
Neural, Parallel, and Scientific Computations 19 (2011) 1-20

COOPERATIVE GAMES IN MARKETING: A DIFFERENTIAL

GAME APPROACH

N. G. MEDHIN AND WEI WAN

Department of Mathematical Science, North Carolina State University

Raleigh, North Carolina 27695, USA

Department of Mathematical Science, Claflin University

Orangeburg, South Carolina 29115, USA

ABSTRACT. Cooperation is not applicable in a constant-sum differential game because there is

no possibility of mutual gain from cooperation. However, in other types of games cooperation is

possible. The fate of a game being noncooperative or cooperative is generally determined by the

‘scope’ of the game, which means how many people will be included in the game, and the status of

the players. In reality it is possible to have both cooperative and noncooperative games, or just one

of them, in different situations/phases of the same game. In this paper we will set up a cooperative

differential game model for competition in marketing. There are many ways to define the solution

of a cooperative differential game. Different definitions of ‘solution’ will precipitate totally different

models. After defining the solution for our cooperative differential game model, we develop an

algorithm based on the idea of evolutionary computation, and then draw conclusions about general

cooperative differential games.

AMS (MOS) Subject Classification. 91A12, 91A23, 91A80, 91B50, 91B60

Keywords: cooperative differential games, numerical methods, marketing

1. INTRODUCTION

Our motivation to study cooperative differential game is based on two facts: first
is that in real marketing competition, cooperation may be seen more often than pure
competition; second, the methods for solving cooperative differential game model is
limited in literatures. In the literature there are few papers dealing with cooperative
differential games for market competition, or how to solve this type of models. It is
challenging to solve cooperative differential game analytically, even in very special and
simple models. The difficulty in application of this model comes from its solvability.
Furthermore, there are many ways to define the solution of cooperative differential
game since there are many ways for competitors to cooperate. And different ways
to define the solution will lead to different ways to solve it. In this paper we set up
a general cooperative differential game model for competition in the final stage of a
product life cycle, and then proceed to derive optimality conditions for the model, at
last develop a numerical algorithm to solve it. Our algorithm is based on Evolutionary
Computation. This may be the first exploration of this way to solve cooperative
differential game models. The difficulties to solve our model is that we need solve a
functional minimization problem with constraints coming from two different spaces:
one is C1, the other is Rn. Thus, our investigation of using Evolutionary Computation

Received November 23, 2010 1061-5369 $15.00 c©Dynamic Publishers, Inc.

2 N. G. MEDHIN AND WEI WAN

to solve cooperative differential games can also be extended to solve similar types of
constrained optimization problem.

Based on numerical results, we analyze the differences between cooperative and
noncooperative differential games, and draw some useful practical guidelines. For
example, cooperation in competition is better than noncooperative competition al-
though how to distribute benefit is another problem in a cooperative differential game.
At last we bring out another problem in real competition, which is how to choose a
game. In reality, there are many factors that determine or affect the choice of a game.
And the choice of a game is a dynamic process determined by the ‘scope’ of the game.
Figuring out or choosing the ‘scope’ of the game is more important than just solving
a game.

2. COOPERATIVE DIFFERENTIAL GAME

When we talk about any mathematical model, we should define what we mean
by the ‘solution’ of the model clearly. In a noncooperative game, we can define the
saddle point as the solution of the game. In a cooperative zero-sum game, we can still
define the saddle point as the solution of the game. However, in most cooperative
variable-sum games, a solution is much harder to define. Different solutions are
defined based on practical need. Regardless of the definition, we interpret the solution
of a cooperative game as a way to coordinate the players’ decisions effectively.

A typical optimization problem in Operations Research consists of an objective
function, which represents the goal or payoff of decision makers, with some constraints.

The cooperative differential game we consider is such that each competitor has
the following objective function:

Ji(ui) =

∫ T

0

gi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))dt + hi(x1(T), · · · , xn(T))

and the dynamics of the state are governed by the system of differential equations:

ẋ1 = f1(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
...

ẋi = fi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
...

ẋn = fn(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
xi(0) given

Now suppose that these n players cooperate under some agreement, then at first
we are concerned with the following questions:

1. Under what conditions are these players willing to cooperate? That is, why
would a player want to cooperate? If a player gets ‘less’ than what he gets in
a noncooperative game, then there is no incentive for him to cooperate. This is
called individual rationality axiom. More discussion about individual rationality
can be found in Jorgensen, Martin-Herran and Zaccour (2003) [9]. Based on
this rationality axiom, we can imagine that a necessary condition for existence
of a cooperative game is that each player should get at least what he can get

COOPERATIVE GAMES IN MARKETING 3

in the noncooperative case. Later we will define Pareto solution of cooperative
differential game on the basis of this condition.

2. What will be an appropriate payoff functional for a cooperative differential
game? There are various ways of defining the solution of a cooperative game.
One way is to consider the payoff functional:

J0(u1, · · · , un) = max
{

∫ T

0

gi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))dt

+ hi(x1(T), · · · , xn(T)), i = 1, · · · , n
}

Because of cooperation, we will take the n players as one decision maker. And
we accept the weighted sum of the individual payoffs as the new payoff functional
in a cooperative game. This was first introduced by Leitmann (1974) [1]:

J0(u1, · · · , un) =
n

∑

i=1

ci

∫ T

0

gi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))dt

+

n
∑

i=1

cihi(x1(T), · · · , xn(T))

where ci is interpreted as a ‘bargaining weight’.
We will maximize/minimize the objective function J0 subject to the system

of differential equations:

ẋ1 = f1(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
...

ẋi = fi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
...

ẋn = fn(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
xi(0) given

In this formulation we can expect to face the problem of solving a typical
optimal control problem.

3. How will the optimal cooperative objective function value be divided among
these players? One way is to divide the optimal payoff J∗

0 among the players in
proportion to their contribution.

So we can see that different answers to the above questions will lead us to totally
different set-up of the problem. The above questions and our answers to them form
the foundation for the basic frame-work of our problem. Given C = {c1, c2, · · · cn},
we have the following optimal control problem:

4 N. G. MEDHIN AND WEI WAN

minu1,··· ,un
J0 =

∑n

i=1 ci

∫ T

0
gi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))dt

+ci

∑n

i=1 hi(x1(T), · · · , xn(T))
s.t.

ẋ1 = f1(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
...

ẋi = fi(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))
...

ẋn = fn(t, x1(t), · · · , xn(t), u1(t), · · · , un(t))

xi(0) = xi0, i = 1, · · · , n − 1

By solving the above problem, we can get the optimal objective function value
J∗

0 (c1, · · · , cn). Using this relation we can define a mapping:

T : R
n 7→ R.

Then, our task is find out what minT(c1, · · · , cn) is and a minimizing vector
C = [c1, c2, · · · , cn].

Definition 2.1. Argmin{T(c1, · · · , cn)} is defined as Pareto solution of the coop-
erative differential game.

The functional T is complicated and has no explicit expression, so direct search
seems a good choice of minimizing it. In every direct search method, the key issue is
how to generate variations of the parameter vectors. Once some variation is generated,
we can make a choice to accept or decline based on some criteria(objective function).
In all standard direct search methods, the new generated parameter will be accepted
if and only if it makes our objective value better. This is called greedy criteria.
The weak point of this criteria is the risk of falling into a local minimum/maximum.
However, evolutionary computation can help ameliorate this problem.

3. MODEL DEVELOPMENT

We proceed to consider competition in the final stage of a product life cycle,
where n-companies and one product are involved. The market managers use con-
trols/advertising to minimize cost. Because the sale will decrease to zero in the long
run, managers will not consider market share as their objectives. We use the index
i = 1, 2, · · · , n to represent these n companies. The main notations are as follows:

xi(t) Market share of company i at time t.
ui(t) Control/Advertising of company i at time t.
ρ Natural sale decrease factor without advertising.
κ Effectiveness of advertising on the sales decrease rate.
ai Effectiveness of control/advertising of company i.
δi Advertising cost parameter for company i.
p Price of the product.

COOPERATIVE GAMES IN MARKETING 5

The sale of each company will be affected by a natural decrease rate which will be
affected by advertising, and competition driven by advertising. Each company wants
to minimize cost. So each company’s objective function is:

Ji(ui) =

∫ T

t0

e−rt[
δi

2
u2

i (t) − pxi(t)]dt, i = 1, 2, · · · , n

and the dynamics are

dx1(t)
dt
...

xn(t)
dt

=

a1u1(t)
...

anun(t)

−

f + G · · · 0
...

. . .
...

0 · · · f + G

x1(t)
...

xn(t)

where f = ρ(1 − κ
∑n

i=1 ui(t)), G =
∑n

i=1 aiui(t) and xi(0) are given. Detail expla-
nation about how the objective function and dynamics come can be seen in [4].

In a cooperative differential game, we will take these n companies as a whole.
Then, we pretend as if there is a ‘higher’ manager, who will control the activities
of these n companies and maximize a combined benefit. This combined objective
function is set up by taking a convex combination of the n objective functions. Then,
the cooperative differential game model for these n companies is as follows:

minc1,··· ,cn
minu1,··· ,un

J0 =
∑n

i=1 ci

∫ T

0
e−rt[δi

2
u2

i (t) − pxi(t)]dt

s.t.
dx1(t)

dt
= a1u1(t) − (f + G)x1(t)

...
dxi(t)

dt
= aiui(t) − (f + G)xi(t)

...
dxn(t)

dt
= anun(t) − (f + G)xn(t)

xi(0) = xi0, i = 1, · · · , n − 1
∑n

i=1 ci = 1, ci ≥ 0

If we fix a vector C = [c1, · · · , cn], then we face a typical optimal control problem.
So, it seems that given one C, we can solve one typical optimal control problem and
get a corresponding optimal objective function value J0(C). In order to make this
idea make sense, we need following theorem:

Theorem 3.1.

Suppose f : Ω × Ω 7→ R, then min
x∈Ω

min
y∈Ω

f(x, y) ≡ min
(x,y)∈Ω×Ω

f(x, y).

Proof. It is obvious that minx∈Ω miny∈Ω f(x, y) ≥ min(x,y)∈Ω×Ω f(x, y). Assume that
minx∈Ω miny∈Ω f(x, y) attains minimum at (x1, y1), and min(x,y)∈Ω×Ω f(x, y) attains
minimum at (x2, y2). And assume that f(x1, y1) > f(x2, y2). Since f(x2, y2) is global
minimum, we have f(x2, y2) = miny f(x2, y). And because f(x1, y1) = miny f(x1, y),
therefore miny f(x1, y) > miny f(x2, y) according to assumption f(x1, y1) > f(x2, y2).
Hence, minx miny f(x, y) ≤ miny f(x2, y) < miny f(x1, y), which implies
min(x,y)∈Ω×Ω f(x, y) cannot attaint minimum at (x1, y1). So it is contradictory, and
we get the equality.

6 N. G. MEDHIN AND WEI WAN

By the above theorem, we can search for the optimal solution of the above differ-
ential game through following steps: given any vector C, we solve an optimal control
problem and get a J0. We will continue till we find such a C such that J0 attains
minimum.

First, we take any C and we draw the necessary conditions for the above optimal
control problem. The Hamiltonian for above optimal control problem is:

H = e−rt

[

n
∑

i=1

ci(
δi

2
u2

i − pxi)

]

+
n

∑

j=1

λj[ajuj − (f + G)xj]

Minimizing H with respect to ui:

∂H

∂ui

= e−rtciδiui + aiλi − (ai − ρk)
n

∑

j=1

λjxj

Solving ∂H
∂ui

for ui explicitly:

ui =
ert

ciδi

[

(ai − ρk)

n
∑

j=1

λjxj − aiλi

]

, i = 1, · · · , n

The costate system comes from:

λ̇i = −
∂H

∂xi

= λi(f + G) + e−rtpci, i = 1, · · · , n

So in order to solve the above optimal control problem, we should solve the following
boundary value problem (BVP):

˙

xi

...
xi

...
xn

= −

f + G · · · 0

0
. . . 0

... f + G
...

0
. . . 0

0 · · · f + G

x1
...
xi

...
xn

+

a1u1
...

aiui

...
anun

˙

λ1
...
λi

...
λn

=

f + G · · · 0

0
. . . 0

... f + G
...

0
. . . 0

0 · · · f + G

λ1
...
λi

...
λn

+ pe−rt

c1
...
ci

...
cn

with boundary conditions:

x1(0)
...

xi(0)
...

xn(0)

=

x10
...

xi0
...

xn0

COOPERATIVE GAMES IN MARKETING 7

λ1(T)
...

λi(T)
...

λn(T)

=

0
...
0
...
0

Thus, given a vector C ∈ Rn, we can solve an optimal control problem to get its
optimal objective value by solving a two point boundary value problem (TBVP). We
now define this relation to be a functional:

T : Rn 7→ R

However, the explicit formula for T does not exist or is unknown, and the feasible do-
main is large. Thus, we cannot solve this optimization problem by the usual methods
from convex optimization or optimization techniques related to gradient. Therefore
we choose evolutionary computation. And in the appendix, an algorithm [4] is given
to solve above optimal control where C is a constant vector. This algorithm will be
called by our evolutionary algorithm.

4. EVOLUTIONARY COMPUTATION

In nonlinear programming problems, the classical methods such as gradient de-
scent, Newton method, and hill climbing work well in some specific problems. In this
paper we employ evolutionary computation. Later, we can see evolutionary compu-
tation may be the only way to solve our optimization problem.

4.1. Operators of Evolutionary Computation. As is well known, any evolution-
ary computation technique will consider the following factors:
1) Representation of individuals in a selected population.
2) A set of operators to generate the next generation.
3) The rate of evaluating the fitness of individuals.

Mutation and recombination operator will be used on the current population to
generate a new population. Mutation operator usually means the creation of a new
solution from one and only one parent. However, recombination operator creates new
individuals by recombining some parts from several individuals. In the following we
will design the mutation and recombination operation used in our algorithm.

The general form of mutation can be in the following form:

Ck(t + 1) = m(Ck(t))

where Ck(t) represents individual k at generation t, and m(·) represents mutation
operator. In our problem, we will take real representation for each individual, that
is,

Ck(t) ∈

{

(ck
1, · · · , ck

n) ∈ Rn |

n
∑

i=1

ck
i = 1, ci > 0

}

We will consider two kinds of mutations. The first is

Ck(t + 1) = m(Ck(t)) = Ck(t) + Mk

8 N. G. MEDHIN AND WEI WAN

where Mk = [Mk
1 , Mk

2 , · · · , Mk
n] is a random vector with

∑n

i=1 Mk
i = 0, and Mk

i is
random variable from uniform distribution U[−ai, +ai], where 0 < ai < min{ck

i (t)}.
Intuitively speaking, we randomly perturb an individual locally to generate a next
generation. This kind of perturbation is so small that it will keep all generated points
in feasible domain. From the following Figure 1, we can visualize this type of mutation
in 3-dimensional space. This type of mutation may lead to possible entrapment in
a local extremum. In our algorithm we use it to look for local extremum. We hope
such mutation could find individuals with better fitness locally. Our second mutation
will help us look in a larger area.

C_3

(0,0,1)

(0,1,0)

(1,0,0)
C_1

C_2

Figure 1. First kind of Mutation

The second kind of mutation we will use is following:

Ck(t + 1) = m(Ck(t))

= m((ck
1, c

k
2, · · · , ck

n))

= (ck
i1
, ck

i2
, · · · , ck

in
)

where the vector [i1, i2, · · · , in] is random permutation of the integers [1, 2, · · · ,n].
With this type of mutation, we can search in a larger area of the feasible domain
instead of local search. We can visualize this type of mutation in 3-dimension in
Figure 2.

Following this mutation we proceed to implement recombination. In biological
systems recombination/crossover is a phenomena which happens between pairs of
chromosomes. Two chromosomes are paralleled together, and broken into some frag-
ments at some places. These fragments are exchanged and linked into a new pair of
chromosomes. The recombination between chromosomes contributes to the diversity
of biological systems. Evolutionary computation mimics this process to form the new
generation. The following is the typical crossover introduced by Holland (1975) [8].
First, two individuals are selected from the population of parents based on some rules.

COOPERATIVE GAMES IN MARKETING 9

C_3

(0,0,1)

(0,1,0)

(1,0,0)
C_1

C_2

Figure 2. Second kind of Mutation

Second, crossover points are chosen based on some rule/s to break these two individ-
ual into several segments. Third, these segments from the parents are exchanged to
form a new generation. Suppose

C1(t) = [c1(t), c2(t), · · · , ck(t), ck+1(t) · · · , cn(t)]

C2(t) = [c′1(t), c
′

2(t), · · · , c′k(t), c
′

k+1(t) · · · , c′n(t)]

The crossover point is randomly chosen from U(2, n − 1), then we get a new pair of
individuals:

C1(t + 1) = [c1(t + 1), c2(t + 1), · · · , ck(t + 1), c′k+1(t + 1) · · · , c′n(t + 1)]

C2(t + 1) = [c′1(t + 1), c′2(t + 1), · · · , c′k(t + 1), ck+1(t + 1) · · · , cn(t + 1)]

This kind of crossover is well suited when an individual is represented in binary form.
When using crossover, we need to consider another issue: the proportion of parents,
that will be undergoing crossover. This is called crossover rate, pc ∈ [0, 1]. Usually,
there are some commonly used crossover rates, [0.45, 0.95] (Grefenstette, 1988) [6].

In continuous optimization, the ”individuals” are usually real-valued functions.
Thus, suppose X(t), Y (t) are two points from the population of parents. Approxi-
mately representing X(t), Y (t) in decimal form, a pair X(t + 1), Y (t + 1) is created
as follows (Reed et. al. (1967)) [10]:

X(t) = x1.x2x3 · · ·xkxk+1 · · ·xn

Y (t) = y1.y2y3 · · · ykyk+1 · · · yn

Then, choosing crossover points in the same way as above, we get

X(t + 1) = x1.x2x3 · · ·xkyk+1 · · · yn

Y (t + 1) = y1.y2y3 · · ·ykxk+1 · · ·xn

10 N. G. MEDHIN AND WEI WAN

The following graph(Figure 3, T. Back, 2000 [14]) illustrates the above crossover
process. However, in our problem, the constraint

∑n

i=1 ci(t) = 1, on the popula-
tion prevents us from using this kind of crossover, so we’d like to choose a convex
recombination to generate a new offspring as follows:

Ck′

(t + 1) = R(Ck(t), Cj(t))

= αCk(t) + (1 − α)Cj(t)

were, R(·, ·) is recombination operator, and α is randomly chosen from the interval
[0, 1] from some distribution. It is obvious that

∑n

i=1 ck′

i (t + 1) = 1, which means the
new offsprings are kept in the feasible domain.

(X(t+1), Y(t+1))
(X(t), Y(t))

(X(t), Y(t))
(X(t+1), Y(t+1))

Figure 3. Crossover in real representation

4.2. Selection Process of Evolutionary Computation. After we use all of the
operators to generate new individuals, we get a new generation. Then, the new
generation will be subjected to a process of selection. All or part of the new generation
may replace all or part of the parent generation that gave rise to it. The selection
process affects the efficiency of the evolutionary computation, and it provides the
driving force behind an evolutionary algorithm. When we compare different selection
methods, we use a general term-‘selection pressure’. ‘Selection pressure’ is another
way of expressing ‘selection criteria’. We can expect that the stricter the ‘selection
criteria’ is, the faster the rate of convergence. In the literature there are two measures
to analyze selection methods: take-over time and selection intensity. ‘Take-over time’
means that the average time required for the best individual in some generation from
birth to be replaced by others under the effect of selection. Goldberg, Deb 1991 [7]
first introduced this concept. ‘Selection intensity’ is defined in terms of the average
fitness before and after selection. There are two typical ways of selections. One way
is choosing some best individuals to reproduce according to their fitness. This is
often seen in Genetic Algorithm (GA). That is, GA will begin with population of µ

and select λ according to fitness to produce new generation with size of λ. However,
in Evolutionary Strategies (ES) or Evolutionary Programming (EP), all individuals

COOPERATIVE GAMES IN MARKETING 11

are allowed to reproduce. Then, choosing some best individuals from new produced
individuals to make up next generations. So, at the beginning, ES/EP will initiate
µ people, and produce λ people, and truncate λ people out according to their fitness
and make a new generation µ. In our evolutionary algorithm to solve our model, we
will adopt the way of ES/EP to generate new offspring and make selection.

5. DESIGN OF ALGORITHM

An individual in our model is a vector {(c1, · · · , cn) ∈ Rn|
∑n

i=1 ci = 1, ci ≥ 0},
so we have a constrained optimization problem. Usually there are two ways to deal
with constraints. One is using mutation operator that generates feasible solutions.
Another way to deal with constraints is using a penalty function which eliminates
infeasible offsprings from becoming part of the next generation. In our algorithm we
will adopt the first way to make an offspring be in the feasible domain. And in each
generation, the size of population stays the same, which is µ.

We take the fitness function as the functional:

T : Rn 7→ R

defined in section 2. Given a vector Ck(t) ∈ R
n, evaluating the fitness function

involves solving an optimal control problem.

The process of evolutionary computation is as follows. Our algorithm begins with
a ‘big’ population with size µ + λ:

P(0) = {C1(0),C2(0), · · · ,Cµ+λ(0)},

where Ck(0) represents one individual, or a potential solution to the problem, which
are randomly generated in the feasible domain. Then, each individual will be evalu-
ated by a fitness function to give its fitness value.

Then, we sort Ck(0), k = 1, · · · , µ + λ by fitness. Then, we will choose determin-
istically the best µ individuals as the first generation

P(1) = {C1(1),C2(1), · · · ,Cµ(1)}.

After this, mutation and recombination process will generate µ + λ new individ-
uals. These µ + λ individuals come in several ways:

1. We always directly move approximately p0% of the best parents in P (1) to the
next generation.

2. Mutation 1. We will choose µ ∗ p1% from P (1) with best fitness values and
apply the first kind of mutation described in section 3. We want to search for
individual with better fitness values in the neighborhood of the Ck(1)’s. Using
the first type mutation, we hope to find local minimum.

3. Mutation 2. We will randomly choose µ∗p2% individuals from P (1) to apply the
second type of mutation. In this way, we can search in a large area of feasible
domain and escape from local minimum.

4. Recombination/crossover. We will take µ∗p3% individuals from P (1) randomly,
and do convex combination between any two individuals as follows:

aiC
k + (1 − ai)C

j

12 N. G. MEDHIN AND WEI WAN

where ai is generated from Uniform distribution U[0, 1]. Then the constraints
∑n

i=1 ck
i = 1 are always satisfied.

5. Immigration. In order to keep searching in a large feasible, we generate randomly
some individuals.

Once we use the above selection, mutation and recombination to generate µ + λ

individuals, we will use fitness function to evaluate the new population
C1,C2, · · · ,C(µ+λ). From this new population of size µ + λ we select µ of them with
best fitness to move them into the second generation of population:

P(2) = {C1(2),C2(2), · · · ,Cµ(2)}.

This process will continue till

min {T(C1(t)), · · · ,T(Cµ(t))}

change little or maximum iteration is arrived at. Then, this minimum value and the
related vector Ck∗(t)is the solution of our model. We summarize the above process
as follows:

t = 0

Initialize : P (t) = {C1(t), C2(t), · · · , Cµ+λ(t)}

Evaluate : {T(C1(t)),T(C2(t)), · · · ,T(Cµ+λ(t))}

Select : P (1) := {C1(1), C2(1), · · · , Cµ(1)}

Iterate : While STOP conditions not satistied

{
Mutate, Recombine, Immigrate to generate a population of size µ + λ

Evaluate : {T (C1(t)), T (C2(t)), · · · , T (Cµ+λ(t))}
Select to get P (t + 1) = {C1(t + 1), C2(t + 1), · · · , Cµ(t + 1)}
t = t + 1
}

From the above evolutionary process we can see that:

1. The size of the population is always kept same, that is µ.
2. Each individual in population P(t) has a chance to reproduce.
3. Deterministically each generation will keep the best individuals of the previous

generation, so in each iteration the objective value J0 will be non-increasing. In
fact, we expect it to decrease.

4. In our problem, the efficiency of solving the optimal control problem is a key
factor to determine whether we can use Evolutionary Algorithm to solve it suc-
cessfully. An efficient algorithm to solve the optimal control problem is necessary.
We will call the algorithm [4] presented in the appendix, to evaluate the fitness
function.

5. The iteration process will continue till the a predetermined convergence criteria
is met, or a specified number of iterations has taken place.

COOPERATIVE GAMES IN MARKETING 13

Now we convert the above framework of evolutionary process into executable
algorithm which is used to solve our model.

Algorithm 5.1 :
Step 1:
Randomly generate 60 individuals: {Ci, i = 1, · · · , 60}.
Step 2:
Evaluate {Ci, i = 1, · · · , 60} by fitness function. Set t = 1. Select 20 of the {C i, i =
1, · · · , 60} to make up the first generation of population {C i(t), i = 1, · · · , 20} by
fitness.
Step 3:
Convex recombination between pairs of {C1(t), C2(t), · · · , C6(t)} to generate 15 in-
dividuals.
Mutation 1. Randomly choose 12 individuals from {Ci(t), i = 1, · · · , 20}, and ran-
domly permute {Cj(t), j = i1, · · · , i12}’s n coordinates to generate 12 new individu-
als.
Mutation 2. Taking the 3 best individuals {Cj(t), j = i1, i2, i3} from {Ci(t), i =
1, · · · , 20}. Generating random vectors {M i = [M i1 , · · · , M in], i = 1, · · · , 18}, where
∑n

k=1 M ik = 0, then generating 18 new individuals by adding a random vector such
as M i to one of the Ci(t) so that Ci(t + 1) = Ci(t) + M i.
Keep the best 3 individuals from {Ci(t), i = 1, · · · , 20} into next generation.
Immigrate 12 individuals, i.e., introduce 12 new individuals that are feasible.
Now we get a new population: {C1, · · · , C60}, where 15 come from Step 3, 12 from
mutation 1, 18 from Mutation 2, 3 best individuals from the original 20, and 12 newly
introduced.
Step 4:
From the population of the new 60 select 20 best individuals to make up the new
generation {Ci(t + 1), i = 1, · · · , 20}.
Set t = t + 1. If stopping criteria is not met, go back to step 3.

6. ANALYSIS OF RESULTS

In our experiment, we will take n = 3, which means cooperative differential game
involving three players. We will adopt the following coefficients:

δ1 = 20; δ2 = 18; δ3 = 21;
a1 = 0.008; a2 = 0.010; a3 = 0.007;

κ = 0.01; ρ = .6; p = 5; r = .1;

Looking at δi, i = 1, 2, 3, we can see that company 2’s cost for control/advertisment is
lowest. By looking at ai, i = 1, 2, 3, we can see that company 2’s control/advertisment
has the most attractiveness to the customers. So we can say that company 2 is the
‘biggest’ one.

We solve our problem using Algorithm 5.1 above. We run the program twice with
different stopping criteria. The stopping criteria in the first case is: Maximum number

of iterations = 102 and difference of objective values in two consecutive iterations

≤ 10−9. The stopping criteria in the second case is: Maximum of iterations = 103

and difference of objective value in two consecutive iterations ≤ 10−12. The following
are the results and analysis.

14 N. G. MEDHIN AND WEI WAN

Running time in the two cases are

2.83 ∗ 103 ≈ 48mins, 3.25 ∗ 104 ≈ 9.05hours

respectively. In the second case, we use stricter criteria.

Optimal C vector in two cases are

c1 c2 c3

Case 1 0.02329017280686 0.96422023625082 0.01248959094232
Case 2 0.02213275535129 0.97438357690981 0.00348366773889

Table 1. Optimal C from different stopping criteria

The manner of decrease of the objective value J0 can be found in Figure

4. Our problem is a minimization problem, and from the figure, we can see that
the objective value is always non-increasing, because in our evolution algorithm, we
always move the best individual directly into the next generation.

Optimal state trajectories can be found in Figure 5. The sale of the product
still decreases to zero as time goes. However, from Figure 9, where we compare
the state trajectories between cooperative and noncooperative differential games, in
the same setting, we can find something interesting. For the ‘biggest’ company, the
rate of decrease of sale’s rate in the cooperative case is slower than that in the non-
cooperative case. However, in the case of the other two companies, the rates of their
sales’ rates decrease faster in the cooperative case. The phenomenon will be explained
in the analysis of control trajectories.

Optimal control trajectories can be found in Figure 6. First let us analyze
the problem intuitively without computation. Company 2 is the ‘strongest’ company,
whose cost of control is lowest, and control’s effectiveness is biggest. Thus, if you
were in the group with the ‘strongest’ player, what will you do? It is logical to let the
‘strongest’ player use his control as much as possible. From our computational result,
we can see this situation does happen. Company 2’s control is bigger than that in the
noncooperative case, and bigger than zero all the time (Figure 7). However, company
1’s and company 3’s controls assume negative values in some interval. The negative
values of the controls in our marketing model means that company 1 and company 3
will not invest in advertising, but increase the price of product in some sense. So this
can explain why the state trajectories of company 1 and company 3 will decrease faster
in the cooperative case. The faster-decrease of sale will not hurt them but benefit
them, because of the higher price of the product. This situation will happen only
in cooperative case. And it can be explained and found in reality. In the market of
oligarchy, the lone strongest company will adopt any suitable control to maximize its
own profit without considering the interest of customers. Our cooperative game model
can explain this rational of people. That is, the strongest company may consider itself
to be a single company formed by combining the three companies in the best possible
proportion for maximum profit. If (u1, u2, u3) is the corresponding control, then the
strongest company, which is 2, in the present case, will use strategy u2. In this way
he may decrease his cost of advertising.

Optimality of the C vector. Sometimes it is difficult to determine whether
a solution of evolutionary algorithm is optimal or not. In our case, we can at least

COOPERATIVE GAMES IN MARKETING 15

say the C we have found is ‘almost’ optimal solution. Based on the above analysis
and common sense, we can expect that the more efficient company will have bigger
value of ci. In the above optimal C, we get c2 ≫ c1 > c2, which means in the convex
combination of objective functions of three companies, company 2 takes the biggest
part of the whole objective function. So we can say this C is approaching the true
optimal solution.

Other Observation relating to noncooperative game. Here we’d like to
compare results in cooperative case with that of noncooperative case. We set up
a noncooperative differential game model based on the same assumptions as in the
previous section. Then, each company has the following problem:

minui
Ji =

∫ T

0
e−rt[δi

2
u2

i (t) − pxi(t)]dt

s.t.

ẋ1(t) = a1u1(t) − (f + G)x1(t)
...

ẋi(t) = aiui(t) − (f + G)xi(t)
...

ẋn(t) = anun(t) − (f + G)xn(t)

xi(0) = xi0, i = 1, · · · , n − 1

Suppose J∗

i , i = 1, · · · ,n are optimal objective values for the above noncooperative
differential game model, and the optimization is based on Nash Equilibrium.
Suppose that [c∗1, c

∗

2, · · · , c∗n],u∗

1,u
∗

2, · · · ,u∗

n,x∗

1,x
∗

2, · · · ,x∗

n constitute optimal solu-
tion for our cooperativedifferential game model above. From the numerical results,
we have the relation:

J∗

0 =

n
∑

i=1

c∗i

∫ T

0

e−rt[
δi

2
u∗2

i (t) − px∗

i (t)]dt <

n
∑

i=1

c∗i · J
∗

i

That is, optimal objective value of cooperative differential game is always less than
the same convex combination of the solution of the noncooperative differential game.

Efficiency of evolutionary computation. We have mentioned that one of the
criteria to evaluate efficiency of an evolutionary algorithm is to see how fast its fittest
individual is replaced. Let re = number of times of a most fit individual is replaced

number of iterations
.

In Figure 10, we have the graph of J0(i) − J0(i − 1). In our evolutionary algorithm,
re ≈ 1. This is because we have used two kinds of mutation operator, which do
search locally and globally separately. The first one is doing local perturbation, by
which probabilistically we can always decrease the objective value in local search as
the objective function and state equations are smooth locally.

7. CONCLUSION

Cooperation is a fact of life in modern economy. In this paper, we analyzed coop-
erative differential game model in the final stage of product life cycle. Evolutionary
algorithm was used for the necessary numerical computation. In the literature, usu-
ally researchers use analytical methods to solve cooperative differential game models

16 N. G. MEDHIN AND WEI WAN

0 20 40 60 80 100 120
−3.55

−3.5

−3.45

−3.4

−3.35

−3.3

−3.25

−3.2

Number of Iterations

O
bj

ec
tiv

e
V

al
ue

0 200 400 600 800 1000 1200
−3.5353

−3.5353

−3.5353

−3.5353

−3.5353

−3.5353

−3.5353

−3.5353

−3.5353

−3.5353

Number of iterations

O
bj

ec
tiv

e
V

al
ue

Figure 4. The search process for optimal objective value

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t
number of iteration =100

x 1(t
)

&
 x

2(t
)

&
 x

3(t
)

State(x
1
(t),x

2
(t),x

3
(t)) trajectories

x

1

x
2

x
3

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

x 1(t
)

&
 x

2(t
)

&
 x

3(t
)

State(x
1
(t),x

2
(t),x

3
(t)) trajectories

x

1

x
2

x
3

Figure 5. Optimal state trajectories

0 2 4 6 8 10
−14

−12

−10

−8

−6

−4

−2

0

2

4
x 10

−3

t

u 1(t
)

&
&

 u
2(t

)
&

&
 u

3(t
)

Control(u
1
(t), u

2
(t)) and u

3
(t) trajectories

u
1

u
2

u
3

0 2 4 6 8 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

t

u 1(t
)

&
&

 u
2(t

)
&

&
 u

3(t
)

Control(u
1
(t), u

2
(t)) and u

3
(t) trajectories

u
1

u
2

u
3

Figure 6. Optimal control trajectories

because of the simplicity of their models. There is no efficient way to solve cooperative
differential game if the model is complicated.

Evolutionary computation is an efficient optimization computation method mod-
elled on the biological evolutionary processes. The nature of evolutionary process in

COOPERATIVE GAMES IN MARKETING 17

0 2 4 6 8 10
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−5

t

Comparison of controls between Cooperative and NonCooperative

D
iff

er
en

ce

u2
coop

−u2
noncoop

0 2 4 6 8 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

−5

t

D
iff

er
en

ce

Comparison of controls between Cooperative and NonCooperative

u2
coop

 − u2
noncoop

Figure 7. Comparison of control(Company 2)

0 2 4 6 8 10
−0.015

−0.01

−0.005

0

t

D
iff

er
en

ce

Comparison of controls between Cooperative and NonCooperative

u1
coop

−u1
noncoop

u3
coop

−u3
noncoop

0 2 4 6 8 10
−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

t

D
iff

er
en

ce

Comparison of controls between Cooperative and NonCooperative

u1
coop

−u1
noncoop

u3
coop

−u3
noncoop

Figure 8. Comparison of control(Company 1,3)

0 2 4 6 8 10
−7

−6

−5

−4

−3

−2

−1

0

1
x 10

−5

t

D
iff

er
en

ce

Comparison of states between Cooperative and NonCooperative

x1
coop

−x1
noncoop

x2
coop

−x2
noncoop

x3
coop

−x3
noncoop

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

t

D
iff

er
en

ce

Comparison of states between Cooperative and NonCooperative

x1

coop
−x1

noncoop

x2
coop

−x2
noncoop

x3
coop

−x3
noncoop

Figure 9. Comparison of state

biological system is the process of choosing the ‘best’ to live and continue on. So
we mimic this biological process in numerical optimization. There are many kinds
of evolutionary computation. And their difference comes from the differences of the

18 N. G. MEDHIN AND WEI WAN

0 20 40 60 80 100
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Iterations

J 0(i)
−

J 0(i−
1)

0 200 400 600 800 1000
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−10

Iteration

J 0(i)
−

J 0(i−
1)

Figure 10. Changing of objective value

operators. The key factors to employ in evolutionary algorithm are: 1) choosing the
right operators for the specific problem. 2) efficiency of fitness function to evaluate
individuals. The characteristics of our problem are: 1) it is a constrained optimization
problem, which requires that we should choose some special mutation and recombina-
tion operator. 2) There is no explicit formula for the functional to be optimized. This
functional is complicated. Thus, we cannot use routine optimization technique based
on gradient methods. Evolutionary computation is the only way out. By choosing ap-
propriate operators and using algorithm in the Appendix, which solves the optimal
control problem efficiently, we set up Algorithm 5.1 to solve the cooperative differen-
tial game efficiently. And it is our view that our’s is the most general algorithm to
solve cooperative differential game in current literature.

By exploiting the specific cooperative differential game model in marketing, we
found general rules for the game.

1. In a fixed group, cooperation is always more beneficial than noncooperation
for the whole group, and then more beneficial to each player based on rational

axiom. This is common sense in our real experience, and is shown by our model.
2. Choice of cooperative or noncooperative game is more difficult in solving a spe-

cific game. This is because, in reality, there are many factors we should consider
before we choose to play a specific kind of game. These considerations are
a) How many players will be involved in the game? Are they the same kind of
players? For example, in our model if we take the customer as a player, then we
have a zero-sum game. It will not be helpful to play cooperative game in this
case.
b) The different status between different players as a factor: For the ‘strong’
player, it may not always be beneficial to play cooperative game. Leader-follower
game is better than cooperative game for the leader.
c) In reality, in the process of playing a game it is not unusual that some players
deviate from one type of game to another. For example, a ‘strong’ player may
change from cooperative game to a leader-follower game. Or, some players may
cooperate to defend against others. Thus, how to keep all players in the same
kind of game is an important issue in reality. It is true that all players may not
want to stay with a certain type of game if they perceive it is suboptimal to

COOPERATIVE GAMES IN MARKETING 19

do so. Thus, they may opt to play noncooperative game instead of cooperative
game.
d) How long will the game last? This will affect the choice of different types of
game too.

Of course there may be many other factors that determine or affect the choice of a
game. We propose define all these factors as the ‘scope’ of the game. That is, it is
important to know how many players are involved and their status. The choice of a
game is a dynamic process determined by the ‘scope’ of the game. When we play a
game in reality, figuring out or choosing the ‘scope’ of the game is more complicated
and is a key issue to success in the game. We may need to open another research
topic on this.

8. APPENDIX

The following algorithm is used to solve the BVPs in section 2, then solve the
optimal control problem.
Algorithm8.1 :

1. Guessing xi(T)(0), i = 1, · · · , n, and using the result from steepest descent algo-
rithm.

2. Solving ODE backward using RK4(Runge-Kutta) by xi(T)(0), mij(T)
3. For i = 1, · · · , n

generate ∆xi(T) randomly from Uniform Distribution in (−ǫ, +ǫ).
Use [x1(T)(0), · · · , xi(T)(0) + ∆xi(T), · · · , xn(T)(0), mij(T)] to solve the ODE
backward.
Calculate ∆Fj , and

∆Fj

∆xi(T)
, for j = 1, · · · , n

End. Then, proceed to get J0

4. Solve J0 · y0 = F (X0(T)) for y0.
5. Update xi(T)(0) by X1(T) = X0(T) − y0, and let k = 1
6. While ‖ Fj ‖> ε for j = 1, · · · , n and k ≤ MaxIteration, proceed as follows

For i = 1, · · · , n

Generating ∆xi(T) randomly from Uniform Distribution in (−ǫ, +ǫ).
Using [x1(T)(k), · · · , xi(T)(k)+∆xi(T), · · · , xn(T)(k), mij(T)] to solve ODE back-
ward.
Calculate ∆Fj , and

∆Fj

∆xi(T)
, for j = 1, · · · , n

End. Then, get Jk.
Solve Jk · yk = F (Xk(T)) for yk

Update xi(T)(k) by Xk+1(T) = Xk(T) − yk

Using [x1(T)(k+1), · · · , xi(T)(k+1), · · · , xn(T)(k+1), mij(T)] to solve ODE back-
ward.
Calculate Fj(X(T)(k+1))
End of While statement.

7. Calculate ui(t) and Ji

REFERENCES

[1] Leitmann G., Cooperative and Non-cooperative Many Players Differential Games., Springer-

Verlag, New York, 1974.

20 N. G. MEDHIN AND WEI WAN

[2] Medhin, N. G., Wan Wei, Multi-New Product Competition in Duopoly: A Differential Game

Analysis.

[3] Medhin, N. G., Wan Wei, Multi-New Product Competition in Duopoly: A Differential Game

Analysis.

[4] Medhin, N. G., Wan Wei, Competition in the last stage of Product Life-cycle.

[5] Medhin, N. G., Wan Wei, Leader-Follower Games in Marketing: A Differential Game Ap-

proach.

[6] FitzPatrick,J. M.,Grefensette, J. J. Genetic Algorithms in noisy environments, Machine Learn-

ing, Vol.3, pp. 101–120, 1988.

[7] Goldberg D.E., Del.K.A comparative analysis of selection schemes used in genetic algorithms,

in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed., Morgan Kaufman, 1991.

[8] Holland, J. H., Adaptation in natural and artificial systems, Ann Arbor, MI: University of

Michigan Press, 1975.

[9] Jorgensen S., G. Martin-Herran and G. Zaccour, Agreeability and Time-consistency in Linear-

State Differential Games., Journal of optimization theory and applications, Vol.119, No. 1, pp.

49–63, 2003.

[10] Reed J., R. Toombs, and N.A. Barricelli. Simulation of biological evolution and machine learn-

ing. i. selection of self-reproducing numeric patterns by data processing machines, effects of

hereditary control, mutation type and crossing. Journal of Theoretical Biology, 17, 1967, pp.

319–342.

[11] Schwefe H.P., Evolution and Optimum Seeking, John Wiley, 1995.

[12] Stalford H.L., Criteria for Pareto-Optimality in Cooperative Differential Games, Journal of

Optimization Theory and Applications. Vol.9, No. 6, 1972

[13] Steffen Jorgensen, Georges Zaccour, Differential Games in Marketing, Kluwer Academic Pub-

lishers, 2004

[14] Thomas Back, David B Fogel, and Zbigniew MichalewiczEvolutionary Computation: Basic

Algorithm and Operators, Institute of Physics Publishing, Bristol and Philadelphia, 2000

[15] Rainer Storn, Kenneth Price, Differential Evolution - A simple and efficient adaptive scheme

for global optimization over continuous spaces, 1995

