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Abstract Mathematical models of many physical/statistical problems are systems of linear 

equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as 

due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the 

model, viz. the linear system. While any inconsistent system irrespective of the degree of 

inconsistency has always a least-squares solution, one needs to check whether an equation i.e. an 

information is too much inconsistent or, equivalently, too much contradictory. Such an equation 

will affect/distort the least-squares solution to such an extent that it becomes unacceptable/unfit to 

be used in a real-world application. We propose an algorithm, in Matlab, which (i) can detect and 

prune numerically redundant linear equations from the system, if necessary, as these do not add 

any new information to a non-least-squares model, although they do have significant impact in a 

least-squares model, (ii) detects contradictory linear equations along with a degree of  

contradiction (inconsistency index) and then (iii) obtain the minimum norm least-squares solution 

of the acceptably inconsistent reduced (pruned) linear system as well as that of non-reduced linear 

system without too contradictory equations. The resulting two solution vectors will be different in 

general and have important implication in a real-world environment. The algorithms presented in 

Matlab may reduce the computational and storage complexities and also may improve the 

accuracy of the solution. These also detect and provide the necessary warning if there exists a 

highly contradictory equation in the model. In addition, we suggest a thorough relook into the 

mathematical modeling to determine the reason why unacceptable contradiction has occurred thus 

prompting one to make necessary corrections/modifications to the models – both mathematical 

and, if necessary, physical. We will focus here mainly on the non-over-determined linear systems 

rather than over-determined systems which are often usually the case in a least-squares problem. 

 

Keywords Minimum-norm least-squares solution; Non-over-determined systems; Pruning; 

Redundant linear equations; Too much inconsistent. 

 

1. INTRODUCTION 

 

There are many physical problems whose mathematical models turn out to be numerical 

linear systems bAx , with more equations than the number of variables (over-

determined), or with less equations than the number of variables (underdetermined), or 

with the number of equations same as the number of variables. Specifically, statistical  
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problems giving rise to multivariate linear/multiple regression models are encountered in 

many real-world problems such as weather forecasting, psychological research, and 

business management. The systems will in general be inconsistent, i.e. the equations in a 

system will be, in general, contradictory to a varying extent. Consequently there will be 

no solution that will satisfy the linear system. If the system happens to be consistent (non-

contradictory), then there will always be a solution which will satisfy all the equations in 

the system. If we attempt to find a least-squares solution lx  of such a consistent system, it 

will always be a true solution of the system and sum of the squares of the residuals 
2|||| bAxl  will always be a numerical zero (defined in the context) [3].  

      A least-squares solution of any linear system bAx , consistent or not, always exist 

and can be readily computed just by computing the true solution of the ever consistent 

system bAAxA tt , where t  denotes the transpose. A least-squares solution lx  is that 

solution for which the sum of the squares of the residuals viz. 2|||| bAxl  is the least, 

where ||||  denotes the Euclidean norm. This solution may not be unique. However, one 

of the possible least-squares solutions, viz. mlx  for which 2|||| bAxml  and also |||| mlx   

are both minimum out of all possible least-squares solutions lx , is known as the 

minimum-norm least-squares solution ( mls ). The mls  mlx  is always unique while the 

solution lx  may not be unique. When a least-squares solution of the system bAx  is not 

unique, the system will then always have infinity of least-squares solutions. Consider, for 

example, the system bAx , where 
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Using the Matlab commands (keyed in one line) 

 

>> A=[1 2 3;4 5 6;7 8 9], b=[6 15 23]', B=A'*A, c=A'*b, xt=B\c,nt=norm(A*xt-b), 

xmt=pinv(A)*b, nmt=norm(A*xmt-b), nxt=norm(xt), nxmt=norm(xmt) 

 

we obtain a least-squares solution xt = [3.4091 -4.4848 3.9091] t  and the mls  xmt 

=[0.6944  0.9444 1.1944] t . Yet another least-squares solution is obtained using the Gauss 

reduction involving the following Matlab commands, which have used the foregoing 

matrix B and vector c, 

 

>>E1=[1 0 0;-78/66 1 0;-90/66 0 1], B1=E1*B, c1=E1*c 

>> E2=[1 0 0; 0 1 0; 0 -B1(3,2)/B1(2,2) 1] 

>> B2=E2*B1, c2=E2*c1 

>> x3=(c2(2)-B2(2,2))/B2(2,3) 

>> x2=1, x1=(227-78*x2-90*x3)/66 

This second least-squares solution then in an exact form is t

tx ]
6

7
1

3

2
[ . There are, in 

fact, infinity of least-squares solutions for the foregoing problem. The sum of the squares  
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of the residuals viz. 2|||| bAx  for all the foregoing three solutions, viz. 

t

tx ]
6

7
1

3

2
[ , xt = [3.4091 -4.4848 3.9091] t , xmt =[0.6944  0.9444 1.1944] t  are 

numerically the same, viz. 0.4082 while their norms are different. These are 1.6750, 

6.8569, and 1.6736, respectively.   

      Here we will be computing the numerical mls  mlx  instead of the solution lx . For any 

least-squares problem, computing mlx  instead of  lx  is absolutely fine and is usable for 

any real-world application unless one has some other constraints in mind.  

      It may be seen that the number of solutions of any linear system could be either 0 or 

just 1 or infinite. It can never be just 2 or just 3 or just n , where n  is a finite positive 

integer. For if there are two solutions then a linear combination of these two solutions is 

also a solution of the system bAx . 

      We present in section 2 the algorithms consisting of (i) pruning redundant (linearly 

dependent) equations, (ii) locating the equations, if any, that are unacceptably 

contradictory along with a computation of the inconsistency index inci, and (iii) 

computing the mls  of the pruned system that does not have too much (unacceptable 

inconsistency) contradiction in the context. The pruned system, i.e. the system without 

linearly dependent rows, involves less storage and less computation resulting in less 

computational error as well as less space (storage) complexity. However, in the context 

of a least-squares solution for a least-squares model, pruning linearly dependent rows 

may alter the least-squares solution vector significantly to make the desired solution 

worse or better depending on the problem on hand. One may compute both the pruned 

solution and the un-pruned solution to correlate/interpret them in the physical/statistical 

problem under consideration. An un-pruned least-squares solution of the inconsistent 

system involving several linearly dependent rows of the augmented matrix ],[ bA  is 

significant unlike a one for a fully consistent system. The algorithm detects excessive 

contradiction in an equation, if any, in the system and cautions the concerned researcher 

so that he falls back to the physical problem and the resulting mathematical model, finds 

out the reason for unacceptable inconsistency in the model, takes appropriate corrective 

measures, and then computes the required solution. It will definitely not serve any 

purpose to compute the mls  (that can always be easily computed) of any system (having 

unacceptable inconsistency). In section 3, we provide numerical examples while in 

section 4 we include conclusions. 

 

2. THE ALGORITHM 

 

The algorithm is comprised of three sub-algorithms, viz. pruning sub-algorithm, over-

inconsistency detection sub-algorithm, and mls  solver sub-algorithm. We briefly 

describe these sub-algorithms with a numerical example. However, it is always possible 

as well as easy to combine these sub-algorithms into one algorithm and execute the 

algorithm.  

 
Sub-algorithm 1 (Pruning redundant equations) Consider the linear system (generally 

inconsistent) 

 

                                  bAx ,                                        (1) 
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where A  is a given numerical nm  matrix, b  is a given numerical m -vector, and x  is 

an n -vector to be computed in the least-squares sense. We assume or we know for 

certain that the very first equation of the system (usually over-determined) bAx  is 

correct. We first consider the augmented matrix ),( bAC  which will be our coefficient 

matrix. The right-hand side column vector d  is computed as the row sum of the matrix 

ijcC . That is, 
1

1

)1(1,
n

j

iji micd . Thus the system dCy  is always consistent. We 

now use the following Matlab program (self-explanatory) to sieve out the linearly 

dependent rows (if any) of C  as these rows are not required for computing a solution 

vector. For the mathematics/justification of this program refer [1, 2] 

 
function pruningldrows(C);  

% C=Usually augmented matrix (A,b) of Ax=b 

%Redundant (linearly dependent) rows of the C are pruned. 

b=sum(C')'; A=C; redrow(1)=0; 

 

disp('Given unpruned matrix is'); C 

B=A; c=b; rrow=0; 

[m n]=size(A); p=0; 

x=zeros(n,1); r=0; P=eye(n); k=1; 

abar=sum(sum(abs(A)))/(m*n); bbar=sum(abs(A(:,n-1)))/m;  

for i = 1:m 

    a=A(i,:)'; brow=b(i); u=P*a; v=(norm(u))^2; inconsistency = brow-a'*x; 

    if abs(v) >= 0.00005*abar  %Permits 4 significant digit accuracy 

        P=P-u*u'/v; x = x + inconsistency*u/v; r=r+1; 

        else 

            % Store indices of redundant rows in a vector. 

            redrow(k)=i; k=k+1; rrow=1; 

        end 

end; disp('Linearly dependent rows are'); redrow 

if rrow==1 

c(redrow)=[]; B(redrow,:)=[]; 

end 

if p ~= 1 

    S=size(B);  

    if S(1)<=m  

        disp('The rank of the matrix C or the pruned matrix B is '); disp(r); 

        disp('The pruned matrix B is');B     

    end 

end 
 

 

>> Ab =  1     2     3     4     5    15 

         2     4     6     8    10    30 

         3     6     9    12    15   400 

         1     1     1     1     1    10 

         2     2     2     2     2    10 

         8    16    24    32    40   120 

        11    23    35    47    59   175 

 

where Ab= [A, b] is the augmented matrix where the first 5 columns constitute the 

coefficient matrix A while the last column of Ab is the right-hand side bb vector which is 

constructed  by  the  row-sum  of each row of the matrix A. Consequently, the system  
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bbAbx is always consistent. The Matlab command >> pruningldrows([Ab bb]) 

produces pruned system as follows.  

 

Given unpruned matrix is 

 
C = [Ab bb] 
      1     2     3     4     5    15   30 
     2     4     6     8    10    30    60 

     3     6     9    12    15   400   445 

     1     1     1     1     1    10    15 

     2     2     2     2     2    10    20 

     8    16    24    32    40   120   240 

    11    23    35    47    59   175   350 

 

Linearly dependent rows are redrow =  2     5     6     7 

 

The rank of the matrix C or the pruned matrix B is   3 

 

The pruned matrix B is 

 

B = 

     1     2     3     4     5    15     30 

     3     6     9    12    15   400   445 

     1     1     1     1     1    10     15 

 

Sub-algorithm 2 (Over-inconsistency detection) Having pruned linearly dependent 

(redundant) rows, the resulting system will be left with equations cBx  which could be 

(i) consistent or (ii) acceptably inconsistent or (iii) unacceptably (over-) inconsistent (in 

the context). In case (i), we compute the mls  mlx  (unique) of cBx , which is a true 

solution of cBx , i.e. . |||| cBxml  = 0 (numerical zero). In case (ii) also, we compute 

the mls  mlx  of cBx , which is not a true solution but a solution such that the norm 

|||| cBxml  i.e. the square-root of the sum of the squares of the residual, is a minimum 

and not a numerical zero. In case (iii), once we detect an abnormally (too) inconsistent 

equation or, equivalently, an outlier (analogous to a data point which is far away from 

other data points or a cluster of data points in statistics), we do not proceed to compute 

the  mls  of cBx  as it may not often be useful. Instead, we go back to the original 

physical (real-world) problem along with its corresponding mathematical model to 

determine the cause of such an unacceptably large contradiction (inconsistency) and take 

the necessary corrective measures before computing the mls  of cBx . The following 

Matlab code (program) nclinsolver(A, b) which is self-explanatory detects the equations 

that cause over-inconsistency [2].  

 
%Computational NC-LINSOLVER (Matlab program) The following program is self-explanatory. 
%A general LINSOLVER program that includes near-consistent linear %system. 
%Reference: S.K. Sen and Sagar Sen, Linear System: Relook, concise  
%algorithms, and Matlab programs, Academic Studies – National Journal  
%of Jyoti Research Academy, Feb., 2007, Vol. 1(1), pp. 1-8. 
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function[ ]=nclinsolver(A,b); [m, n]=size(A); 
%NC-LINSOLVER: Near-consistent Linear System Solver 
'The matrix  A  and vector  b  of the system  Ax=b  are', A,b, 
P=eye(n); sd=0; x(1:n)=0; x=x'; delb(1:m)=0; delb=delb'; bo=b; r=0;  
abar=0; for i=1:m, for j=1:n, abar=abar+abs(A(i,j)); end; end; 

abar=abar/(m*n); 
bbar=0; for i=1:m, bbar=bbar+abs(b(i)); end; bbar=bbar/m; 
for i=1:m 
   u=P*A(i,:)';  v=norm(u)^2; s=b(i) -A(i,:)*x; c=0; 
             if v<=.00005*abar & abs(s)>=.00005*bbar, delb(i)=-s; sd=-

s; b(i)=b(i) +delb(i); s=0; 
   elseif  v<=.00005*abar & abs(s)<=.00005*bbar; delb(i)=0; end; 
   if v>=.00005*abar, x=x+u*s/v; P=P-u*u'/v; c=1; delb(i)=0; end; 

r=r+c; 
end; 
if abs(sd)>.00005*(abar+bbar)*0.5, 'The system  Ax=b  is 

inconsistent.', end;  
inci=norm(delb)/norm([A,b]); err=norm(bo-A*x)/norm(x); 
'The projection operator P = (I - A+A)  is', P, 
'The rank of the matrix  A  is', r, 
'The inconsistency index is', inci, 
'Modification in vector b, i.e., Db  is', delb, 
'Vector  b  of the nearest consistent system is', b, 
'Solution vector of the nearest consistent system is', x, 
'Error in the solution vector  x  is', err 

  

The matrix AAA is our B  matrix of the pruned system bBx  while the vector bbb is 

our vector b  of the pruned system. The pruned system could be consistent or acceptably 

inconsistent or unacceptably inconsistent. We now detect the equation that causes the 

inconsistency, using the Matlab command >> nclinsolver(AAA, bbb). The matrix  AAA  

and vector  bbb  of the system  AAAx=bbb  are 

 

AAA = 

     1     2     3      4      5 

     3     6     9    12    15 

     1     1     1      1      1 

 

bbb =[15   400   10]
t
 

 

The system  Ax=b  (i.e. AAAx=bbb) is inconsistent. The projection operator P = (I - 

A+A)  (i.e. )( AAIP  needed for a solution Pzxc , of the homogeneous equation 

0Ax , where z is an arbitrary column vector and A  is the minimum-norm least 

squares ( ml ) inverse of the matrix A ,  also called the pseudo-inverse or the Moore-

Penrose inverse of A , is 

 

P = 

    0.4000   -0.4000   -0.2000   -0.0000    0.2000 

   -0.4000    0.7000   -0.2000   -0.1000   -0.0000 

   -0.2000   -0.2000    0.8000   -0.2000   -0.2000 

   -0.0000   -0.1000   -0.2000    0.7000   -0.4000 

    0.2000   -0.0000   -0.2000   -0.4000    0.4000 
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The rank of the matrix  A  is r = 2. The inconsistency index is inci = 6.5950. Modification 

in vector b, i.e., Db  is delb =  [0  -355  0]
t
. Vector  b  of the nearest consistent system is b 

= [15   45  10]
t
. Solution vector of the nearest consistent system is x = [5.0000  3.5000  

2.0000  0.5000   -1.0000]
t
. Error in the solution vector  x  is err = 54.4545. delb in the 

foregoing solution  shows that the second element, viz. -355 is unacceptably large. 

Ideally it should have been close to zero for an acceptable inconsistency. This implies 

that one needs to fall back to the original physical problem and its mathematical model to 

ascertain why such a large contradiction has occurred and to take necessary corrective 

measures. The inconsistency index inci as well as the error in the solution vector provide 

us enough information about the equation which has become too contradictory. One may 

recall that we assumed that the very first equation representing an information is correct. 

Or, in other words, we have already carefully checked from the physical model and its 

corresponding mathematical model that the first equation is correct or any of the 

equations of the system which is definitely known to be correct will be placed as our very 

first equation. This is because all the other equations, each one of which representing an 

information (an assertive sentence), are checked against the very first equation. A more 

desirable thing will be to assemble all those equations in the beginning (at the top) which 

have been checked and rechecked thoroughly and found to be definitely correct. In the 

foregoing system, clearly the second equation is the one which is too inconsistent and 

may be considered an outlier in a statistical sense.  

      However, if we have the same foregoing system with 40 instead of 400, then we will 

have inconsistency index inci, delb (to make the system consistent),  as well as err (error 

in the solution vector x) as 
 

inci =  0.0929, delb = [ 0    5   0]
t
, and err = 0.7670, 

 

respectively. In the given context, such a relatively small contradiction could be 

acceptable.  

      The solution vector of the nearest consistent system in the foregoing nclinsolver 

program has been shown so that one can compare the actual mls  to be computed by the 

sub-algorithm 3 against it although it is not our focus. 

 
Sub-algorithm 3 Minimum-norm least-squares solver ( ml  solver) Having confirmed that 

the system cBx  is an acceptably inconsistent system from the sub-algorithm 2, we 

simply compute the mls  of cBx . While one can always compute simply a least-

squares solution (need not be unique) of cBx  by any of the available numerical 

methods in literature [4-11], we compute the mls  simply by using the one concise Matlab 

command >>xc=pinv(B)*c. This solution is also a least-squares solution and it serves our 

purpose perfectly well as long as our system is not too large. If the system is too large so 

that it is beyond the scope of the general Matlab command pinv  from both storage point 

of view as well as from error point of view, we need to use a special software package 

suited for computing a least-squares solution of the system. 

 

Our acceptably inconsistent system is AAAx=bbb, where 

 

AAA = 
      1     2     3     4     5 

      3     6     9    12    15 

      1     1     1     1     1 
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and bbb =  [15  40   10]
t
 

 

>> x=pinv(AAA)*bbb 

 

x = [5.3000  3.6500  2.0000   0.3500  -1.3000]
t
 

 

One may compare the error erml due to this mls  of the system AAAx=bbb with error 

errnc due to the solution of the foregoing nearest consistent system in Matlab as follows. 

 

>> errml=norm(AAA* [5.3000 3.6500 2.0000 0.3500 -1.3000]'-bbb) 

 

errml = 1.5811 

 

>> errnc=norm(AAA*[5.0000 3.5000 2.0000 0.5000 -1.0000]'-bbb) 

 

errnc = 5 

 

It can be seen that error in the mls  of the system is less possibly prompting us to infer 

that the inconsistency is acceptable. Although we do not have sufficient pressing reason 

to bother about nearest consistent system, we could see how much deviation in the right-

hand side vector bbb is required for the original pruned inconsistent system to be 

consistent. If the numerical deviation is too much, then evidently the inconsistency is also 

too much and is unacceptable for a real-world implementation. Consider, for instance, the 

foregoing system with bbb=[15 400 10]’ instead of  bbb=[15 40 10]’. Then we have 

 

>> bbb=[15 400 10]' 

 

bbb = [15  400  10]
t
 

 

>> xml=pinv(AAA)*bbb 

 

xml = [-16.3000  -7.1500   2.0000  11.1500   20.3000]
t
 

 

>> errml1=norm(AAA* [5.3000 3.6500 2.0000 0.3500 -1.3000]'-bbb) 

 

errml1 =  359.5031 

 

This error errml1 is sufficiently greater than the foregoing errnc. This indicates that the 

inconsistency is too large to be accepted. However, the acceptance of inconsistency very 

much depends on the context and is somewhat subjective. 

      Consider the following constructed (using Matlab rand command) over-determined 

system Ax=b. 

 

>> A=rand(12, 5), b=sum(A')'  
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A = 

    0.8147    0.9572    0.6787    0.6948    0.7094 

    0.9058    0.4854    0.7577    0.3171    0.7547 

    0.1270    0.8003    0.7431    0.9502    0.2760 

    0.9134    0.1419    0.3922    0.0344    0.6797 

    0.6324    0.4218    0.6555    0.4387    0.6551 

    0.0975    0.9157    0.1712    0.3816    0.1626 

    0.2785    0.7922    0.7060    0.7655    0.1190 

    0.5469    0.9595    0.0318    0.7952    0.4984 

    0.9575    0.6557    0.2769    0.1869    0.9597 

    0.9649    0.0357    0.0462    0.4898    0.3404 

    0.1576    0.8491    0.0971    0.4456    0.5853 

    0.9706    0.9340    0.8235    0.6463    0.2238 

 

 

b = [ 3.8548   3.2207   2.8966  2.1616  2.8034  1.7286  2.6613  2.8318  3.0368 

        1.8769   2.1347  3.5982]
t
 

 

The augmented matrix ][ bAC  is obtained as follows. 

 

>> C=[A b] 

 

C = 

    0.8147    0.9572    0.6787    0.6948    0.7094    3.8548 

    0.9058    0.4854    0.7577    0.3171    0.7547    3.2207 

    0.1270    0.8003    0.7431    0.9502    0.2760    2.8966 

    0.9134    0.1419    0.3922    0.0344    0.6797    2.1616 

    0.6324    0.4218    0.6555    0.4387    0.6551    2.8034 

    0.0975    0.9157    0.1712    0.3816    0.1626    1.7286 

    0.2785    0.7922    0.7060    0.7655    0.1190    2.6613 

    0.5469    0.9595    0.0318    0.7952    0.4984    2.8318 

    0.9575    0.6557    0.2769    0.1869    0.9597    3.0368 

    0.9649    0.0357    0.0462    0.4898    0.3404    1.8769 

    0.1576    0.8491    0.0971    0.4456    0.5853    2.1347 

    0.9706    0.9340    0.8235    0.6463    0.2238    3.5982 

 

The 13
th

, 14
th

, and 15
th

 rows of  C  are constructed using the following three Matlab 

commands. 

 

>> C(13,:)=2*C(12,:)+3*C(11,:) 

>> C(14,:)=-1*C(10,:)+4*C(9,:) 

>> C(15,:)=-1*C(8,:)+4*C(7,:) 

 

Thus the 615  augmented matrix C  is then 

 

 

 



220                                                       SEN AND SHAYKHIAN 

 

 

C = 

    0.8147    0.9572    0.6787    0.6948    0.7094    3.8548 

    0.9058    0.4854    0.7577    0.3171    0.7547    3.2207 

    0.1270    0.8003    0.7431    0.9502    0.2760    2.8966 

    0.9134    0.1419    0.3922    0.0344    0.6797    2.1616 

    0.6324    0.4218    0.6555    0.4387    0.6551    2.8034 

    0.0975    0.9157    0.1712    0.3816    0.1626    1.7286 

    0.2785    0.7922    0.7060    0.7655    0.1190    2.6613 

    0.5469    0.9595    0.0318    0.7952    0.4984    2.8318 

    0.9575    0.6557    0.2769    0.1869    0.9597    3.0368 

    0.9649    0.0357    0.0462    0.4898    0.3404    1.8769 

    0.1576    0.8491    0.0971    0.4456    0.5853    2.1347 

    0.9706    0.9340    0.8235    0.6463    0.2238    3.5982 

    2.4140    4.4154    1.9383    2.6294    2.2034   13.6005 

    2.8651    2.5873    1.0615    0.2577    3.4986   10.2702 

    0.5671    2.2093    2.7924    2.2669   -0.0224    7.8133 

 

We then inject inconsistency in 14
th

 and 15
th

 equations 

 

>> C(14,6)=C(14,6)-1, C(15,6)=C(15,6)+2  (%Inconsistency is injected in 14
th

 and 15
th

 

equations) 

 

Thus the augmented matrix C  of the inconsistent system becomes 

 

C = 

    0.8147    0.9572    0.6787    0.6948    0.7094    3.8548 

    0.9058    0.4854    0.7577    0.3171    0.7547    3.2207 

    0.1270    0.8003    0.7431    0.9502    0.2760    2.8966 

    0.9134    0.1419    0.3922    0.0344    0.6797    2.1616 

    0.6324    0.4218    0.6555    0.4387    0.6551    2.8034 

    0.0975    0.9157    0.1712    0.3816    0.1626    1.7286 

    0.2785    0.7922    0.7060    0.7655    0.1190    2.6613 

    0.5469    0.9595    0.0318    0.7952    0.4984    2.8318 

    0.9575    0.6557    0.2769    0.1869    0.9597    3.0368 

    0.9649    0.0357    0.0462    0.4898    0.3404    1.8769 

    0.1576    0.8491    0.0971    0.4456    0.5853    2.1347 

    0.9706    0.9340    0.8235    0.6463    0.2238    3.5982 

    2.4140    4.4154    1.9383    2.6294    2.2034   13.6005 

    2.8651    2.5873    1.0615    0.2577    3.4986    9.2702 

    0.5671    2.2093    2.7924    2.2669   -0.0224    9.8133 

 

If we use the Matlab command >> pruningldrows(C) to prune linearly dependent rows 

then we have: 

     

 Linearly dependent rows are 

 

redrow =  6     7     8     9    10    11    12    13    15 
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The rank of the matrix C or the pruned matrix B is  6 

 

The pruned matrix B is 

 

B = 

    0.8147    0.9572    0.6787    0.6948    0.7094    3.8548 

    0.9058    0.4854    0.7577    0.3171    0.7547    3.2207 

    0.1270    0.8003    0.7431    0.9502    0.2760    2.8966 

    0.9134    0.1419    0.3922    0.0344    0.6797    2.1616 

    0.6324    0.4218    0.6555    0.4387    0.6551    2.8034 

    2.8651    2.5873    1.0615    0.2577    3.4986    9.2702 

 

The rank of the augmented matrix is obtained using the Matlab command >> rank(C) as 

 6 (thus C  is a matrix with full-column rank). 

 

Thus the right-hand side vector bb of the pruned linear system Bx=bb is obtained using 

the command  >> bb=B(:,6) as 

 

bb = [3.8548   3.2207   2.8966   2.1616   2.8034   9.2702]
t
 

 

while the coefficient matrix B is sieved out using the command  >> B= B(1:6, 1:5) as 

 

B = 

    0.8147    0.9572    0.6787    0.6948    0.7094 

    0.9058    0.4854    0.7577    0.3171    0.7547 

    0.1270    0.8003    0.7431    0.9502    0.2760 

    0.9134    0.1419    0.3922    0.0344    0.6797 

    0.6324    0.4218    0.6555    0.4387    0.6551 

    2.8651    2.5873    1.0615    0.2577    3.4986 

 

(The original augmented matrix B no longer exists.) 

 

The Matlab program >> nclinsolver(B, bb) when executed produces the following 

results (omitting, however, the print output of the coefficient matrix B and the right-hand 

side vector bb). 

 

The system  Ax=b (i.e. Bx=bb) is inconsistent. 

 

The projection operator P = (I - A+A)  i.e. )( BBIP  is 

 

P = 1.0e-014 * 

    0.2554   -0.3381   -0.2512    0.3830   -0.0999 

   -0.3381    0.0216   -0.1015   -0.0459    0.4447 

   -0.2512   -0.1015   -0.1620    0.0737    0.4038 

    0.3830   -0.0459    0.0737    0.0737   -0.4698 

   -0.0999    0.4447    0.4038   -0.4698   -0.1887 

 

which is a numerical null (zero) matrix.  
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The rank of the matrix  A  (i.e. B)  is r =   5 

 

The inconsistency index is inci =  0.0729 

 

Modification in vector b, i.e., Db  is delb =  [ 0   0   0   0    0   0.9985]
t
 

 

Vector  b  of the nearest consistent system is 

 

b =  [3.8548   3.2207   2.8966  2.1616  2.8034  10.2687]
t
 

 

Solution vector of the nearest consistent system is 

 

x =  [1.0007  1.0000  1.0002   1.0001   0.9989]
t
 

 

Error in the solution vector  x  is  err =  0.4466 

 

If we now consider the un-pruned system CCx=bc, where 

 

bc =   [3.8548   3.2207   2.8966   2.1616   2.8034   1.7286   2.6613   2.8318   3.0368 

           1.8769    2.1347   3.5982   13.6005    9.2702   9.8133]
t
 

 

and  

 

CC = 

    0.8147    0.9572    0.6787    0.6948    0.7094 

    0.9058    0.4854    0.7577    0.3171    0.7547 

    0.1270    0.8003    0.7431    0.9502    0.2760 

    0.9134    0.1419    0.3922    0.0344    0.6797 

    0.6324    0.4218    0.6555    0.4387    0.6551 

    0.0975    0.9157    0.1712    0.3816    0.1626 

    0.2785    0.7922    0.7060    0.7655    0.1190 

    0.5469    0.9595    0.0318    0.7952    0.4984 

    0.9575    0.6557    0.2769    0.1869    0.9597 

    0.9649    0.0357    0.0462    0.4898    0.3404 

    0.1576    0.8491    0.0971    0.4456    0.5853 

    0.9706    0.9340    0.8235    0.6463    0.2238 

    2.4140    4.4154    1.9383    2.6294    2.2034 

    2.8651    2.5873    1.0615    0.2577    3.4986 

    0.5671    2.2093    2.7924    2.2669   -0.0224 

 

then we have the mls  x1 of the pruned system Bx-bb and the mls  x2 of the non-pruned 

system CCx=bc obtained using the commands  

 

>> x1=pinv(B)*bb, x2=pinv(CC)*bc 

 

as  

x1 =  [1.4061    0.8277   1.0575   1.2195    0.4759]
t
 

x2 =  [0.8656    0.8763   1.5941   1.1482    0.7234]
t
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Their respective norms are, using 

 

>> norm(x1), norm(x2), 

 

    2.3439 and  2.4290, respectively. 

 

>> BB=[B;C(15,1:5)], bbb=[bb; C(15,6)] 

 

BB = 

    0.8147    0.9572    0.6787    0.6948    0.7094 

    0.9058    0.4854    0.7577    0.3171    0.7547 

    0.1270    0.8003    0.7431    0.9502    0.2760 

    0.9134    0.1419    0.3922    0.0344    0.6797 

    0.6324    0.4218    0.6555    0.4387    0.6551 

    2.8651    2.5873    1.0615    0.2577    3.4986 

    0.5671    2.2093    2.7924    2.2669   -0.0224 

 

 

bbb =  [3.8548   3.2207    2.8966   2.1616   2.8034   9.2702   9.8133]
t
 

 

>> x3=pinv(BB)*bbb 

 

x3 =  [1.3955  1.4626   1.8621    0.2521   -0.1601]
t
 

 

>> norm(x3) 

 

    2.7647 

 

>> x1=pinv(B)*bb 

 

x1 = [1.4061  0.8277  1.0575   1.2195    0.4759]
t
 

 

>> norm(x1) 

 

    2.3439 

 

>> CC 

 

CC = 

    0.8147    0.9572    0.6787    0.6948    0.7094 

    0.9058    0.4854    0.7577    0.3171    0.7547 

    0.1270    0.8003    0.7431    0.9502    0.2760 

    0.9134    0.1419    0.3922    0.0344    0.6797 

    0.6324    0.4218    0.6555    0.4387    0.6551 

    0.0975    0.9157    0.1712    0.3816    0.1626 

    0.2785    0.7922    0.7060    0.7655    0.1190 

    0.5469    0.9595    0.0318    0.7952    0.4984 

    0.9575    0.6557    0.2769    0.1869    0.9597 

    0.9649    0.0357    0.0462    0.4898    0.3404 
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    0.1576    0.8491    0.0971    0.4456    0.5853 

    0.9706    0.9340    0.8235    0.6463    0.2238 

    2.4140    4.4154    1.9383    2.6294    2.2034 

    2.8651    2.5873    1.0615    0.2577    3.4986 

    0.5671    2.2093    2.7924    2.2669   -0.0224 

 

>> bc 

 

bc = [3.8548  3.2207  2.8966  2.1616  2.8034  1.7286  2.6613  2.8318  3.0368 1.8769   

  2.1347  3.5982  13.6005  9.2702   9.8133]
t
 

 

>> x2=pinv(CC)*bc 

 

x2 =  [0.8656  0.8763  1.5941  1.1482  0.7234]
t
 

 

>> norm(x2) 

 

    2.4290 

 

3. NUMERICAL EXAMPLE 

 
      Consider the non-over-determined inconsistent system bAx  created by the 

following Matlab commands 

 

>> A=rand(4,6); A(5,:)=1.5*A(1,:)+2*A(2,:); A(6,:)=3*A(2,:)-1.7*A(3,:)+4*A(4,:), 

b=sum(A')'; b(5)=b(5)+ 2; b(6)=b(6)-1 

 

where the coefficient matrix A and the right-hand side column vector b are (correct 

up to 4 decimal digits) 

 

A = 

    0.6787    0.6555    0.2769    0.6948    0.4387    0.1869 

    0.7577    0.1712    0.0462    0.3171    0.3816    0.4898 

    0.7431    0.7060    0.0971    0.9502    0.7655    0.4456 

    0.3922    0.0318    0.8235    0.0344    0.7952    0.6463 

    2.5336    1.3256    0.5077    1.6764    1.4212    1.2598 

    2.5788   -0.5594    3.2672   -0.5263    3.0241   3.2970 

 

and 

 

b =  [2.9316  2.1635  3.7076  2.7235   10.7244  10.0815]
t
, 

 

respectively although the actual computation was done with 15 digits. If one tries to 

compute the rank of A with the foregoing 4-digit entry for each element then one will 

find that the rank of A as 6 instead of 4. This is due to rounding errors. However, if 

one retains all the 15 digits for each element of A and then compute the rank of A, 

then he will get the rank as 4 and the rank of the augmented matrix [A b] as 5. 
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The system bAx  is inconsistent. The 5
th

 and 6
th

 rows of the matrix A  is linearly 

dependent on the foregoing four rows. The augmented matrix C obtained by the 

Matlab command >> C=[A b] is (correct up to 4 decimal digits) 

 

C = 

    0.6787    0.6555    0.2769    0.6948    0.4387    0.1869    2.9316 

    0.7577    0.1712    0.0462    0.3171    0.3816    0.4898    2.1635 

    0.7431    0.7060    0.0971    0.9502    0.7655    0.4456    3.7076 

    0.3922    0.0318    0.8235    0.0344    0.7952    0.6463    2.7235 

    2.5336    1.3256    0.5077    1.6764    1.4212    1.2598   10.7244 

    2.5788   -0.5594    3.2672   -0.5263    3.0241    3.2970  10.0815 

 

The linearly dependent ( ld ) row of C obtained using the command >> 

pruningldrows(C) is its 6
th

 row. The rank of the matrix C or the pruned matrix B is  

5 (The input data were kept correct up to 15 decimal digits and not up to 4 decimal 

digits in actual computation) 

 
The right-hand side column vector bb is (correct up to 4 decimal digits) bb = [2.9316  

2.1635  3.7076  2.7235  10.7244]
t
. The pruned matrix B is (up to 4 decimal digits), 

using the command >> BB=B(:,1:6), 

 

BB = 

    0.6787    0.6555    0.2769    0.6948    0.4387    0.1869 

    0.7577    0.1712    0.0462    0.3171    0.3816    0.4898 

    0.7431    0.7060    0.0971    0.9502    0.7655    0.4456 

    0.3922    0.0318    0.8235    0.0344    0.7952    0.6463 

    2.5336    1.3256    0.5077    1.6764    1.4212    1.2598 

 

We now detect the equation(s), using  the command >> nclinsolver(BB,bb), that are 

inconsistent as follows. 

 
The system  Ax=b (i.e. BBx=bb)  is inconsistent. The rank of the matrix  A (i.e. BB) 

is r = 4. The inconsistency index is inci = 0.1746. Modification in vector b, i.e., Db  is 

delb = [ 0   0   0    0   -2.0001]
t
. The fifth element of delb depicts that the fifth 

equation is inconsistent. Vector  b (i.e. bb)  of the nearest consistent system is b = 

[2.9316   2.1635   3.7076   2.7235  8.7243]
t
. Solution vector of the nearest consistent 

system is x = [1.1102   0.8803   0.9555    0.9595   1.2137   0.7351]
t
. Error in the 

solution vector  x  is  err = 0.8266. 

      The mls  of the pruned system and that of un-pruned system along with their 

norms are given using the Matlab commands 

 

>> x1=pinv(BB)*bb, x1n=norm(x1), x2=pinv(A)*b, x2n=norm(x2) 

 

where  x1 =  1.0e+003 * [3.8250  -6.4839   -0.5869   1.0113  6.5185   -9.3243]
t
 

is the mls  of the pruned system and x1n = 1.3692e+004 is the norm of x1. 

      The mls  of the un-pruned system is x2 =  1.0e+004 * [0.7794  2.2436  -1.5833  -

3.4841   2.6687  -1.6636]
t
 and its norm is x2n = 5.4933e+004. 
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     The square-roots of the sums of the squares of the residuals of the pruned and un-

pruned systems are, using the commands  >> x1t=norm(BB*x1-bb),  x2t=norm(A*x2-

b), x1t = 1.2841e-011 and x2t = 2.3662e-010, respectively. Here we see that the sum of 

the squares of the residuals for the pruned system is less than that of un-pruned system. In 

reality, it can be the other way also for some other least-squares problems. However, the 

foregoing inconsistency due to the fifth equation may be quite acceptable in most real-

world computations. 

 
4.  CONCLUSIONS 

 

      Inconsistency for non-over-determined  system bAx  is due to linear dependence of 

a row of the matrix A  while the corresponding element of b  on the right-hand side is not 

linearly dependent. In other words the row(s) of A  are linearly dependent while the 

corresponding row(s) of the augmented matrix ],[ bA  are not. 

      It is possible to know globally whether inconsistency is relatively large or not by 

computing the sum of squares of the residuals, viz. |||| bAxml , where ||||  denotes the 

Euclidean norm and mlx  is the mls  of the system bAx . This sum should be acceptably 

low in the context. But it is not possible to know the equations which have caused the 

inconsistency. In fact, it is more important to detect the equations which cause the 

excessive inconsistency and take necessary corrective measures before proceeding. 

Hence it is necessary to fall back on to the original physical/statistical problem and the 

corresponding mathematical model and find out the reason for over-inconsistency and 

correct the model accordingly before proceeding to compute the mls .  

      While for consistent systems, linearly dependent rows do not carry any new 

information and are hence redundant, for inconsistent systems, the linearly dependent 

rows do carry information about the physical problem and hence do not always deserve to 

be pruned (in many contexts). The mls  for pruned and non-pruned inconsistent systems 

will be, in general, different. The sum of the squares of the residuals could be 

significantly more or significantly less than that for the non-pruned system. The 

foregoing numerical examples demonstrate this fact. 

      We have omitted the algorithms in mathematical form and provided them in Matlab 

codes (programs). One can readily translate these codes to algorithms in mathematical 

form if it is more convenient to appreciate the essence of the algorithms. 

      For pruning linearly dependent rows as well as for the detection of the equations that 

cause inconsistency, one may use Gauss reduction with partial pivoting. But this method 

involves row interchanges and also the need for keeping track of row numbers. These, 

specifically row interchanges, are not desirable in many situations. For instance, a 

situation where row interchanges disturb the structure of the matrix such as the one 

having one main diagonal with two diagonals above and two diagonals below. Of course, 

both pruning and detection of inconsistent equations assume that the first equation is 

definitely correct. This does not necessarily imply that some other subsequent linearly 

independent equation is also correct.  
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