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SYNTHESIS OF STOCHASTIC ATTRACTORS FOR NONLINEAR
DYNAMICAL SYSTEMS AND CONTROLLING CHAOS
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ABSTRACT. We consider a nonlinear discrete-time control system with regular and chaotic dy-
namics forced by stochastic disturbances. The problem addressed is a design of the feedback regulator
which stabilizes cycles of the closed-loop deterministic system and synthesizes a required probabilis-
tic distribution of random attractors for corresponding stochastic system. To solve this problem, we
propose a new method based on the stochastic sensitivity function technique. We study a synthesis
of the stochastic sensitivity function and constructive design of regulator parameters. An effective-
ness of the proposed approach is demonstrated on the stochastic Verhulst model. It is shown that

this regulator forms a stochastic attractor with low level of sensitivity and suppresses chaos.
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1. SENSITIVITY ANALYSIS OF STOCHASTIC CYCLES
Consider a stochastic discrete-time scalar system

(1.1) T = far) +eo(z)&,

where f(z) and o(x) are sufficiently smooth functions, & is uncorrelated random
process with parameters E§; = 0, E€? = 1, ¢ is an intensity of the noise. Suppose the
deterministic system (1.1) (¢ = 0) has n-cycle I'. Points of the set I' = {zy,...,Z,}
are connected by the equalities f(Z;) = Z;41 (i = 1,...,n — 1), f(Z,) = Z;. The
sequence Z; is defined for all ¢ due to the periodicity condition z;,, = z;. It is

supposed that the cycle I' is exponentially stable [1].

The necessary and sufficient condition of the exponential stability of the cycle [1]

is the inequality

(1.2) la| <1, a=a;-ag----- Ap, Q; = ﬁ(i’z)

dz
Let 25 be a solution of the stochastic system (1.1) with the initial condition z§ =
Z1 + €€, where £ is a random value. Consider the deviations z; = zf — Z; of system
(1.1) states a§ from the states Z; and the relations vf = z{ /e = (2 — 7;)/e for the

following time points. For the small €, a sensitivity of the deterministic cycle I' states
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Z; with respect to random disturbances of system (1.1) is defined by v; = lim._gvf =

d
—§|.=0. The sequence v; satisfies the linear system

de
a

Vg1 = QU + 00y, ap = I (zy),

(13) (%1 :é-

A dynamics of the first two moments m; = Ev;, V; = Ev? for system (1.3) is governed

Oy = O'(,’ft),

by the equations
(1.4)

My = Ay,

(1.5) Vipr = aiVi + o}

with initial conditions m; = E¢, Vi = EE2
Due to the stability criterion (1.2), the sequences m; and V; are stabilized:
limy_oomy = 0, limy_(V; — w;) = 0. Here w, is an unique n-periodic solution

of the equation (1.5). Values wy, ..., w, satisfy the following linear system

wy = ajwy + 0%,

1.6
(16) Wn = a%—lwn—l + 0121—17

2

wy = a2w, + 2.

Rewrite the system (1.6) in a vector form:

(1.7)
[ a2 1 0 -~ 0 0 ] - - SR
0 —a; 1 --- 0 0 )
w2 0-2
Aw - S, A — ’ 9 w = . I s = .
0 0 0 —a: , 1 '2
Wy, o
! o 0 --- 0 —a? | - - - -
Consider determinants A = detA, A; = detA;. Here
[ o2 1 0 0 0 ]
o3 —ai 1 0 0
A=
o2, 0 0 —a: | 1
L on 0 —a;
For these determinants, we have
A= (1" 1—=a?), A= (=1)" o +op qap+-- +ojas - a).

Due to (1.2), A # 0 and system (1.7) has unique solution w. Its first component

w; = A;/A can be written in an explicit form: w; = (02 + 0% a2 + -+ + 0%d3 -
--a2)/(1 — a?). Other components ws, . .., w, can be found from (1.6) recurrently:

w; =a? w1 +0?, (i=2,...,n). Note that w; > o2 ,.
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Values wy, ..., w, of n-periodic function w; characterize a response of the points
T1,..., T, of the cycle I to small random disturbances. The vector w = (wy, ..., w,)"

is called the stochastic sensitivity function of a cycle [2].

For small noise, when random states x; for the steady-state regime of stochastic
system (1.1) are localized near points Z; of stable deterministic cycle, the values wy
of stochastic sensitivity function give us the following approximation D(zf) ~ 2w;.

Here D(xf) is a dispersion of the random states z5.

For the case of 2-cycle (n = 2), the following explicit representation holds

o2 +02a2 o? —|—a2a2

_ 99 19 _ 9 207

(1.8) W = =2, W= —r—.
2.2 2 2

2. SENSITIVITY SYNTHESIS OF STOCHASTIC CYCLES

Consider a stochastically forced controlled system

(2.1) T =[x, w) + o (2, up)s.

Here f(x,u) and o(z,u) are sufficiently smooth functions. The function f(x,u) de-
scribes a deterministic part of controlled dynamics and o(z,u) characterizes a depen-
dence of disturbances on the state and control, & is an uncorrelated random process

with parameters E¢; = 0, E€2 = 1, ¢ is a scalar parameter of noise intensity.

It is supposed that for e = 0 and v = 0 system (2.1) has n-cycle I' = {Z1, ..., Z,}.
A stability of I' is not assumed.

We will select a stabilizing regulator from the class U of admissible feedbacks
u = u(x) satisfying conditions:
(a) u(z) is sufficiently smooth and u|r = 0;

(b) for the closed-loop deterministic system

(2.2) Ti1 = [ (@, u(zy))

the cycle I' is exponentially stable.

For any u(z) € U, the cycle I' of system (2.1) has a corresponding stochastic

sensitivity function wu]. Varying u(x) € U, one can change values of w[u].
Consider the following control problem.

A problem of stochastic sensitivity synthesis. Our aim is a synthesis of the
assigned stochastic sensitivity function. For the control system (2.1), it follows from

(1.6) that values wy, ..., w, of the stochastic sensitivity function w are connected
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with control system parameters by equations

(a1 + b1]€1)2w1 = Wy — 0%7

(2.3)

2 _ 2
(an—l + bn—lkn—1> Wp—1 = Wp — Un_lv
(an + bpky)?w, = wy — o2.

As we see, a variation of the control function u(z) changes only the coefficients

d
k; = d—u(iz) in system (2.3). Note that outcome of the control depends only on values
x

du
of the derivative —. Without loss of generality, it allows us to restrict a consideration

x
by more simple regulators in the following form
(2.4) u(z)|x, = kile —2;), i=1,...,n.

So, the regulator (2.4) is completely determined by the vector k& = (kiy,...,k,) of
feedback parameters k;. The condition (a) for w(z) from (2.4) is fulfilled for any
k € R". The condition (b) restricts the choice of k by the following set: K = {k €
R™ | cycle I for system (11), (14) is exponentially stable}.

This set K can be described constructively: K = {k € R" | [[}_, |a; + biki| < 1}.
If at least one of b; # 0, then K # (). Under these circumstances, we shall consider
a problem of the stochastic sensitivity function synthesis for system (2.1) with the
regulator (2.4). Consider a set B = {w € R" | w; > ¢, (i = 2,...,n), w; > o2}
of admissible stochastic sensitivity functions. Denote by w(k) the solution of system
(2.3) for the fixed vector k € K.
Problem of a Control. For the assigned vector w € B, it is necessary to find a

vector k € K guaranteeing the equality
(2.5) w(k) = w.

Definition 2.1. The element w € B is said to be attainable in the system (2.1), (2.4)
if the equality (2.5) is true for some k € K.

Definition 2.2. A set of all attainable elements W = {w € B | 3k € K w(k) = w}
is called by attainability set system (2.1), (2.4).

For the case W = B, the coefficients ki, ..., k, of the feedback regulator (2.4)

guaranteeing required values wy, ..., w, of the stochastic sensitivity function can be
calculated from the system (2.3). Values wy = 02, wy = 0},...,w, = 02_; are

minimal elements of the attainability set W. For these values, coefficients of the
feedback regulator (2.4) are unique: k; = —a;/b; (i = 1,...,n). In the general case,

a choice of k; is not unique: for every k; we have two values.

Consider a case of 2-cycle. For n = 2 and b5 # 0, the attainability set W is

defined by inequalities w; > o3, wy > o?. Coefficients ki, ks of the feedback regulator
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providing assigned values wy, wy of stochastic sensitivity function for states z,, Zs of

2-cycle are following;:

1 2 1 2
(2.6) k= — | —a, + w2 — 0y . ky=— | —ap+ w1 — 93
bl w1 bg Wy

3. STOCHASTIC VERHULST SYSTEM
Consider a stochastically forced Verhulst system

(3.1) Tpp1 = (1 — x4) + €&,

where &; is a sequence of the uncorrelated Gaussian random disturbances with pa-

rameters B¢, = 0, B2 = 1, € is a parameter of noise intensity.

For 3 < p < 4, the deterministic Verhulst system (¢ = 0) has 2-cycle with states

a1l D(p—3) - )_u+1—\/(u+1)(u—3)
= 2/,[, s Tol W) = .

2p
This cycle is stable on the interval 3 < p < p, = 1 + /6.

T1(p)

When the parameter p passes the bifurcation value p, = 3.44949, this 2-cycle
loses stability. On the interval (3.44949, 4], Verhulst system demonstrates cascades
of period doubling bifurcations and transition to chaotic oscillations (see bifurcation
diagram in Fig. 1a).

Consider the stochastically forced system (3.1) (¢ > 0). Under the random dis-
turbances, a trajectory of system (3.1) leaves a deterministic attractor and forms a
stochastic attractor around it with the corresponding stationary probabilistic distri-
bution. In Figs. 1b, ¢, random states of the stochastic Verhulst system are plotted
for different values of the noise intensity. As one can see, noise washes out a thin
structure of the deterministic bifurcation diagram [3]. For ¢ = 0.01, a dynamics of
system (3.1) looks like chaotic for the whole interval 3.6 < u < 4.

1 1

05

Fig. 1. Attractors of uncontrolled Verhulst system for a) e = 0, b) ¢ = 0.001, ¢) e = 0.01.

Consider in detail a zone u € (3,3.44949) of the stochastic 2-cycle. A dispersion
of random states around deterministic points z (), Zo(p) is non-uniform. A value of

dispersion around Zs(pu) (lower branch) is greater than one for z;(u) (upper branch).
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As the parameter p approaches bifurcation points ¢ = 3 and p = 3.44949, the

dispersion of random states increases.

Our quantitative analysis of the stochastic 2-cycle is based on the stochastic
sensitivity function technique. For system (3.1), due to (1.8), values of the stochastic

sensitivity function are following
1+a3 1+a?

w = ———, w
R P 2

a=—1—=\(p+D)p-3), a=-1+/(u+1)(u-3).

Consider stochastically forced Verhulst system

= 2,27

(32) Tyl = /.Ll't(l — l’t) -+ up + Egt
with the control input w;.

The aim of the control is a stabilization of 2-cycle for whole zone 3 < < 4 and

a synthesis of the required stochastic sensitivity function w = w(u).
We use a feedback regulator (2.4) in the following form
(3.3) w(@)|x, = k(e —T1),  u(z)lx, = ka(z — To).

Neigborhoods X7, X5 of points Zj,Zy for this example are X; = (71 + Z2)/2,1),
Xy = (0,(Z1 + 72)/2).

x // X /M

a) 3 35 T b) 3 35 T

Fig. 2. Random states of controlled stochastic Verhulst system with regulator guaranteeing the

stochastic sensitivity w; = we =1 for a) e = 0.001, b) € = 0.01.

For the considered system, an attainability set of values wy,ws is restricted by
inequalities w; > 1,ws > 1. Put wyi(p) = 1, we(p) = 1. It means our aim is to
provide constant and minimal stochastic sensitivity of 2-cycle for the whole interval
3 < pu < 4. It follows from (2.6) that the regulator (3.3) is uniquely defined: k; = —ay,
ky = —as. In Fig. 2, random states of the corresponding closed-loop system (3.2),
(3.3) are plotted for different values of noise intensity ¢ = 0.001 and ¢ = 0.01. As
a result of control, random states of system (3.2), (3.3) are concentrated in small
neighborhoods of the points of the deterministic 2-cycle.

Now we can summarize that our method based on stochastic sensitivity synthesis
allows to stabilize the cycle I' = {Z, Z5} for the unstable zone 3.44949 < 1 < 4 and
provide assigned small dispersions of random states near cycle points z, s for whole

zone 3 < i < 4. One can interpret these results from the viewpoint of controlling
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chaos. Indeed, the interval 3.56995 < p < 4 is a well-known zone where uncontrolled
system (3.1) for ¢ = 0 demonstrates a chaotic behavior. Here, as the parameter
1 increases, a complicated alternation of chaos and order subintervals is observed.
A set of these subintervals has a fractal structure. Thus, the uncontrolled system
demonstrates a structural instability on this interval. Our method of sensitivity
synthesis enables to construct a stabilizing regulator and to suppress chaos finally.
In Fig. 3, an example of chaos suppression is shown. Here, for 4 = 3.8, ¢ = 0.001
a chaotic uncontrolled trajectory of system (3.2) with v = 0 is plotted for the time
interval 0 < ¢t < 50. Further, for ¢ > 50 we switch on our regulator (3.3) adjusted for
the synthesis of w; = wy = 1. This regulator forms periodic oscillations with small
dispersion.

1
X

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60 70 80 90 {100

Fig. 3. Chaos suppression. A stochastic 2-cycle stabilization by regulator guaranteeing
w1 = wg = 1. Shown is a random trajectory for € = 0.001, 4 = 3.8 and control is switched on at

t = 50.

If we assign values wy, wo uniformly small for the interval 3 < p < 4 then the
corresponding regulator forms stable cycles with uniformly small dispersion for the
whole interval too (see Fig. 2, where w; = we = 1). It means that our regulator solves

an important problem of structural stabilization.
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