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ABSTRACT. In this paper, the robust exponential stability problem is investigated for a class

of uncertain Markovian jumping stochastic Cohen-Grossberg type bidirectional associative memory

neural networks (CGBAMNN) with time-varying delays and reaction-diffusion terms. By using

the Lyapunov stability theory and linear matrix inequality (LMI) technique, some robust stability

conditions guaranteeing the global robust convergence of the equilibrium point are derived. Two

numerical examples are given to show the effectiveness of the proposed results.
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1. INTRODUCTION

The Cohen-Grossberg type bidirectional associative memory neural networks

(CGBAMNN) model (i.e., the BAM model that possesses Cohen-Grossberg dynam-

ics), initially proposed by Cohen and Grossberg [4], have their promising potential

for the tasks of parallel computation, associative memory and have great ability to

solve difficult optimization problems. In such applications, it is of prime importance

to ensure that the equilibrium points of designed neural networks are stable [7]. Now

there have been many results on the stability and convergence of equilibrium point of

Cohen-Grossberg-type BAM neural networks with delays, see [1, 3, 5, 18, 19]. For ex-

ample, by constructing some suitable Lyapunov functionals, authors [5] investigated

the asymptotic stability of a class of Cohen-Grossberg-type BAM neural networks

with constant delays. In [3], authors further investigated the global exponential sta-

bility for Cohen-Grossberg-type BAM neural networks with time-varying delays by

using Lyapunov function, M-matrix theory and inequality technique.

Markovian jump system has jumping parameters which are usually governed by

a continuous-time discrete-state homogenous Markov process, and each state of the
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parameter represents a mode of the system. Much work has been done for Markov-

ian jumping linear system in the literature, and the stability problems have been

extensively investigated, see for example [11, 12, 13] and references therein. Neural

networks may also experience such abrupt changes, so Markovian jumping parame-

ters are also introduced into neural networks, see [6, 9, 15, 16]. In [16], the authors

studied the exponential stability of delayed neural networks with Markovian jumping

parameters. The robust stability problem for a stochastic neural network with both

parameter jumping and parameter uncertainties has been considered by [6]. Further

the global exponential stability of stochastic BAM neural networks with Markovian

jumping parameters has been studied by authors in [8, 10]. In [14], the robust sta-

bility of uncertain Markovian jumping Cohen-Grossberg neural networks has been

investigated.

Diffusion effect cannot be avoided in neural networks when electrons are moving

in asymmetric electromagnetic fields. So it is most important to consider that the

activation vary in space as well as in time. Recently several authors have considered

the stability of neural networks with reaction-diffusion terms, which are expressed by

partial differential equations. The function of actual delayed systems are influenced

by unknown disturbances, which may be regarded as stochastic. In order to fix these

problems, the system dynamics are suitably approximated by a stochastic linear or

nonlinear delayed system. Thus, stochastic delay neural networks have their own

characteristic and it is desirable to obtain stability criteria that make full use of these

characteristics.

Motivated by the above discussion, in this paper, we are to investigate the ro-

bustly exponentially stable of stochastic CGBAMNN with reaction diffusion term and

Markovian jumping parameter. However, the LMI based stability criterion for the

robust stability stochastic CGBAMNN with reaction diffusion term and Markovian

jumping parameter has never been tackled. We have given a new criteria to prove

robust exponential stability of stochastic CGBAMNN with reaction-diffusion term

and Markovian jump parameters by constructing Lyapunov-Krasovskii functional in

terms of LMI, which can be easily calculated by MATLAB toolbox. Numerical exam-

ples are given to illustrate the effectiveness and less conservativeness of the proposed

system.

2. MODEL DESCRIPTIONS AND PRELIMINARIES

Consider the CGBAMNN with reaction-diffusion terms
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
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

∂uı(t)
∂t

=
∑l

k=1
∂

∂xk
(Dık

∂uı

∂xk
) − aı(uı(t, x))

[

bı(uı(t, x))

−
∑m

=1 hıf(v(t, x)) −
∑m

=1 h
∗
ıf(v(t− h2(t), x)) − Iı

]

∂v(t)
∂t

=
∑l

k=1
∂

∂xk
(D∗

k
∂v

∂xk
) − c(v(t, x))

[

e(v(t, x))

−
∑n

ı=1wıgı(uı(t, x)) −
∑n

ı=1w
∗
ıgı(uı(t− h1(t), x)) − J

]

(2.1)

where

• S : A compact set with smooth boundary ∂S and mes S > 0 in R
l. L2(S) be

the space of real Lebesgue measurable functions on S and be a Banach space for

L2 − norm.

‖u(t)‖2
2 =

∫

S

u2(t, x)dx; ‖v(t)‖2
2 =

∫

S

v2(t, x)dx

• x = x1, x2, . . . , xl ∈ S ⊂ R
l is a space variable.

• u(t) = (u1(t), u2(t), . . . , un(t))T ∈ R
n and v(t) = (v1(t), v2(t), . . . , vm(t))T ∈ R

m

• uı(t), v(t) denote the state of the ıth and th neuron from neural field Fu and Fv

at time t respectively.

• gı, f denote the activation functions of the ıth, th neuron from Fu and Fv re-

spectively.

• Iı and J are constants which denote the external inputs on the ıth and th neuron

from neural field Fu and Fv respectively.

• h1(t) and h2(t) correspond to the transmission delays and satisfy 0 ≤ h1(t) ≤

τ1 < 1 and 0 ≤ h2(t) ≤ τ2 < 1. ḣ1(t) and ḣ2(t) are the derivative of h1(t) and

h2(t), max(ḣ1(t)) ≤ η1 < 1 and max(ḣ2(t)) ≤ η2 < 1 respectively.

• aı(uı(t)) and c(v(t)) represent amplification functions.

• bı(uı(t)) and e(v(t)) are appropriately behaved functions such that the solution

of model is remain bounded.

• hı, wı, h
∗
ı and w∗

ı denote the connection strengths.

• Dık = Dık(t, x, u) ≤ 0; D∗
k = D∗

k(t, x, v) ≤ 0 denote smooth functions corre-

spond to the transmission diffusion operators.

The initial conditions are given by






uı(s) = φuı
(s) s ∈ (−τ1ı, 0]

v(s) = φv
(s) s ∈ (−τ2, 0]

(2.2)

here φuı
(s) and φv

(s) denote the real-valued continuous functions.
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For the purpose of simplicity, we rewrite the eqn (2.1) as the following vector

form.

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























∂u(t)
∂t

= ∇ · (D(t, x, u) ◦ ∇u) −A(u(t))
[

B(u(t)) −H0f(v(t))

−H1f(v(t− h2(t))) − I
]

∂v(t)
∂t

= ∇ · (D∗(t, x, v) ◦ ∇v) − B(v(t))
[

E(v(t)) −W0g(u(t))

−W1g(u(t− h1(t))) − J
]

(2.3)

where

u(t) = (u1(t), u2(t), . . . , un(t))
T , v(t) = (v1(t), v2(t), . . . , vm(t))T ,

D(t, x, u) = (Dik(t, x, u))n×l, D∗(t, x, v) = (D∗
jk(t, x, v))m×l,

∇u =
(

∇u1,∇u2, . . . ,∇un

)

, ∇v =
(

∇v1,∇v2, . . . ,∇vm

)

,

∇u1 =
(∂u1

∂x1

,
∂u2

∂x2

, . . . ,
∂un

∂xl

)

, ∇v1 =
(∂v1

∂x1

,
∂v2

∂x2

, . . . ,
∂vm

∂xl

)

,

A(u(t)) = diag
(

a1(u(t)), a2(u(t)), . . . , an(u(t))
)

,

B(v(t)) = diag
(

c1(v(t)), c2(v(t)), . . . , cm(v(t))
)

,

B = (bı)n×1, E = (e)m×1, H0 = (hı)n×m, H1 = (h∗ı)n×m,

W0 = (wı)m×n, W1 = (w∗
ı)m×n,

(D ◦ ∇u) =

(

Dık

∂uı

∂xk

)

, (D∗ ◦ ∇v) =

(

D∗
k

∂v

∂xk

)

.

here ◦ denotes Hadmard product of matrix D and ∇u ; D∗ and ∇v. We suppress

u(t, x) and v(t, x) as u(t) and v(t) respectively.

3. MAIN RESULT

In this section we state some results and definitions that are needed to prove the

main theorem

Lemma 1 ([17]).
∫

S

uT (t, x)
[

∇ · (D(t, x, u) ◦ ∇u(t, x))
]

dx

= −

∫

S

(

D(t, x, u) · (∇u(t, x) ◦ ∇u(t, x))
)

Edx

where

∇u ◦ ∇u = ((∇u1 ◦ ∇u1), . . . , (∇un ◦ ∇un))
T ,

∇ui ◦ ∇uı = ((
∂uı

∂x1

)2, . . . , (
∂uı

∂xl

)2)T ,

D · (∇u ◦ ∇u) = ((D1 · (∇u1 ◦ ∇u1)), . . . , (Dn · (∇un ◦ ∇un))),
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D = (D1, . . . , Dn)T , Dı = (Dı1, . . . , Dıl)
T

and

E = (1, . . . , 1)Tfor (ı = 1, 2, . . . , n).

Further,
∫

S

vT (t, x)
[

∇ · (D∗(t, x, v) ◦ ∇v(t, x))
]

dx

= −

∫

S

(

D∗(t, x, v) · (∇v(t, x) ◦ ∇v(t, x))
)

Edx

where

∇v ◦ ∇v = ((∇v1 ◦ ∇v1), . . . , (∇vm ◦ ∇vm))T ,

∇v ◦ ∇v = ((
∂v

∂x1

)2, . . . , (
∂v

∂xl

)2)T ,

D∗ · (∇v ◦ ∇v) = ((D∗
1 · (∇v1 ◦ ∇v1)), . . . , (D

∗
m · (∇vm ◦ ∇vm))),

D∗ = (D∗
1, . . . , D

∗
m)T , D∗

 = (D∗
1, . . . , D

∗
l)

T

and

E = (1, . . . , 1)T for ( = 1, 2, . . . , m).

Lemma 2. Let x and y be any n dimensional real vectors and ε be a positive scalar.

Then the following matrix inequality holds

xTy + yTx ≤ ε−1xTx+ εyTy.

Lemma 3 ([2]). The LMI




Q(t) S(t)

ST (t) R(t)



 < 0

where Q(t) = QT (t); R(t) = RT (t) and S(t) depend on t, is equivalent to any one of

the following conditions

(S1) R(t) > 0, Q(t) − S(t)R−1(t)ST (t) > 0

(S2) Q(t) > 0, R(t) − S(t)Q−1(t)ST (t) > 0

Definition 1. The equilibrium solution of the NNs is said to be robust exponentially

stable for all admissible uncertainties in mean square if there exists a pair of constant

γ and ρ such that

E‖x(t, φ1, φ2)‖
2 ≤ ρe−γt sup

τ̄<s<0

(

E‖φ1(s)‖ + E‖φ2(s)‖
)

Throughout this paper, we make the following assumptions
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(H1) The neuron activation functions fı and g are bounded Lipschitz continuous that

is, there exist constants L1ı > 0 and L2 > 0 such that

|fı(ξ1) − fı(ξ2)| ≤ L1ı|(ξ1 − ξ2)|

|g(ξ1) − g(ξ2)| ≤ L2|(ξ1 − ξ2)|

where ξ1, ξ2 ∈ R, ı = 1, 2, . . . , n,  = 1, 2, . . . , m

(H2) 0 < Ai < Ai(u(t)) ≤ Āi < 1

0 < Bi < Bi(v(t)) ≤ B̄i < 1

(H3) z1(t)β1i(z1(t)) > µiz
2
1(t) µi > 0

z2(t)β2i(z2(t)) > ∆iz
2
2(t) ∆i > 0

(H4) ∆H0i = M0iθ(t)N0i; ∆H1i = M1iθ(t)N1i; ∆W0i = M2iθ(t)N2i;

∆W1i = M3iθ(t)N3i; θT (t)θ(t) < I

(H5)

(a)
1

2
trace

[

σT
1 (·)

(

∫

S

2eαtPidx
)

σ1(·)
]

≤

∫

S

{

eαt
[

F T (z2(t))X1iF (z2(t))

+ F T (z2(t− h2(t)))X2iF (z2(t− h2(t)))
]}

dx

(b)
1

2
trace

[

σT
2 (·)

(

∫

S

2eαtRidx
)

σ2(·)
]

≤

∫

S

{

eαt
[

GT (z1(t))X̄1iG(z1(t))

+GT (z1(t− h1(t)))X̄2iG(z1(t− h1(t)))
]}

dx

where Mki, Nki are constant matrices and θ(t) is an unknown matrix representing the

parameter uncertainty.

Let u∗, v∗ be the equilibrium point of the equation (2.3). For the purpose of

simplicity, we can shift the intended equilibrium u∗, v∗ to the origin by letting z1 =

u− u∗ and z2 = v − v∗ then the system (2.3) can be rewritten as follows

∂z1(t)

∂t
= (∇ · (D(t, x, z1) ◦ ∇z1))

−A(z1(t))
[

β1(z1(t)) −H0F (z2(t)) −H1F (z2(t− h2(t)))
]

∂z2(t)

∂t
= (∇ · (D∗(t, x, z2) ◦ ∇z2))

− B(z2(t))
[

β2(z2(t)) −W0G(z1(t)) −W1G(z1(t− h1(t)))
]

where

∇ · (D(t, x, z1) ◦ ∇z1) = ∇ · (D(t, x, z1 + u∗) ◦ ∇z1),

∇ · (D∗(t, x, z2) ◦ ∇z2) = ∇ · (D∗(t, x, z2 + v∗) ◦ ∇z2),

F (z2(t− h2(t))) = f(z2(t− h2(t)) + v∗) − f(v∗),
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G(z1(t− h1(t))) = g(z1(t− h1(t)) + u∗) − g(u∗),

A(z1(t)) = A(z1(t) + u∗), B(z2(t)) = B(z2(t) + u∗),

β1(z1(t)) = B(z1(t) + u∗) − B(u∗),

β2(z2(t)) = E(z2(t) + v∗) − E(v∗),

F (z2(t)) = f(z2(t) + v∗) − f(v∗), G(z1(t)) = g(z1(t) + u∗) − g(u∗).

Now we consider CGBAMNN with uncertain and Markovian jumping parameter

∂z1(t)

∂t
= (∇ · (D(t, x, z1) ◦ ∇z1)) −A(z1(t), r(t))

{

β1(z1(t), r(t)) −
[

H0(r(t))

+ ∆H0(r(t))
]

F (z2(t)) −
[

H1(r(t)) + ∆H1(r(t))
]

F (z2(t− h2(t)))
}

∂z2(t)

∂t
= (∇ · (D∗(t, x, z2) ◦ ∇z2)) − B(z2(t), r(t))

{

β2(z2(t), r(t)) −
[

W0(r(t))

+ ∆W0(r(t))
]

G(z1(t)) −
[

W1(r(t)) + ∆W1(r(t))
]

G(z1(t− h1(t)))
}

where {r(t), t > 0} is a right-continuous Markov process on the probability space

which takes values in the finite space H = {1, 2, . . . , N} with generator Γ = {γij}

(i, j ∈ H) (also called jumping transfer matrix) given by

P{r(t+ ∆) = j|r(t) = i} =







γij∆ + o(∆) if i 6= j

1 + γii∆ + o(∆) if i = j

∆ > 0 and lim∆→0 o(∆)/∆ = 0, γij ≥ 0 is the transition rate from i to j if i 6= j and

γii = −
∑

j 6=i γij.

For a fixed network mode, A(r(t)),Wk(r(t)), Hk(r(t)) (k = 0, 1) are known con-

stant matrices with appropriate dimensions. Recall that the Markov process {r(t),

t > 0} takes values in the finite space {H = 1, 2, . . . , N}. For the sake of simplicity,

we write

A(i) = Ai, Hk(i) = Hki, Wk(i) = Wki (k = 0, 1)

Now we shall work on the network mode r(t) = i, ∀i ∈ H.

∂z1(t)

∂t
= (∇ · (D(t, x, z1) ◦ ∇z1)) −Ai(z1(t))

{

β1i(z1(t)) −H0i(t)F (z2(t))

−H1i(t)F (z2(t− h2(t)))
}

∂z2(t)

∂t
= (∇ · (D∗(t, x, z2) ◦ ∇z2)) − Bi(z2(t))

{

β2i(z2(t)) −W0i(t)G(z1(t))

−W1i(t)G(z1(t− h1(t)))
}

where

H0i(t) = H0i + ∆H0i, H1i(t) = H1i + ∆H1i,

W0i(t) = W0i + ∆W0i, W1i(t) = W1i + ∆W1i.
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Now consider the following uncertain Markovian jumping stochastic CGBAMNN with

time varying delay and reaction diffusion terms.






















































∂z1(t) =
[

(∇ · (D(t, x, z1) ◦ ∇z1)) −Ai(z1(t))
{

β1i(z1(t))

−H0i(t)F (z2(t)) −H1i(t)F (z2(t− h2(t)))
}]

dt

+σ1i

(

t, F (z2(t)), F (z2(t− h2(t)))
)

dω(t)

∂z2(t) =
[

(∇ · (D∗(t, x, z2) ◦ ∇z2)) − Bi(z2(t))
{

β2i(z2(t))

−W0i(t)G(z1(t)) −W1i(t)G(z1(t− h1(t)))
}]

dt

+σ2i

(

t, G(z1(t)), G(z1(t− h1(t)))
)

dω(t)

(3.1)

where ω(t) is a Brownian motion defined on a complete probability space (Ω,Ft, P )

with the filtration {F}t≥0 generated by {ω(s) : 0 ≤ s ≤ t}.

Lemma 4. The trivial solution of stochastic CGBAMNN for simplified model

dz = φ(t, z1(t), z2(t))dt+ ψ(t, z1(t), z2(t))dω(t)(3.2)

where z = (z1, z2)
T

φ : R+ × R
n × R

n → R
n and ψ : R+ × R

n × R
n → R

n×m

is robust exponentially stable if there exists a function V (t, z1, z2) ∈ R+ × R
n × R

n

which is positive definite in the Lyapunov sense and satisfies

LV (t, z1(t), z2(t)) =
∂V (t, z1(t), z2(t))

∂t
+ grad(V (t, z1(t), z2(t)))φ

+
1

2
tr(ψTψ)Hess(V ) < 0

The matrix Hess(V) is the Hessian matrix of second-order partial derivatives in which

φ = (φ1, φ2)
T , ψ = (ψ1, ψ2)

T

where

φ1 =
[

(∇ · (D(t, x, z1) ◦ ∇z1)) −Ai(z1(t))
{

β1i(z1(t)) −H0i(t)F (z2(t))

−H1i(t)F (z2(t− h2(t)))
}]

,

φ2 =
[

(∇ · (D∗(t, x, z2) ◦ ∇z2)) − Bi(z2(t))
{

β2i(z2(t)) −W0i(t)G(z1(t))

−W1i(t)G(z1(t− h1(t)))
}]

,

ψ1 = σ1i

(

t, F (z2(t)), F (z2(t− h2(t)))
)

, ψ2 = σ2i

(

t, G(z1(t)), G(z1(t− h1(t)))
)

.

Theorem 1. Given positive definite matrices W0i,W1i, H0i, H1i and for positive scalar

α, under the given assumptions, the null solution to the model (3.1) is robust expo-

nentially stable in mean square for any time varying delay h1(t) and h2(t) if there
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exist positive symmetric matrices Pi, Ri, Q1, Q2 and positive scalars ε0, ε1 such that

the following LMI holds
















































Ω11 Ω12 0 Ω14 PiM0i PiM1i 0 0 0 0

∗ Ω22 Ω23 0 0 0 RiM2i RiM3i 0 0

∗ ∗ Ω33 0 0 0 0 0 Ω39 0

∗ ∗ ∗ Ω44 0 0 0 0 0 Ω410

∗ ∗ ∗ ∗ − ε0

Āi
I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ − ε0

Āi
I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ − ε1

B̄i
I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − ε1

B̄i
I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε0I

















































< 0(3.3)

Ω11 = αPi + LT
1Q1L1 − 2AiPiµi +

n
∑

j=1

γijPj + B̄iε1L
T
1N

T
2iN2iL1 + LT

1 X̄1iL1,

Ω12 = ĀiPiH0iL2 + B̄iL
T
1W

T
0iRi, Ω14 = ĀiPiH1iL2,

Ω22 = αRi + LT
2Q2L2 − 2BiRi∆i +

n
∑

j=1

γijRj + Āiε0L
T
2N

T
0iN0iL2 + LT

2X1iL2,

Ω23 = B̄iRiW1iL1, Ω33 = LT
1 X̄2iL1 − e−ατ1LT

1Q1L1(1 − η1), Ω39 =
√

B̄iε1L
T
1N

T
3i,

Ω44 = LT
2X2iL2 − e−ατ2LT

2Q2L2(1 − η2), Ω410 =
√

Āiε0L
T
2N

T
1i.

Proof. Consider the following Lyapunov - Krasovskii functional

V (t, z1(t), z2(t)) = V1i(t, z1(t), z2(t)) + V2i(t, z1(t), z2(t))

where

V1i(t, z1(t), z2(t)) =

∫

S

[

eαtzT
1 (t)Piz1(t) +

∫ t

t−h1(t)

eαsGT (z1(s))Q1G
T (z1(s))ds

]

dx,

V2i(t, z1(t), z2(t)) =

∫

S

[

eαtzT
2 (t)Riz2(t) +

∫ t

t−h2(t)

eαsF T (z2(s))Q2F
T (z2(s))ds

]

dx

here Pi = P T
i , Ri = RT

i , Q1 = QT
1 and Q2 = QT

2 . The stability results can be proved

using the following steps

By Itô-differential rule, the stochastic derivative of V along trajectories of (3.1)

is given by

dV (t, z1(t), z2(t)) = LV (t, z1(t), z2(t))dt+
∂V (t, z1(t), z2(t))

∂z
ψ(t, z1(t), z2(t))dω(t).
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Integrating on both sides of the above equation over (0, t) with respect to t and taking

expectation we get

E
[

V (t, z1(t), z2(t))
]

= E
[

V (0, z1(0), z2(0))
]

+ E
[

∫ t

0

LV (t, z1(t), z2(t))dt
]

.(3.4)

The following equalities holds, since
∑n

j=1 γij = 0



























∑n

j=1 γij

∫ t

t−h1(t)
eαs GT (z1(s))Q1G

T (z1(s))ds

=
(

∑n

j=1 γij

)

∫ t

t−h1(t)
eαsGT (z1(s))Q1G

T (z1(s))ds = 0;
∑n

j=1 γij

∫ t

t−h2(t)
eαs F T (z2(s))Q2F

T (z2(s))ds

=
(

∑n

j=1 γij

)

∫ t

t−h2(t)
eαsF T (z2(s))Q2F

T (z2(s))ds = 0.

(3.5)

By using Lemma 1, 2, assumptions (H1)–(H5) and equation (3.5) after some manip-

ulation we have

LV (t,z1(t), z2(t)) ≤ eαt

∫

S

{

zT
1 (t)

[

αPi + LT
1Q1L1 − 2AiPiµi + ε1B̄iL

T
1N

T
2iN2iL1

+ LT
1 X̄1iL1 +

n
∑

j=1

γijPj + ε−1
0 ĀiPiM0iM

T
0iPi + ε−1

0 ĀiPiM1iM
T
1iPi

]

z1(t)

+ zT
2 (t)

[

αRi + LT
2Q2L2 − 2BiRi∆i + ε0ĀiL

T
2N

T
0iN0iL2 + LT

2X1iL2

+
n

∑

j=1

γijRj + ε−1
1 B̄iRiM2iM

T
2iRi + ε−1

1 B̄iRiM3iM
T
3iRi

]

z2(t)

+ zT
1 (t− h1(t))

[

ε1B̄iL
T
1N

T
3iN3iL1 + LT

1 X̄2iL1 − e−ατ1LT
1Q1L1

× (1 − η1)
]

z1(t− h1(t)) + zT
2 (t− h2(t))

[

ε0ĀiL
T
2N

T
1iN1iL2

+ LT
2X2iL2 − e−ατ2LT

2Q2L2(1 − η2)
]

z2(t− h2(t))

+ zT
1 (t)

[

ĀiPiH0iL2 + B̄iL
T
1W

T
0iRi

]

z2(t)

+ zT
1 (t)ĀiPiH1iL2z2(t− h2(t) + zT

2 (t)B̄iRiW1iL1z1(t− h1(t))
}

dx

− 2eαt

∫

S

(

D∗(t, x, z1) · (∇z1 ◦ ∇z1)
)

Edx

− 2eαt

∫

S

(

D∗(t, x, z2) · (∇z2 ◦ ∇z2)
)

Edx.

By using schur complement Lemma 3 and (3.3) we get

LV (t, z1(t), z2(t)) < 0.

which implies the equation (3.4) becomes

E
[

V (t, z1(t), z2(t))
]

≤ E
[

V (t, z1(0), z2(0))
]

(3.6)
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where

E
[

V (t, z1(0), z2(0))
]

= M1E‖φz1
‖2

2 +M2E‖φz2
‖2

2

in which

M1 = λM(Pi) + λM(LT
1Q1L1)

[ 1

α
−
e−αh1(0)

α

]

, E‖φz1
‖2

2 = sup
0<s<h1(0)

E‖z1(s)‖
2
2,

M2 = λM(Ri) + λM(LT
2Q2L2)

[ 1

α
−
e−αh2(0)

α

]

, E‖φz2
‖2

2 = sup
0<s<h2(0)

E‖z2(s)‖
2
2,

On the other hand

E
[

V (t, z1(t), z2(t))
]

≥ eαtE‖z1(t)‖
2
2 + eαtE‖z2(t)‖

2
2.

Therefore the equation (3.6) becomes

E‖z1(t)‖
2
2 + E‖z2(t)‖

2
2 ≤ e−αt

[

M1E‖φz1
‖2

2 +M2E‖φz2
‖2

2

]

This completes the proof.

Remark 2. When Markovian jumping parameter is not present in the system (3.1),

then the system can be written as follows






















































∂z1(t) =
[

(∇ · (D(t, x, z1) ◦ ∇z1)) −A(z1(t))
{

β1(z1(t))

−H0(t)F (z2(t)) −H1(t)F (z2(t− h2(t)))
}]

dt

+σ1

(

t, F (z2(t)), F (z2(t− h2(t)))
)

dω(t)

∂z2(t) =
[

(∇ · (D∗(t, x, z2) ◦ ∇z2)) − B(z2(t))
{

β2(z2(t))

−W0(t)G(z1(t)) −W1(t)G(z1(t− h1(t)))
}]

dt

+σ2

(

t, G(z1(t)), G(z1(t− h1(t)))
)

dω(t)

(3.7)

The stochastic reaction diffusion with uncertainty structure and Markovian jumping

parameter is considered in this paper which differs from the papers in the available

literature. The LMI has been efficiently solved by utilizing the numerically attractive

MATLAB toolbox for the two dimensional systems.

Corollary 1. Given positive definite matrices W0,W1, H0, H1 and for positive scalar

α, under the given assumptions, the null solution to the model (3.7) is robust expo-

nentially stable in mean square for any time-varying delays h1(t) and h2(t) if there

exist positive symmetric matrices P,R,Q1, Q2 and positive scalars ε0, ε1 such that the
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following LMI holds
















































Ω11 Ω12 0 Ω14 PM0 PM1 0 0 0 0

∗ Ω22 Ω23 0 0 0 RM2 RM3 0 0

∗ ∗ Ω33 0 0 0 0 0 Ω39 0

∗ ∗ ∗ Ω44 0 0 0 0 0 Ω410

∗ ∗ ∗ ∗ −ε0

Ā
I 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −ε0

Ā
I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1

B̄
I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1

B̄
I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε0I

















































< 0(3.8)

Ω11 = αP + LT
1Q1L1 − 2APµ+ B̄ε1L

T
1N

T
2 N2L1 + LT

1 X̄1L1,

Ω12 = ĀPH0L2 + B̄LT
1W

T
0 R, Ω14 = ĀPH1L2,

Ω22 = αR+ LT
2Q2L2 − 2BR∆ + Āε0L

T
2N

T
0 N0L2 + LT

2X1L2,

Ω23 = B̄RW1L1, Ω33 = LT
1 X̄2L1 − e−ατ1LT

1Q1L1(1 − η1), Ω39 =
√

B̄ε1L
T
1N

T
3 ,

Ω44 = LT
2X2L2 − e−ατ2LT

2Q2L2(1 − η2), Ω410 =
√

Āε0L
T
2N

T
1 .

4. EXAMPLE

In this section, the main result is demonstrated with the following example. Our

aim is to examine the robust exponential stability of a given stochastic uncertain

neural networks.

Example 3. For the sake of simplicity, we consider equation (3.1) with the given

parameters

p(ξ) = f1(ξ) = f2(ξ) = g1(ξ) = g2(ξ) = 0.5(|ξ + 1| − |ξ − 1|).

Since for all ξ1, ξ2 ∈ R, |p(ξ1) − p(ξ2)| 6 |ξ1 − ξ2|, let

τ1, τ2 = 0.5, η1, η2 = 0.7

∆1 = diag(10 11), ∆2 = diag(5 7), µ1 = diag(8 9), µ2 = diag(6 7)

A1 = 0.7, A2 = 0.6, B1 = 0.2, B2 = 0.1,

Ā1 = 0.9, Ā2 = 0.7, B̄1 = 0.4, B̄2 = 0.8.

W01 =







0.5 0.4

0.5 0.8






, W02 =







0.6 0.1

0.6 0.9






, W11 =







0.4 0.3

0.1 0.8






,
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W12 =







0.2 0.8

0.7 0.6






, H01 =







0.2 0.7

0.5 0.3






, H02 =







0.5 0.1

0.2 0.7






,

H11 =







0.2 0.4

0.2 0.2






, H12 =







1 0.2

0.5 1.5






, M01 =







0.2 0.5

0.2 0.12






,

M02 =







0.5 0.1

0.11 10






, M11 =







0.5 0.5

1 0.01






, M12 =







0.5 0.3

1.7 5.2






,

M21 =







0.55 0.1010

0.2 1.01






, M22 =







0.25 0.9

0.2 0






, M31 =







0.4 0.15

0.5 1.321






,

M32 =







0.5 0.6

0.01 0.3






, L0 =







0.4 0

0 0.01






, L2 =







0.7 0

0 1.02






,

N01 =







0.02 0.07

7.2157 13.057






, N02 =







3.027 10.17

7.01 10.07






, N11 =







0.015 10.15

1.015 1.115






,

N12 =







1.25 1.157

1.0057 1.57






, N21 =







0.015 1.05

0.005 0.012






, N22 =







0.1 1.1

0.01 2






,

N31 =







1 0

0.5 0.2






, N32 =







1 1

0.8 5






, Γ =







−6 6

7 −7






,

X11 =







0 0.1

0.1 0.002






, X12 =







0.001 0

0 0.01






, X21 =







0.01 0

0 0.06






,

X22 =







0.001 2

2 0






, Y11 =







0 0

0 0.001






, Y12 =







0.002 0

0 0.02






,

Y21 =







0.02 0

0 0.05






, Y22 =







0 0.1

0.1 0.001






.
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The feasible solutions of the LMI in the Theorem 1 by MATLAB are given by

P1 =







2.3934 −0.0471

−0.0471 0.0291






, P2 =







1.3292 −0.0856

−0.0856 0.0135






,

R1 =







7.1554 1.7805

1.7805 19.7273






, R2 =







2.5805 −1.2488

−1.2488 1.7059






,

Q1 =







49.4714 84.5734

84.5734 361.9220






, Q2 =







27.6965 −4.4613

−4.4613 61.9711






.

Thus all conditions stated in Theorem 1 have been satisfied and hence the uncertain

Markovian jumping stochastic Cohen - Grossberg type BAM neural networks with

time varying delays and reaction diffusion terms is robust exponentially stable. This

completes the proof.

Example 4. In this example, we consider equation (3.7), and parameters W01, W11,

H01, H11, M01, M11, M21, M31, L0, L1, N01, N11, N21, N31, X11, X21, Y11, Y21, τ1, τ2,

η1, η2, ∆11, A1, A2 B1, B2, Ā1, Ā2, B̄1, B̄2 as in Example 1.

The feasible solutions of the LMI in the Corollary 1 by MATLAB are given by

P1 =







2.5004 −1.4300

−1.4300 2.1566






, R1 =







17.8912 1.7573

1.7573 42.6313






,

Q1 =







43.5408 13.5689

13.5689 71.5839






, Q2 =







51.0761 −12.6309

−12.6309 53.6561






.

We conclude that all conditions stated in corollary 1 have been satisfied and hence the

uncertain stochastic Cohen - Grossberg type BAM neural networks with time varying

delays and reaction diffusion terms is robust exponentially stable. This completes the

proof.

5. CONCLUSION

In this paper, using suitable Lyapunov-Krasovskii functional, inequality tech-

niques and LMI approach, the uncertain Markovian jumping stochastic Cohen -

Grossberg type BAM neural networks with time varying delays and reaction diffusion

terms have been derived for robust exponentially stability. The derived conditions are

expressed in terms of LMI, which have been checked numerically very efficiently for

less conservative fact. We have proved the results expand and improve those existing

results in the literature with less restrictive conditions.
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