
Neural, Parallel, and Scientific Computations 18 (2010)  343--356 

 
 

ON THE FORECASTING ABILITIES OF A TIME VARYING AUTO-

ADAPTING ALGORITHM 
 

ANTONIO BALLARIN AND SIMONA GERVASI 

Stefano Bacchetti, Umberto Capponi, Stefano Costi, Kristian A. Gervasi Vidal, Paul B. Moore, 

Carlo Nardone, Giovanni Passali, Francesco Sagone, Morena Signori, Fabrizio Vollera 

Research Department, Quantum Forecasting LLC, 50 Broad Street - Suite 1911,  

New York, NY 10004. 

 

Abstract. Physical motivations, theoretical aspects, and practical applications of a time-varying, 

auto-adaptive algorithm are described, as well as the results obtained through its application in 

some practical examples; these results were reached during a time span of over ten years from its 

first presentation. The intrinsic non-ergodicity of the physical phenomena leads us to hypothesize 

the existence of a characteristic time parameter, specific for each single physical phenomenon, 

uniquely valid in the temporal interval during which the same phenomenon is observed, in such a 

way as to transform the ergodic hypothesis into a locally valid ergodic approximation. The 

theoretical approach for determining the form of this time parameter springs from learning 

processes that take place without total memory loss. The algorithm’s application to time series 

forecasts of any nature shows an extreme ease of utilization and an elevated forecasting 

capability, which vastly overcomes expected performances of forecasts obtainable through the 

use of tools derived from classical statistical methods. 

 

 

1. INTRODUCTION 

In Statistical Mechanics a macroscopic system made up of N microscopic components can 

be represented, at time t, by a 6N dimension vector  )(),...,(),(),...,()( 11 ttttt NN ppqqx   for which qi 

and pi represent, respectively, the position vectors and the impulse vectors. The observables of 

the system, defined in the 6N dimensional space in the  phases, are represented by the functions 

 )(tA x . Such a system is, generally, dynamic, or rather, for this system there exists a law of 

deterministic evolution, in , of the type )0()()0( xxx
tUt   and an invariant measure )(xd  

under the evolution given by tU . The system thus characterized is defined as ergodic if, for every 

integrable function  )(tA x  and for nearly all the initial conditions )( 0tx , we have: 
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Equation (1) describes the so-called ergodic hypothesis, as formulated by Boltzmann and Gibbs 

(Boltzmann, 1964; Gibbs, 1981), according to which the fraction of time, during an interval of 

time T, sufficiently long, within which can be found a determined system )(tx  in any region of the 

phase space, is equal to the fraction of all the spaces of the statistical ensemble which represent it 

and which are found in the same region of the phase space. In other words, point x in , 

representative of the macroscopic state of the system, evolves along the entire space, spending in 

every sub-volume  , a time proportional, on average, to  itself. Thus, if the system is 

observed in a certain instance of time, chosen randomly and in a very long temporal interval (long 

enough to allow the trajectory to explore the entire volume of the phase space of interest), the 

probability of finding the system in a generic set coincides with its volume . This characteristic 

is known as the equiprobability of microscopic states, and all of Statistical Mechanics, in each of 

its formulations, is based on this principle.  
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Another way of interpreting the ergodic hypothesis is the following: the probability of 

finding some physical system considered in a particular state, in a certain instance of time, is 

equal to the probability of selecting a system chosen randomly from among the corresponding 

systems of the statistical ensemble in that state (or rather, within the considered region of the 

phase space). In this sense, the temporal mean of any physical entity  )(tA x , pertaining to the 

particular observed system of origin, will be equal to the corresponding mean carried out for that 

entity among the systems of the corresponding statistical ensemble. The importance of this vision 

resides in the fact that, through the identity that it is possible to establish between the two kinds of 

means, it is possible to acquire a better understanding of some notions of the system by observing 

not necessarily all of the possible and single states into which it could evolve during its lifetime, 

but only a part. In fact, (1) represents an arrival point according to which the average obtained on 

a series of consecutive trials in the same experiment will be in agreement with the average on the 

ensembles, allowing, in this way, for every particular physical system observed to exhibit a 

behavior very different than its mean, in time. 

Even if the ergodic hypothesis and the consequent ergodic theory have taken their origins in 

considerations on thermodynamic systems, in physical reality, very often, systems which are not 

necessarily thermodynamic, are approximated as such. In other words, there exist certain 

conditions within which one can assert that, in substance, on average, in summary, etc., there 

isn’t a great difference between the specific system being considered and a thermodynamic 

system, as long as it is endowed with certain characteristics that render it similar to the former. 

There exist many examples for which such similitude is called into play, such as for the neurons 

of the cerebral cortex in the human brain; or, for the stars of a galaxy; or, yet, in the sequences of 

rolling dice or flipping a coin. At the same time, one can plainly see how these similarities are 

often completely out of place, due to the simple fact that the conditions within which (1) remains 

valid must never be ignored.  

In (1), the average carried out on infinity exists and the limit does not depend on the choice 

of the starting point of the determined trajectory considered (Birkhoff, 1931; von Neumann, 

1932); still, the complete independence of the system from its starting point is not guaranteed. 

Moreover, a condition that is necessary and sufficient, and within which the ergodic hypothesis is 

valid, involves the fact that the phase space is not subdivided into two parts, each in a positive 

measure, in which the invariance with respect to the dynamic tU  continues to hold true; but in 

general it is not possible to decide a priori whether a particular system can satisfy this condition 

or not. Finally, the main problem regarding the usability of (1) involves the effective size of T, or 

rather the physical approximation of the concept of infinity: how large must T be in order for the 

temporal mean to result in being equal to the mean of the ensemble?  

In practice (1) is always approximated in the following form: 
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for which, at once it is made clear that: “T must be sufficiently large”. What significance must 

be attributed to the concept underlined by the phrase sufficiently large? The same original 

formulation of the ergodic hypothesis raises this question, imposing very long times for the 

observation of the considered systems for its validity. 

In practice, leaving behind the initial states and even in conditions very far from 

equilibrium, the ergodic principle hypothesizes that the underlying dynamic pushes the system to 

a certain volume in the phase space; once this state is reached and occupied in a dense manner, 

the system will spend the vast majority of its lifetime there, except for small, possible-but-rare 

fluctuations. In this state the equiprobability principle is valid, and the transient represents, 

uniquely, the process of closing in on equilibrium. If, then, any measurement should be carried 

out which is far from a state of equilibrium, the result would be strongly influenced by the 

system’s initial conditions. Now, in the real world, it is very difficult to have any a priori 

knowledge  of  the intimate  nature of a  phenomenon  being  observed,  and furthermore, for this  
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reason, it is impossible to understand if that which is being observed is in a state of equilibrium or 

not. One can postulate some presumptions such as, for example, the necessity of considering the 

system rigorously separated from the rest of the universe (that is, the external environment), so 

that external forces cannot intervene on it. So, hypothesizing carrying out a measurement in a 

state in which the system in transient is not at all out of place; indeed, given the general ignorance 

regarding the phenomenon, it is all the more appropriate and prudent. In any case, the effective 

observation of such a phenomenon and its associated system takes place, by its nature, in a 

physically limited time. These measurements are usually conducted in a time that is anything but 

infinite, since they are characterized by an initial instance of observation (in which the system is 

in a very well defined state) and a present instance, after the first survey, in an interval during 

which the system has typically evolved, having been strongly influenced by the conditions 

observed at the time of the initial measurements. 

In synthesis, the ergodic hypothesis is quite far from being demonstrated in real systems 

(see for example, Gallavotti, 1982) and non-ergodicity as a condition is much more probable, in 

nature, than ergodicity itself (Buonomano, 1987). After all, reason brings us to assert that, in 

flipping a coin a billion times, the averages of heads and tails obtainable could be, with a very 

good approximation, very close to the result that could be obtained in flipping a billion similar 

coins, once each; however, the same reason imposes upon us doubts if such equivalence could 

remains true even when the number of flips is greatly diminished. So then, what is the inferior 

limit that defines the ergodicity of a system? 

The factual statement of the impossibility of knowing which value ofT correctly 

approximates correctly ergodic conjecture, forms the base of the hypothesis described in the 

present work, in which there is postulated the existence of a certain time characteristic parameter 

(or, more correctly characteristic parameter functional), peculiar for every single physical 

phenomenon, uniquely valid in the interval of observation. In practical terms, if the observation 

time interval of the phenomenon is not sufficiently long, if the observation goes beyond that time 

characteristic parameter for the considered phenomenon, then the ergodic hypothesis will not be 

true, either. In other words, we hypothesize the local non-validity of the ergodic hypothesis and 

we rewrite the left side of (1) in the following form: 
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where the true unknown quantity of the problem is the term T(t) which appears at the inferior 

limit of the integral. Let us attribute to T(t) the role of element capable of supplying a description 

of the phenomenon being observed, in the considered temporal window. Equation (3) thus 

formulated, describes a completely natural behavior, in the sense that it expresses the observation 

of a physical phenomenon not in an interval that spans from   to  , but rather in a temporal 

window that is necessarily limited, and, in this interval, calls into question the existence and the 

nature of a characteristic time, or rather, an observable capable of describing the system and such 

for which (1) is true.  

 

2. THEORETICAL CONSIDERATIONS 

The search for an explicit form for T(t) has been the leitmotif of the investigations carried 

out in these past years, being that we are aware that its determination would have characterized a 

better comprehension in the physical observation of a system. In fact, the existence of a control 

parameter able to govern the dynamics phase transaction processes (such as, for example, in 

chaotic systems, regarding order/disorder transients) is well noted in the literature (see, for 

example, Arecchi, 1990). Let us focus our attention, then, on a typical system governed by a 

similar parameter, namely a system of interacting neurons. Such systems are undoubtedly more 

complex, and the results obtained in this sphere can easily be transferred to fields in which such 

complexity  is less.   The process for  determining  a  possible explicit form for  T(t)  is  long  and  
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arduous, and so, in the present work, only the key points of these processes will be enounced; the 

demonstrations of the propositions to be encountered in this article can be found in other articles. 

As already described (Ballarin et al., 1995), every learning mechanism with the goal of 

being biologically plausible, must satisfy two important properties which are very general and 

able to be found in nature, and that can be summarized, in extreme synthesis, in the following 

statements: 

1. The connections – in this case, the synapses – must be correlated to the activities of the sites 

(neurons) that the synapses themselves connect. 

2. The overloading in the memorization processes must not imply a complete memory loss in a 

system; in these situations, it is preferable to substitute the old memories with the new ones 

(palimpsest property). 

A simultaneous response to both the properties, is given by a type model like the following 

(Shinomoto, 1987): 

W
jiijij ssWW                    i, j (4) 

in which ijW  represents the connection between the sites i and j and the W index indicates the 

average is calculated with a constant, predefined value of the synaptic matrix. The model 

synthesized in (4a), postulates two basic assumptions: first of all, the time scale of the synaptic 

modifications is hypothesized as sufficiently ample with respect to that of the neuronal 

modifications; secondly, for the synaptic connections one presumes a certain form of limitation 

by means of a rule of a physiological nature. The extension of such a model, in line with the 

considerations expressed in the introduction (Basti et al., 1991; Ballarin et al., 1995), transforms 

(4a) as: 

)(tT
jiijij ssWW          i, j (5) 

that is, passing to the derivative: 
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where the activation dynamic assumes the standard form 
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and  g  represents a sigmoid function. The model hypothesized here represents an entirely 

connected matrix N N  in which )(tWij  is the variable connection in time between sites i and j, 

every site can emit an informative unit, 1)( tsi , or else it can be in a silent state, 1)( tsi ; in 

this way, we obtain that 1)()( tsts ji  for each pair i, j, and this implies  

)()()()(
)(

tTdxxsxstQ
t

tTt

jiij  


          i = 1, 2, … (6) 

In the model here described, we hypothesize that at a certain time, mt0 , the system is stimulated 

with an input, i.e. the system reaches the m-th pattern  m
N

mmm  ,...,, 21 . In this time we see that 

  mmts 0 . The matrix of the synaptic connections  ijWW  is supposed, in general, to be non-

symmetric:     000  m
ji

m
ij tWtW . The simulations show that, if T(t) satisfies certain conditions 

described further on, the system given by the combination of (5b) and (5c), when facing a 

stimulus after the pattern presentation, evolves in a chaotic manner in the beginning, then, after a 

certain time period, becomes stable. Let us call mt1  the time around which the system enters into a 

stable state. The behaviour to which the system is subject, after the presentation of an input, plays 

a fundamental role in the theory described  here; basically, depending on the mutual relationship  
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established in the second member of the learning dynamic (5b), different behaviours are observed 

within the system itself. It results as being stable if: 

)()( tWtQ ijij              i, j and mtt 1  (7)  

while it is chaotic, or noisy, in the case for which 

)()( tWtQ ijij              i, j and mm ttt 10   (8)  

In the transition phase, or rather for values of the correlation integral of the type 

)()( tWtQ ijij           i, j and mtt 1  (9)  

the system is chaotic. These behaviours can be verified through the determination of Lyapunov 

exponents. From (5b) and (5c) it is not difficult to construct a model for which, at time mt0  of the 

presentation of the input pattern of the presentation of the input, chaos condition described in (8) 

will be satisfied, and which, with the flowing of time, can pass over, with continuity, to a state in 

which the condition of stability described by (7) is valid. In substance, the stress caused by a new 

stimulus in the system described here, leads to the recording of a decidedly confused activity in 

its initial phase, and, with the flowing of time, it reaches an equilibrium phase. From the physical 

point of view, such a system reflects a behaviour synthesized in (7)-(9), and phases such as these 

are characterized by their following one another in a continuous manner; that is, no discontinuity 

is observed in the system’s transition from one state to another. During the stable phase, that is, 

when (7) is valid, we have:  

0
)(


dt

tdsi            i = 1, 2, … and mtt 1  (10)  

while, in the chaotic state, the following is valid: 

0
)(


dt

tdsi           i = 1, 2, … and mtt 1  (11)  

Equations (7) through (11), along with the assumption of a continuous transition of the system 

itself from a state of instability to a state of stability, impose certain conditions for the assumed 

value of the control parameter T(t) which governs the described dynamic. The system will be in 

one condition or the other as a function of the value assumed by T(t). First of all, it is possible to 

demonstrate that, to each oscillation of the system’s limit cycle, of the type )()( tsts ii  , with 

  being the period of the cycle, there corresponds a periodic behaviour of T(t), that is, with the 

same period 

)()( tTtT           (12)  

The general solution of the learning dynamic (5b) is of the following type: 
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still, in the transition phase, when mtt 1 , the mutual relationships between the learning dynamic 

correlation integral and synaptic energy, are defined by equation (9), thus, in the hypothesis that 

0)(  tWij , we can also write that: 
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and this equation is a particular form of the first species equation of Volterra, integrable by 

reducing it into a differential equation which, for tt m 0  furnishes the information that 

)()( 0

2 m

ij

t

ij tWetQ                i, j and mtt 1  (15)  

In a totally analogous manner, let us consider the system in the phase in which a stable behaviour 

is found. During phase such as this, the relationship found in (7) holds true, thus, maintaining the 

algebraic sign and reconsidering the reasoning that brought about the determination of (15), we 

conclude that the system’s state of stability implies that: 
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2 tQtWe ij
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t               i, j and mtt 1  (16)  

and thus, due to (6), we obtain another general condition that must be satisfied by T(t) so that the 

system can find itself in a state of stability, and that is: 
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Obviously, the algebraic sign in (16) inverts, in systems that don’t satisfy the conditions for 

stability imposed by the model, meaning in the time interval in which (8) is satisfied. Let us 

suppose that the second member of (17) is positive: (15) and (16) suggest that we seek out an 

integral of correlation (and thus, a function T(t)) of the following type: 

)()()( 0 tfetWtQ tm
ijij
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for which f(t) is a function which satisfies the condition, tetf )(  when mtt 1 . Equation (18) is, 

indeed, a general form for )(tQij  (and therefore, for T(t)). At this point we observe that, if the 

system is in a stable state, (7) will be valid, and so the learning dynamic (5b) can be rewritten as: 
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whose immediate solution is: 
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but the general solution to the learning dynamic is given by (13). Therefore, for the solution 

sought for )(tQij  and, thus, T(t) to be congruent with the two expressions (19) and (13), which 

need to be valid simultaneously for mtt 1 , due to the continuity with which the system passes 

from one phase to the next, the following condition must be satisfied:  
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Equation (20) represents the true key for the problem, has been the most studied object during the 

period of formation of the theory, and it can be transformed, through appropriate steps, into a 

form that is compatible with Riccati’s equation. It provides a functional relationship for )(tQij , 

that is, the learning dynamic correlation integral. The trivial solution is obtained for 0)( tQij  

assuming, at the same time, tm

ij

m

ij etWtW  )()( 01 , which is reasonable, since it derives from the 

solution for the synaptic connection during the chaotic phase, that is, for mm ttt 10  . A more 

general, analytic solution can be obtained using (18) in (20), and by means of suitable 

manipulations we obtain an explicit form for )(tQij , of the following type: 
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and thus, finally, in the diagonal case, 
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From (22) we can note that the solution found depends on the diagonal element of the matrix of 

the correlations; thus, in general, there exist N different T(t), which diversify among themselves 

by the amplitude. This consideration does not seem to limit the validity of the sought solution 

since, with the goal of an effective functioning of the proposed model, the size of the N different 

elements of correlation )( 1

m

ii tW  is substantially uniform, so that, as a reference value of T(t), it is 

reasonable to consider that which, as a constant multiplicative factor, the average carried out on 

the diagonal elements, that is, 


N

i

m

ii tW
N 1

1 )(
1

. The solution found for T(t) is undoubtedly an 

approximation of a complex process; in any case, it appears evident that a reasonable solution for 

T(t) can be of the following type: 
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where 0C  is a constant and jjjj ba  ,,,  are parameters of the solution that can be determined by 

substituting (23) into (20). 

There are at least three noteworthy considerations to be made, regarding the developed theory: 

A. Considering time as a parameter of the model, not all time values are allowed for the 

stabilization of the dynamic of the model, and, in this sense, we can introduce the concept of 

time quantization. 

B. Analysis of the model’s dynamic stability clearly shows the Hebb’s model is a static 

approximation of a learning dynamic deducible as a consequence of the present theory. 

C. The noise which the system is capable of tolerating and which, at the same time, does not 

interfere with its capacity in terms of stabilization and recognition, is equal to approximately 

50%. 

Proposition A derives from the fact that, from the simulations, we observe that the system passes 

from a chaotic behaviour for mm ttt 10   to a stable one for mtt 1 , while the transition phase takes 

place around mt1 . It is precisely for this time value that the relationship between the two quantities 

of the second member of the learning dynamic is governed by (9), from which, if we let i = j, we 

obtain )()( 11

m

ii

m tWtT   and writing (22) for mt1  (which is possible if arriving at the limit value mt1  

from the right) we can deduce that such a condition will be satisfied if and only if:  



l
t m

3

2
1                                                             l = 0, 1, 2,…      (24)  

In (24) if l = 0, then 01 mt , that is, the system is stable at the origin of times, which coincides 

with the time in which the input is presented to the system. But the notable consequence of (24) 

consists of the fact that only some time values are allowed for the stabilization of the system. In 

substance, the passage from the noisy-chaotic state to the stable state happens for: 
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


K
tt mm  01   (25)  

that is, after a finite time interval (K is a constant). This expression induces an interesting 

observation: one would expect the stabilization time to vary along with the variations of the 

considered pair i, j. For this, this time should be the maximum from among as many values as 

there are possible pairs of i, j for which (7) can be verified. Instead, due to the particular form 

singled out for T(t), we observe that the stabilization time is independent of the specific i, j pair 

considered. Moreover, in varying the presented pattern, one would expect a T(t) dependent on the 

particular pattern presented. Instead, (22) varies only in the amplitude upon variation of the input 

pattern, and not in the form of the wave. For this reason, neither (25) varies upon the variation of 

the input pattern, and  assumes an invariant form  for every pair i, j and for every input pattern 

presented to the system. A more detailed analysis shows that the system’s stability can be had for 

the instances of time belonging to the set  defined as: 






























 ,...2,1,

6

1

3

34

3

2

3

34
;

9

310
|: 1 lltlttt m












 

Proposition B derives from an analysis on dynamic stability (Amit, 1989) defined as 0)()( tsth ii  

in which 



N

j
jiji tstWth

1

)()()( , applied to the present model. With suitable steps, we arrive at the 

conclusion that, in a stable state in the sense described by (7) and (10), it follows that:  

m
j

m
iij

m
ij CtW )( 0  (26)  

 

that is, Hebb’s rule, which maintains its validity only in approximations in which the system is 

not subject to a dynamic evolution. 

Finally, proposition C derives from the fact that, in a stable phase (10) must be satisfied and thus 

the activation dynamic (5c) assumes the form 

                                     








 


N

j
jiji tstWgts

1

)()()(      i = 1, 2,..., N and mtt 1   

and it is shown that this last equation can be rewritten as 









 


N

j
j

m

j

m

iiji tsCtrgts
1

)()()(               i = 1, 2,..., N and mtt 1  (27)  

 

where r(t) is a damped oscillator. Introducing noise into a system means forcing some 

components of input vector m  to assume values that are different than the original ones; or 

rather, it is the equivalent of carrying out m
i

m
i    type operations for some values of i. This 

brings about, generally, an inversion of the sign in )( 0

m

ij tW , as can be seen in (26), or, in other 

words, the operation )()( 00

m

ij

m

ij tWtW  , is carried out q times (where Nq  ). It is evident, from 

the analysis of (27) for ferromagnetic paramagnetic, and mixed cases, that the value assumed by 

)(tsi  will, at stability, be conserved, even if 15.0 N  terms in the sum of the argument of the 

sigmoid function should undergo an operation of inversion following the introduction of noise. 

And therefore, the system is capable of recognizing the presented pattern, even if the noisy 

components number a small amount more than 50%. Definitively, even if that percentage of input 

components were corrupted, the system would be capable of bring itself back to a stable 

condition. 
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3. TIME PARAMETER AND TIME SERIES  

A time series of the type  ),...(),...,(),( 21 ktxtxtx  is a particular form of in input vector for the model 

exposed in this paper. For these inputs tk represents a discrete instance of time. Just as T(t) is able 

to describe the properties of a model, defined by (5b) and (5c), with the goal of arriving at a state 

of equilibrium, with all that this achieves, the application of T(t) to time series has, in recent 

years, shown itself to be extremely efficient as well. Here follows a description of the utilization 

of the time characteristic parameter with reference to the forecasting of the trends in these series. 

The algorithm, in its basic structure, is extremely simple, and can be articulated in four 

reiterated steps: 

1. Reduction to the series of first differences for which the k-th element is given by 

)()( 1 kkk txtxy . 

2. Determination of a value, V, for which: 

a. if 1czVy kk   

b. if 2czVyV kk   

c. if 3czVy kk   

The clusterization into three groups, of the series of the differences, is purely indicative in 

the goal of comprehending the model; in fact, a larger number of clusters allows for a 

more accurate subdivision of the analysed series. The operation described in this passage 

is carried out on a temporal window t, for which the three groups, initially, result in 

being equally distributed; this, to maintain the initial condition of equiprobability. This 

implies a tight correlation between V and t, which need to be determined opportunely. 

The series  kzzz ,...,, 32z  resulting from the present passage, is a classic step function 

series: the verification of a particular cluster in the quantized time, defines a new step in 

the graphic. 

3. Association for each cluster h calculated in the previous passage (in which h =3) of a time 

parameter Th as defined by (23). The coupling element between cluster h and the 

respective Th is given by the value of time, t, which appears in the arguments of the 

exponentials and trigonometric functions. 

4. Determination of a set of values jjjj ba  ,,,  in (23), unique for all the h clusters, so that 

it supplies values Th which, once put in order, represent the probability with which the 

clusters at the next time k + 1 of the considered series z will be verified. In other words, 

for every cluster, there is calculated a characteristic, specific time parameter for that 

cluster. The single value Th thus obtained is related to the probability that cluster h has of 

representing itself at the system’s next time k + 1. 

As is quite obvious, the key to determining time parameters able to define the probability of 

verification of the different clusters at the next times, is contained in the capacity of termination 

of the coefficients of (23). In order to obtain satisfactory results, it is necessary to reiterate steps 1 

through 4 of the described algorithm, on portions of the series in which the result to be produced, 

that is, the cluster of arrival, and that is the order of the Th (or of the associated function), ia a 

priori known. Successively, it is sufficient to use the same parameters to evaluate the probability 

of future clusters. Observing the use of time parameters in this study, a certain similarity can be 

noted with the concept of probability associated with the wave function (q, t) in Quantum 

Mechanics, in which the squared module represents the probability of finding a determined 

particle in a spatial interval (q, q + dq). In the case considered here, the single cluster takes the 

place of the particle and instead of considering the squared module of Th, its inverse is 

considered; from this, we derive the probability of finding, in the next time interval, the 

determined cluster. Regarding this, we observe that the inverse of the time parameter has the 

same nature  as a frequency,  that is, a local frequency valid for the observation  interval t, as if  
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the probability ph derived from the frequency of the observations of the clusters, were adequately 

represented by a function of the following type: 

                                                               
)(

1

tN

v
p

T

h
h

h

h


  

with hv  being the number of occurrences for cluster h, and )( tN   the number of observations 

carried out in the considered window t, defined at step 2 as a portion of the analysed series.  

 

4. FORECASTING ABILITIES OF THE TIME PARAMETER: SOME APPLICATIONS 

The use of the time parameter as expressed in (23) and the developed algorithm described 

in the previous section, has been continuing for over ten years. Equation (23) and the forecasting 

algorithm were used to analyze hundreds of time series, of extremely diverse kinds, with the goal 

of confirming the surprising predictive capabilities and the synthesized results in the present 

work. The basic reason for such a long waiting period before divulging the results is found in the 

fact that the work group has always maintained a great prudence in ascertaining the forecasting 

performances, so as not to commit the error of attributing properties to the utilized algorithm that 

eventually might turn out untrue or unbelievable. Now, though, these performances, after years of 

study and analysis, as well as certification by external certification firms that analysed the time 

series in the financial world, give us convinced confidence with regard to the strength and 

forecasting capabilities of the developed model. 

In the present work, by way of example, we present the results of three practical forecasting 

applications, concerning:  

A. The futures contract of the Euro vs. USD, sampled every ten minutes from 2
nd

 June 2006 to 

30
th
 March 2010 (figures 1 - 3). 

B. The concentration of PM10 (particulate matter, with a diameter of 10 m), air pollution 

recorded in Rome and sampled hourly from 3
rd

 July 1999 to 14 July 2000 (figures 4 and 5). 

C. The extractions at the roulette table number 4 in the Wiesbaden, Germany, casino, recorded 

from 30
th
 November 2009 to 31

st
 December 2009 (figure 6). 

For all three of the above examples, the algorithm described in step 1 – 4 of the preceding 

paragraph was applied exactly as already described. According to the logical scheme, the time 

series analysed is the series of the first differences, (more precisely the backward differences), of 

the type )()()]([ jtxtxtxj   where usually, but not necessarily j = 1, and the forecast is 

carried out for step t + 1. In the approach here adopted, the values of series z are effectively 

regrouped into three clusters ch with h = 1, 2 or 3. The re-transformation to the initial series of the 

forecast carried out on the clusters, implies the subdivision of future space into three possible 

regions: higher, if Vtxtx  )()1( ; lower, if Vtxtx  )()1(  and central, if 

VtxtxVtx  )()1()( . In these expressions V is the parameter calculated in t following the 

logic expressed in step 2. The model assigns the probability that the forecasted value should fall 

in a subset (two) of these regions. In substance, it is like playing with a three-faced die; the 

probability, a priori, that each side of the die has of winning in the next throw is equal to 1/3; 

thus, betting on two sides for each throw the total probability of winning is equal to 2/3 and, after 

about a hundred throws, one would expect to guess, correctly, more or less 66 times total. The use 

of the algorithm described here, instead, shows that the number of times the correct region is 

guessed correctly is around, or higher than, 80%. 

In example A the total values of the series and the relative forecasts carried out are 

123,524; of these forecasts, which were carried out according to the modalities described above, 

109,185, or 88.39%, were correct. This kind of correctness (more or less 88%) were observed 

distributed uniformly for the year considered in the test. In example B, the data set is made up of  
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3456 cases and there were 2926 correct predictions, that is, 84.66%. It should be noted that even 

on the basis of the work to carry out the present model, it was possible to create a system for 

forecasting atmospheric pollution for the city of Rome. In example C, the data set is composed of 

9871 cases and the correct predictions were 7880, or 79.8%. 

These results were obtained without the application of any kind of filter for the 

manipulation of the data in the series. Little manipulations of original data bring about values 

which are usually higher for the correct forecasts, such as, for example, when applying the 

forecasting model not to the series of values but instead to the derivative of the series. In this 

latter hypothesis, the percentage of correctly predicted cases for example C was 88.29%. 

The examples given here are not special cases, nor were they chosen in such a way as to 

showcase the good forecasting capabilities of the algorithm; they are, rather, completely typical 

and representative of our experiences carried out in these years. 

 

5. CONCLUSIONS 

The search for an explicit form for T(t), valid for a specific observed physical phenomenon 

and after a specific time interval (limited by definition), has been the object of studies and 

research for over ten years; in this time, we have come to known that its determination, for the 

system under observation, is better able to describe the system itself. Until T(t) has been 

determined, the hypothesis of a priori equiprobability cannot be valid either. The results achieved 

have allowed us to verify whether the form for T(t), defined by partial observations, was 

effectively able to better forecast the analysed phenomena. As a result we have verified that the 

use of such a time parameter T(t) as an element able to forecast, allow us to determine trend 

evolutions reaching higher levels of success with respect to the levels that classical statistics is 

able to furnish. In other words, given a system that evolves in time, observing that system in an 

adequate temporal window, calculating the characteristic time parameter for that phenomenon in 

that temporal window, grouping the variations of the analysed data into three clusters, we are able 

to predict the future time evolution of the same phenomenon with a precision that is correct, on 

average, around 80 times out of 100, contrasted with the 66 times established by classical theory. 

Another notable consequence of this theory is that it assumes time to be an intrinsic variable of 

the system: a variable which is not banally a parametric element, but implicitly written into the 

observed system, in such a way that the same ergodic hypothesis is, logically, not respected. It is 

as if the observed system were not able to free itself from time, with its representation in the 

phase space. But if this ergodic hypothesis is no longer valid, then neither will the hypothesis at 

the base of the ergodic hypothesis be valid, that is, the a priori equiprobability for the results of 

an experiment. In this way, it is reasonable to think that in a time series, a generic point 

considered at instance k will influence the value at the following instance, k + 1, in some way, 

and that it was in turn influenced by the preceding value, k – 1, in such a way that not all the 

possible values are permitted a priori, but only some, in a determined range of possibilities. In 

this sense, the non-assumption of the principle of equiprobability has made possible the 

realization of tools better able to predict the evolutions of a system. 

Undoubtedly, to assume the equiprobability principle as marginal for describing the 

observed physical phenomenon, within limited timeframes, opens the way for profound 

reflections on the meaning of randomness itself, but it would be more correct to say, at this point, 

that it opens considerations on the meaning of order. These reflections could be readily left to 

philosophical and theological speculation. 
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Figure 1. Sub-time series from example A representing the behaviour of the Euro 

vs. USD futures contract, sampled every ten minutes from March 3
rd

, 2009 to 

March 30
th
, 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sub-time series from example A representing the futures contract of the 

Euro vs. USD sampled every ten minutes on January 4
th
, 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Values of the time series clustered as described in step 2 of the 

algorithm. The picture represents an example of the sequence of actual clusters in 

which the values are grouped as recorded from 8 am to 12 am just for one day, 

January 4
th
, 2010. The forecast developed by the algorithm is reported beside each 

cluster. 

 

1.425

1.427

1.429

1.431

1.433

1.435

1.437

1.439

1.441

1.443

1.445

0.
00

.0
1

0.
50

.0
0

1.
40

.0
0

2.
30

.0
0

3.
20

.0
0

4.
10

.0
0

5.
00

.0
0

5.
50

.0
0

6.
40

.0
0

7.
30

.0
0

8.
20

.0
0

9.
10

.0
0

10
.0

0.
00

10
.5

0.
00

11
.4

0.
00

12
.3

0.
00

13
.2

0.
00

14
.1

0.
00

15
.0

0.
00

15
.5

0.
00

16
.4

0.
00

17
.3

0.
00

18
.2

0.
00

19
.1

0.
00

20
.0

0.
00

20
.5

0.
00

21
.4

0.
00

22
.3

0.
00

hours

E
U
R
/
U
S
D

1.25

1.3

1.35

1.4

1.45

1.5

1.55

3
1
/0

3
/0

9

1
4
/0

4
/0

9

2
8
/0

4
/0

9

1
2
/0

5
/0

9

2
6
/0

5
/0

9

0
9
/0

6
/0

9

2
3
/0

6
/0

9

0
7
/0

7
/0

9

2
1
/0

7
/0

9

0
4
/0

8
/0

9

1
8
/0

8
/0

9

0
1
/0

9
/0

9

1
5
/0

9
/0

9

2
9
/0

9
/0

9

1
3
/1

0
/0

9

2
7
/1

0
/0

9

1
0
/1

1
/0

9

2
4
/1

1
/0

9

0
8
/1

2
/0

9

2
2
/1

2
/0

9

0
5
/0

1
/1

0

1
9
/0

1
/1

0

0
2
/0

2
/1

0

1
6
/0

2
/1

0

0
2
/0

3
/1

0

days

E
U
R
/
U
S
D

0

1

2

3

8.
00

8.
20

8.
40

9.
00

9.
20

9.
40

10
.0

0

10
.2

0

10
.4

0

11
.0

0

11
.2

0

11
.4

0

12
.0

0

hours

cl
u
st

e
r

actual cluster

cluster forecasted



356                                 ANTONIO BALLARIN AND SIMONA GERVASI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Sub-time series from example B describing the concentration of PM10 

sampled every hour on July 13
th
, 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Example of the sequence of clusters in which the values of experiment 

B are grouped: this represents the sequence of actual clusters sampled every hour 

on July 13
th
, 2000 and, for each hourly cluster, the associated forecast.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Representation of the last 30 roulette launches from example C. 

Outcomes are grouped into three sets, corresponding to the three vertical columns 

of the roulette table (for simplicity, 0 is considered to belong to column 2).  
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