0.8596, 0.9804, 0.9985, 0.9999)

which means that neither p has to be close to 1 nor N has to be large for achieving
high reliability. In fact, by (4.2), for ∀ p > 0 PN ≈ 1 for sufficiently large N , whence
an asymptotic approximation is a practical alternative to a computational complexity
of the exact recursive formula (4.1).
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Turning back to our mobile model, unlike in the static case, we now allow all(
N
2

)
bi-directional connections to be On whenever the respective nodes are within

certain range from transmitters. Nodes are assumed to operate independently and
move randomly according to a standard Brownian motion in a specified region in R2,
populated with transmitters (assumed operating and inter-connected at all times).

Definition 4.1. (mobile network) A network with N nodes and n transmitters is
denoted by

(4.3) M(t) = {η(t), ε(t), w(t), D, S}

where η(t), ε(t) are as in (3.1)− (3.2)

(4.4) w(t) = (w1(t), ..., wN(t)) , wi(t) are i.i.d. Brownian motions in D ⊂ R2

with wi(t) reflected at the boundary of a regular, bounded and connected region D,
which contains the transmitters at fixed locations from the set S = {v1, ..., vn}.

Consequently, given transmitters range ρ of reaching nodes, we have

P (εij(t) = 1) = P (∃ k |wi(t)− vk| ≤ ρ ∩ ∃ l |wj(t)− vl| ≤ ρ)

= P (∃ k |wi(t)− vk| ≤ ρ)P (∃ l |wj(t)− vl| ≤ ρ)

(4.5)

To take full advantage of the stationary uniform distribution over region D, cor-
responding to the node movements wi(t), we make

Symmetry Assumption. D has the following representation (tessellation)

(4.6) D = D1 ∪ ... ∪Dm

where Di are disjoints (except possibly sharing sides), congruent, regular polygons
(e.g., equilateral triangles, squares, hexagons, etc.), with sides of length a satisfying
a ≥ 2ρ, and whose vertices comprise the set of all transmitters S.

Theorem 4.2. Let M(t) be a mobile network such that limt→∞ P (ηi(t) = 1) = β,
i = 1, ..., N . Then we have

(4.7) r = lim
t→∞

P (all nodes communicate with each other) = βN PN(α)

where PN(α) is given by (4.1) and

(4.8) α =

(
Σv∈V1 Area(D1 ∩ B(v, ρ))

Area(D1)

)2
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with B(v, ρ) = ball of radius ρ centered at vertex v and V1 stands for the set of all
vertices of D1.

Proof. Communication of all nodes is equivalent to all N nodes being On in conjunc-
tion with the corresponding graph being connected. By generalization of Gilbert’s
result [5] and (4.5) − (4.6) one checks that (4.7) holds for α given by (4.8), due to
symmetry and uniform distribution over D of each node’s location as t→∞.

Example 2. In the case D1 is a triangle, a square or a hexagon, we get α =
4
3
π2(ρ

a
)4 ≤ π2

12
, α = π2(ρ

a
)4 ≤ π2

16
, and α = 16

27
π2(ρ

a
)4 ≤ π2

27
respectively.

Clearly by (4.2) and (4.7), increasing α, β, or N enhances reliability r.
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[1] B. Bollóbas, “Random Graphs”, 2nd edition, Cambridge University Press, 2001.

[2] C. Bettstetter, G. Resta, P. Santi, The node distribution of the random waypoint mobility model

for wireless ad hoc networks, IEEE Transactions on Mobile Computing, 2 (2003), 257-269.

[3] L. J., Dowell, L. M., Bruno, Connectivity of random graphs and mobile networks: validation of

Monte Carlo simulation results, Proceedings of the 2001 ACM Symposium on Applied Com-

puting, 2001, 77-81.

[4] O. Frank, W. Gaul, On reliability in stochastics graphs, Networks, 12 (1982), 119-126.

[5] E. N. Gilbert, Random graphs, Ann. Math. Stat., 30 (1959), 1141-1144.

[6] R. Groenevelt, E. Altman, P. Nain, Relaying in mobile ad hoc networks: The Brownian motion

mobility model, Wireless Networks, 12 (2006), 561-571.

[7] A. Korzeniowski, On Euler’s Königsberg bridge problem for random graphs, Journal of Propa-

gations in Probability and Statistics, 2 (2001), 11-18.

[8] A. Korzeniowski, On universal representation of random graphs, Annals of Combinatorics, 7

(2003), 299-313.

[9] A. Korzeniowski, G.S., Ladde, Modeling hybrid network dynamics under random perturbations,

Nonlinear Analysis: Hybrid Systems 3 (2009), 143-149.

[10] S. N. Ross, “Introduction to Probability Models”, 9th edition, Academic Press, 2007


