
Neural, Parallel, and Scientific Computations 19 (2011) 211-228

PREPROCESSING IN MATLAB INCONSISTENT LINEAR SYSTEM

FOR A MEANINGFUL LEAST SQUARES SOLUTION

SYAMAL K. SEN

1
 and GHOLAM ALI SHAYKHIAN

2

1
Department of Mathematical Sciences, Florida Institute of Technology, 150 West

University Boulevard, Melbourne, FL 32901-6975, United States

sksen@fit.edu

2
National Aeronautics and Space Administration (NASA), Technical Integration Office

(IT-G), Information Technology (IT) Directorate, Kennedy Space Center, FL 32899,

United States
 ali.shaykhian@nasa.gov

Abstract Mathematical models of many physical/statistical problems are systems of linear

equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as

due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the

model, viz. the linear system. While any inconsistent system irrespective of the degree of

inconsistency has always a least-squares solution, one needs to check whether an equation i.e. an

information is too much inconsistent or, equivalently, too much contradictory. Such an equation

will affect/distort the least-squares solution to such an extent that it becomes unacceptable/unfit to

be used in a real-world application. We propose an algorithm, in Matlab, which (i) can detect and

prune numerically redundant linear equations from the system, if necessary, as these do not add

any new information to a non-least-squares model, although they do have significant impact in a

least-squares model, (ii) detects contradictory linear equations along with a degree of

contradiction (inconsistency index) and then (iii) obtain the minimum norm least-squares solution

of the acceptably inconsistent reduced (pruned) linear system as well as that of non-reduced linear

system without too contradictory equations. The resulting two solution vectors will be different in

general and have important implication in a real-world environment. The algorithms presented in

Matlab may reduce the computational and storage complexities and also may improve the

accuracy of the solution. These also detect and provide the necessary warning if there exists a

highly contradictory equation in the model. In addition, we suggest a thorough relook into the

mathematical modeling to determine the reason why unacceptable contradiction has occurred thus

prompting one to make necessary corrections/modifications to the models – both mathematical

and, if necessary, physical. We will focus here mainly on the non-over-determined linear systems

rather than over-determined systems which are often usually the case in a least-squares problem.

Keywords Minimum-norm least-squares solution; Non-over-determined systems; Pruning;

Redundant linear equations; Too much inconsistent.

1. INTRODUCTION

There are many physical problems whose mathematical models turn out to be numerical

linear systems bAx , with more equations than the number of variables (over-

determined), or with less equations than the number of variables (underdetermined), or

with the number of equations same as the number of variables. Specifically, statistical

Received June 1, 2011 1061-5369 $15.00 © Dynamic Publishers, Inc

mailto:sksen@fit.edu
mailto:ali.shaykhian@nasa.gov

 212 SEN AND SHAYKHIAN

problems giving rise to multivariate linear/multiple regression models are encountered in

many real-world problems such as weather forecasting, psychological research, and

business management. The systems will in general be inconsistent, i.e. the equations in a

system will be, in general, contradictory to a varying extent. Consequently there will be

no solution that will satisfy the linear system. If the system happens to be consistent (non-

contradictory), then there will always be a solution which will satisfy all the equations in

the system. If we attempt to find a least-squares solution lx of such a consistent system, it

will always be a true solution of the system and sum of the squares of the residuals
2|||| bAxl will always be a numerical zero (defined in the context) [3].

 A least-squares solution of any linear system bAx , consistent or not, always exist

and can be readily computed just by computing the true solution of the ever consistent

system bAAxA tt , where t denotes the transpose. A least-squares solution lx is that

solution for which the sum of the squares of the residuals viz. 2|||| bAxl is the least,

where |||| denotes the Euclidean norm. This solution may not be unique. However, one

of the possible least-squares solutions, viz. mlx for which 2|||| bAxml and also |||| mlx

are both minimum out of all possible least-squares solutions lx , is known as the

minimum-norm least-squares solution (mls). The mls mlx is always unique while the

solution lx may not be unique. When a least-squares solution of the system bAx is not

unique, the system will then always have infinity of least-squares solutions. Consider, for

example, the system bAx , where

23

15

6

,

987

654

321

bA .

Using the Matlab commands (keyed in one line)

>> A=[1 2 3;4 5 6;7 8 9], b=[6 15 23]', B=A'*A, c=A'*b, xt=B\c,nt=norm(A*xt-b),

xmt=pinv(A)*b, nmt=norm(A*xmt-b), nxt=norm(xt), nxmt=norm(xmt)

we obtain a least-squares solution xt = [3.4091 -4.4848 3.9091] t and the mls xmt

=[0.6944 0.9444 1.1944] t . Yet another least-squares solution is obtained using the Gauss

reduction involving the following Matlab commands, which have used the foregoing

matrix B and vector c,

>>E1=[1 0 0;-78/66 1 0;-90/66 0 1], B1=E1*B, c1=E1*c

>> E2=[1 0 0; 0 1 0; 0 -B1(3,2)/B1(2,2) 1]

>> B2=E2*B1, c2=E2*c1

>> x3=(c2(2)-B2(2,2))/B2(2,3)

>> x2=1, x1=(227-78*x2-90*x3)/66

This second least-squares solution then in an exact form is t

tx]
6

7
1

3

2
[. There are, in

fact, infinity of least-squares solutions for the foregoing problem. The sum of the squares

LEAST SQUARES SOLUTION 213

of the residuals viz. 2|||| bAx for all the foregoing three solutions, viz.

t

tx]
6

7
1

3

2
[, xt = [3.4091 -4.4848 3.9091] t , xmt =[0.6944 0.9444 1.1944] t are

numerically the same, viz. 0.4082 while their norms are different. These are 1.6750,

6.8569, and 1.6736, respectively.

 Here we will be computing the numerical mls mlx instead of the solution lx . For any

least-squares problem, computing mlx instead of lx is absolutely fine and is usable for

any real-world application unless one has some other constraints in mind.

 It may be seen that the number of solutions of any linear system could be either 0 or

just 1 or infinite. It can never be just 2 or just 3 or just n , where n is a finite positive

integer. For if there are two solutions then a linear combination of these two solutions is

also a solution of the system bAx .

 We present in section 2 the algorithms consisting of (i) pruning redundant (linearly

dependent) equations, (ii) locating the equations, if any, that are unacceptably

contradictory along with a computation of the inconsistency index inci, and (iii)

computing the mls of the pruned system that does not have too much (unacceptable

inconsistency) contradiction in the context. The pruned system, i.e. the system without

linearly dependent rows, involves less storage and less computation resulting in less

computational error as well as less space (storage) complexity. However, in the context

of a least-squares solution for a least-squares model, pruning linearly dependent rows

may alter the least-squares solution vector significantly to make the desired solution

worse or better depending on the problem on hand. One may compute both the pruned

solution and the un-pruned solution to correlate/interpret them in the physical/statistical

problem under consideration. An un-pruned least-squares solution of the inconsistent

system involving several linearly dependent rows of the augmented matrix],[bA is

significant unlike a one for a fully consistent system. The algorithm detects excessive

contradiction in an equation, if any, in the system and cautions the concerned researcher

so that he falls back to the physical problem and the resulting mathematical model, finds

out the reason for unacceptable inconsistency in the model, takes appropriate corrective

measures, and then computes the required solution. It will definitely not serve any

purpose to compute the mls (that can always be easily computed) of any system (having

unacceptable inconsistency). In section 3, we provide numerical examples while in

section 4 we include conclusions.

2. THE ALGORITHM

The algorithm is comprised of three sub-algorithms, viz. pruning sub-algorithm, over-

inconsistency detection sub-algorithm, and mls solver sub-algorithm. We briefly

describe these sub-algorithms with a numerical example. However, it is always possible

as well as easy to combine these sub-algorithms into one algorithm and execute the

algorithm.

Sub-algorithm 1 (Pruning redundant equations) Consider the linear system (generally

inconsistent)

 bAx , (1)

214 SEN AND SHAYKHIAN

where A is a given numerical nm matrix, b is a given numerical m -vector, and x is

an n -vector to be computed in the least-squares sense. We assume or we know for

certain that the very first equation of the system (usually over-determined) bAx is

correct. We first consider the augmented matrix),(bAC which will be our coefficient

matrix. The right-hand side column vector d is computed as the row sum of the matrix

ijcC . That is,
1

1

)1(1,
n

j

iji micd . Thus the system dCy is always consistent. We

now use the following Matlab program (self-explanatory) to sieve out the linearly

dependent rows (if any) of C as these rows are not required for computing a solution

vector. For the mathematics/justification of this program refer [1, 2]

function pruningldrows(C);

% C=Usually augmented matrix (A,b) of Ax=b

%Redundant (linearly dependent) rows of the C are pruned.

b=sum(C')'; A=C; redrow(1)=0;

disp('Given unpruned matrix is'); C

B=A; c=b; rrow=0;

[m n]=size(A); p=0;

x=zeros(n,1); r=0; P=eye(n); k=1;

abar=sum(sum(abs(A)))/(m*n); bbar=sum(abs(A(:,n-1)))/m;

for i = 1:m

 a=A(i,:)'; brow=b(i); u=P*a; v=(norm(u))^2; inconsistency = brow-a'*x;

 if abs(v) >= 0.00005*abar %Permits 4 significant digit accuracy

 P=P-u*u'/v; x = x + inconsistency*u/v; r=r+1;

 else

 % Store indices of redundant rows in a vector.

 redrow(k)=i; k=k+1; rrow=1;

 end

end; disp('Linearly dependent rows are'); redrow

if rrow==1

c(redrow)=[]; B(redrow,:)=[];

end

if p ~= 1

 S=size(B);

 if S(1)<=m

 disp('The rank of the matrix C or the pruned matrix B is '); disp(r);

 disp('The pruned matrix B is');B

 end

end

>> Ab = 1 2 3 4 5 15

 2 4 6 8 10 30

 3 6 9 12 15 400

 1 1 1 1 1 10

 2 2 2 2 2 10

 8 16 24 32 40 120

 11 23 35 47 59 175

where Ab= [A, b] is the augmented matrix where the first 5 columns constitute the

coefficient matrix A while the last column of Ab is the right-hand side bb vector which is

constructed by the row-sum of each row of the matrix A. Consequently, the system

LEAST SQUARES SOLUTION 215

bbAbx is always consistent. The Matlab command >> pruningldrows([Ab bb])

produces pruned system as follows.

Given unpruned matrix is

C = [Ab bb]
 1 2 3 4 5 15 30
 2 4 6 8 10 30 60

 3 6 9 12 15 400 445

 1 1 1 1 1 10 15

 2 2 2 2 2 10 20

 8 16 24 32 40 120 240

 11 23 35 47 59 175 350

Linearly dependent rows are redrow = 2 5 6 7

The rank of the matrix C or the pruned matrix B is 3

The pruned matrix B is

B =

 1 2 3 4 5 15 30

 3 6 9 12 15 400 445

 1 1 1 1 1 10 15

Sub-algorithm 2 (Over-inconsistency detection) Having pruned linearly dependent

(redundant) rows, the resulting system will be left with equations cBx which could be

(i) consistent or (ii) acceptably inconsistent or (iii) unacceptably (over-) inconsistent (in

the context). In case (i), we compute the mls mlx (unique) of cBx , which is a true

solution of cBx , i.e. . |||| cBxml = 0 (numerical zero). In case (ii) also, we compute

the mls mlx of cBx , which is not a true solution but a solution such that the norm

|||| cBxml i.e. the square-root of the sum of the squares of the residual, is a minimum

and not a numerical zero. In case (iii), once we detect an abnormally (too) inconsistent

equation or, equivalently, an outlier (analogous to a data point which is far away from

other data points or a cluster of data points in statistics), we do not proceed to compute

the mls of cBx as it may not often be useful. Instead, we go back to the original

physical (real-world) problem along with its corresponding mathematical model to

determine the cause of such an unacceptably large contradiction (inconsistency) and take

the necessary corrective measures before computing the mls of cBx . The following

Matlab code (program) nclinsolver(A, b) which is self-explanatory detects the equations

that cause over-inconsistency [2].

%Computational NC-LINSOLVER (Matlab program) The following program is self-explanatory.
%A general LINSOLVER program that includes near-consistent linear %system.
%Reference: S.K. Sen and Sagar Sen, Linear System: Relook, concise
%algorithms, and Matlab programs, Academic Studies – National Journal
%of Jyoti Research Academy, Feb., 2007, Vol. 1(1), pp. 1-8.

216 SEN AND SHAYKHIAN

function[]=nclinsolver(A,b); [m, n]=size(A);
%NC-LINSOLVER: Near-consistent Linear System Solver
'The matrix A and vector b of the system Ax=b are', A,b,
P=eye(n); sd=0; x(1:n)=0; x=x'; delb(1:m)=0; delb=delb'; bo=b; r=0;
abar=0; for i=1:m, for j=1:n, abar=abar+abs(A(i,j)); end; end;

abar=abar/(m*n);
bbar=0; for i=1:m, bbar=bbar+abs(b(i)); end; bbar=bbar/m;
for i=1:m
 u=P*A(i,:)'; v=norm(u)^2; s=b(i) -A(i,:)*x; c=0;
 if v<=.00005*abar & abs(s)>=.00005*bbar, delb(i)=-s; sd=-

s; b(i)=b(i) +delb(i); s=0;
 elseif v<=.00005*abar & abs(s)<=.00005*bbar; delb(i)=0; end;
 if v>=.00005*abar, x=x+u*s/v; P=P-u*u'/v; c=1; delb(i)=0; end;

r=r+c;
end;
if abs(sd)>.00005*(abar+bbar)*0.5, 'The system Ax=b is

inconsistent.', end;
inci=norm(delb)/norm([A,b]); err=norm(bo-A*x)/norm(x);
'The projection operator P = (I - A+A) is', P,
'The rank of the matrix A is', r,
'The inconsistency index is', inci,
'Modification in vector b, i.e., Db is', delb,
'Vector b of the nearest consistent system is', b,
'Solution vector of the nearest consistent system is', x,
'Error in the solution vector x is', err

The matrix AAA is our B matrix of the pruned system bBx while the vector bbb is

our vector b of the pruned system. The pruned system could be consistent or acceptably

inconsistent or unacceptably inconsistent. We now detect the equation that causes the

inconsistency, using the Matlab command >> nclinsolver(AAA, bbb). The matrix AAA

and vector bbb of the system AAAx=bbb are

AAA =

 1 2 3 4 5

 3 6 9 12 15

 1 1 1 1 1

bbb =[15 400 10]
t

The system Ax=b (i.e. AAAx=bbb) is inconsistent. The projection operator P = (I -

A+A) (i.e.)(AAIP needed for a solution Pzxc , of the homogeneous equation

0Ax , where z is an arbitrary column vector and A is the minimum-norm least

squares (ml) inverse of the matrix A , also called the pseudo-inverse or the Moore-

Penrose inverse of A , is

P =

 0.4000 -0.4000 -0.2000 -0.0000 0.2000

 -0.4000 0.7000 -0.2000 -0.1000 -0.0000

 -0.2000 -0.2000 0.8000 -0.2000 -0.2000

 -0.0000 -0.1000 -0.2000 0.7000 -0.4000

 0.2000 -0.0000 -0.2000 -0.4000 0.4000

LEAST SQUARES SOLUTION 217

The rank of the matrix A is r = 2. The inconsistency index is inci = 6.5950. Modification

in vector b, i.e., Db is delb = [0 -355 0]
t
. Vector b of the nearest consistent system is b

= [15 45 10]
t
. Solution vector of the nearest consistent system is x = [5.0000 3.5000

2.0000 0.5000 -1.0000]
t
. Error in the solution vector x is err = 54.4545. delb in the

foregoing solution shows that the second element, viz. -355 is unacceptably large.

Ideally it should have been close to zero for an acceptable inconsistency. This implies

that one needs to fall back to the original physical problem and its mathematical model to

ascertain why such a large contradiction has occurred and to take necessary corrective

measures. The inconsistency index inci as well as the error in the solution vector provide

us enough information about the equation which has become too contradictory. One may

recall that we assumed that the very first equation representing an information is correct.

Or, in other words, we have already carefully checked from the physical model and its

corresponding mathematical model that the first equation is correct or any of the

equations of the system which is definitely known to be correct will be placed as our very

first equation. This is because all the other equations, each one of which representing an

information (an assertive sentence), are checked against the very first equation. A more

desirable thing will be to assemble all those equations in the beginning (at the top) which

have been checked and rechecked thoroughly and found to be definitely correct. In the

foregoing system, clearly the second equation is the one which is too inconsistent and

may be considered an outlier in a statistical sense.

 However, if we have the same foregoing system with 40 instead of 400, then we will

have inconsistency index inci, delb (to make the system consistent), as well as err (error

in the solution vector x) as

inci = 0.0929, delb = [0 5 0]
t
, and err = 0.7670,

respectively. In the given context, such a relatively small contradiction could be

acceptable.

 The solution vector of the nearest consistent system in the foregoing nclinsolver

program has been shown so that one can compare the actual mls to be computed by the

sub-algorithm 3 against it although it is not our focus.

Sub-algorithm 3 Minimum-norm least-squares solver (ml solver) Having confirmed that

the system cBx is an acceptably inconsistent system from the sub-algorithm 2, we

simply compute the mls of cBx . While one can always compute simply a least-

squares solution (need not be unique) of cBx by any of the available numerical

methods in literature [4-11], we compute the mls simply by using the one concise Matlab

command >>xc=pinv(B)*c. This solution is also a least-squares solution and it serves our

purpose perfectly well as long as our system is not too large. If the system is too large so

that it is beyond the scope of the general Matlab command pinv from both storage point

of view as well as from error point of view, we need to use a special software package

suited for computing a least-squares solution of the system.

Our acceptably inconsistent system is AAAx=bbb, where

AAA =
 1 2 3 4 5

 3 6 9 12 15

 1 1 1 1 1

218 SEN AND SHAYKHIAN

and bbb = [15 40 10]
t

>> x=pinv(AAA)*bbb

x = [5.3000 3.6500 2.0000 0.3500 -1.3000]
t

One may compare the error erml due to this mls of the system AAAx=bbb with error

errnc due to the solution of the foregoing nearest consistent system in Matlab as follows.

>> errml=norm(AAA* [5.3000 3.6500 2.0000 0.3500 -1.3000]'-bbb)

errml = 1.5811

>> errnc=norm(AAA*[5.0000 3.5000 2.0000 0.5000 -1.0000]'-bbb)

errnc = 5

It can be seen that error in the mls of the system is less possibly prompting us to infer

that the inconsistency is acceptable. Although we do not have sufficient pressing reason

to bother about nearest consistent system, we could see how much deviation in the right-

hand side vector bbb is required for the original pruned inconsistent system to be

consistent. If the numerical deviation is too much, then evidently the inconsistency is also

too much and is unacceptable for a real-world implementation. Consider, for instance, the

foregoing system with bbb=[15 400 10]’ instead of bbb=[15 40 10]’. Then we have

>> bbb=[15 400 10]'

bbb = [15 400 10]
t

>> xml=pinv(AAA)*bbb

xml = [-16.3000 -7.1500 2.0000 11.1500 20.3000]
t

>> errml1=norm(AAA* [5.3000 3.6500 2.0000 0.3500 -1.3000]'-bbb)

errml1 = 359.5031

This error errml1 is sufficiently greater than the foregoing errnc. This indicates that the

inconsistency is too large to be accepted. However, the acceptance of inconsistency very

much depends on the context and is somewhat subjective.

 Consider the following constructed (using Matlab rand command) over-determined

system Ax=b.

>> A=rand(12, 5), b=sum(A')'

LEAST SQUARES SOLUTION 219

A =

 0.8147 0.9572 0.6787 0.6948 0.7094

 0.9058 0.4854 0.7577 0.3171 0.7547

 0.1270 0.8003 0.7431 0.9502 0.2760

 0.9134 0.1419 0.3922 0.0344 0.6797

 0.6324 0.4218 0.6555 0.4387 0.6551

 0.0975 0.9157 0.1712 0.3816 0.1626

 0.2785 0.7922 0.7060 0.7655 0.1190

 0.5469 0.9595 0.0318 0.7952 0.4984

 0.9575 0.6557 0.2769 0.1869 0.9597

 0.9649 0.0357 0.0462 0.4898 0.3404

 0.1576 0.8491 0.0971 0.4456 0.5853

 0.9706 0.9340 0.8235 0.6463 0.2238

b = [3.8548 3.2207 2.8966 2.1616 2.8034 1.7286 2.6613 2.8318 3.0368

 1.8769 2.1347 3.5982]
t

The augmented matrix][bAC is obtained as follows.

>> C=[A b]

C =

 0.8147 0.9572 0.6787 0.6948 0.7094 3.8548

 0.9058 0.4854 0.7577 0.3171 0.7547 3.2207

 0.1270 0.8003 0.7431 0.9502 0.2760 2.8966

 0.9134 0.1419 0.3922 0.0344 0.6797 2.1616

 0.6324 0.4218 0.6555 0.4387 0.6551 2.8034

 0.0975 0.9157 0.1712 0.3816 0.1626 1.7286

 0.2785 0.7922 0.7060 0.7655 0.1190 2.6613

 0.5469 0.9595 0.0318 0.7952 0.4984 2.8318

 0.9575 0.6557 0.2769 0.1869 0.9597 3.0368

 0.9649 0.0357 0.0462 0.4898 0.3404 1.8769

 0.1576 0.8491 0.0971 0.4456 0.5853 2.1347

 0.9706 0.9340 0.8235 0.6463 0.2238 3.5982

The 13
th

, 14
th

, and 15
th

 rows of C are constructed using the following three Matlab

commands.

>> C(13,:)=2*C(12,:)+3*C(11,:)

>> C(14,:)=-1*C(10,:)+4*C(9,:)

>> C(15,:)=-1*C(8,:)+4*C(7,:)

Thus the 615 augmented matrix C is then

220 SEN AND SHAYKHIAN

C =

 0.8147 0.9572 0.6787 0.6948 0.7094 3.8548

 0.9058 0.4854 0.7577 0.3171 0.7547 3.2207

 0.1270 0.8003 0.7431 0.9502 0.2760 2.8966

 0.9134 0.1419 0.3922 0.0344 0.6797 2.1616

 0.6324 0.4218 0.6555 0.4387 0.6551 2.8034

 0.0975 0.9157 0.1712 0.3816 0.1626 1.7286

 0.2785 0.7922 0.7060 0.7655 0.1190 2.6613

 0.5469 0.9595 0.0318 0.7952 0.4984 2.8318

 0.9575 0.6557 0.2769 0.1869 0.9597 3.0368

 0.9649 0.0357 0.0462 0.4898 0.3404 1.8769

 0.1576 0.8491 0.0971 0.4456 0.5853 2.1347

 0.9706 0.9340 0.8235 0.6463 0.2238 3.5982

 2.4140 4.4154 1.9383 2.6294 2.2034 13.6005

 2.8651 2.5873 1.0615 0.2577 3.4986 10.2702

 0.5671 2.2093 2.7924 2.2669 -0.0224 7.8133

We then inject inconsistency in 14
th

 and 15
th

 equations

>> C(14,6)=C(14,6)-1, C(15,6)=C(15,6)+2 (%Inconsistency is injected in 14
th

 and 15
th

equations)

Thus the augmented matrix C of the inconsistent system becomes

C =

 0.8147 0.9572 0.6787 0.6948 0.7094 3.8548

 0.9058 0.4854 0.7577 0.3171 0.7547 3.2207

 0.1270 0.8003 0.7431 0.9502 0.2760 2.8966

 0.9134 0.1419 0.3922 0.0344 0.6797 2.1616

 0.6324 0.4218 0.6555 0.4387 0.6551 2.8034

 0.0975 0.9157 0.1712 0.3816 0.1626 1.7286

 0.2785 0.7922 0.7060 0.7655 0.1190 2.6613

 0.5469 0.9595 0.0318 0.7952 0.4984 2.8318

 0.9575 0.6557 0.2769 0.1869 0.9597 3.0368

 0.9649 0.0357 0.0462 0.4898 0.3404 1.8769

 0.1576 0.8491 0.0971 0.4456 0.5853 2.1347

 0.9706 0.9340 0.8235 0.6463 0.2238 3.5982

 2.4140 4.4154 1.9383 2.6294 2.2034 13.6005

 2.8651 2.5873 1.0615 0.2577 3.4986 9.2702

 0.5671 2.2093 2.7924 2.2669 -0.0224 9.8133

If we use the Matlab command >> pruningldrows(C) to prune linearly dependent rows

then we have:

 Linearly dependent rows are

redrow = 6 7 8 9 10 11 12 13 15

LEAST SQUARES SOLUTION 221

The rank of the matrix C or the pruned matrix B is 6

The pruned matrix B is

B =

 0.8147 0.9572 0.6787 0.6948 0.7094 3.8548

 0.9058 0.4854 0.7577 0.3171 0.7547 3.2207

 0.1270 0.8003 0.7431 0.9502 0.2760 2.8966

 0.9134 0.1419 0.3922 0.0344 0.6797 2.1616

 0.6324 0.4218 0.6555 0.4387 0.6551 2.8034

 2.8651 2.5873 1.0615 0.2577 3.4986 9.2702

The rank of the augmented matrix is obtained using the Matlab command >> rank(C) as

 6 (thus C is a matrix with full-column rank).

Thus the right-hand side vector bb of the pruned linear system Bx=bb is obtained using

the command >> bb=B(:,6) as

bb = [3.8548 3.2207 2.8966 2.1616 2.8034 9.2702]
t

while the coefficient matrix B is sieved out using the command >> B= B(1:6, 1:5) as

B =

 0.8147 0.9572 0.6787 0.6948 0.7094

 0.9058 0.4854 0.7577 0.3171 0.7547

 0.1270 0.8003 0.7431 0.9502 0.2760

 0.9134 0.1419 0.3922 0.0344 0.6797

 0.6324 0.4218 0.6555 0.4387 0.6551

 2.8651 2.5873 1.0615 0.2577 3.4986

(The original augmented matrix B no longer exists.)

The Matlab program >> nclinsolver(B, bb) when executed produces the following

results (omitting, however, the print output of the coefficient matrix B and the right-hand

side vector bb).

The system Ax=b (i.e. Bx=bb) is inconsistent.

The projection operator P = (I - A+A) i.e.)(BBIP is

P = 1.0e-014 *

 0.2554 -0.3381 -0.2512 0.3830 -0.0999

 -0.3381 0.0216 -0.1015 -0.0459 0.4447

 -0.2512 -0.1015 -0.1620 0.0737 0.4038

 0.3830 -0.0459 0.0737 0.0737 -0.4698

 -0.0999 0.4447 0.4038 -0.4698 -0.1887

which is a numerical null (zero) matrix.

222 SEN AND SHAYKHIAN

The rank of the matrix A (i.e. B) is r = 5

The inconsistency index is inci = 0.0729

Modification in vector b, i.e., Db is delb = [0 0 0 0 0 0.9985]
t

Vector b of the nearest consistent system is

b = [3.8548 3.2207 2.8966 2.1616 2.8034 10.2687]
t

Solution vector of the nearest consistent system is

x = [1.0007 1.0000 1.0002 1.0001 0.9989]
t

Error in the solution vector x is err = 0.4466

If we now consider the un-pruned system CCx=bc, where

bc = [3.8548 3.2207 2.8966 2.1616 2.8034 1.7286 2.6613 2.8318 3.0368

 1.8769 2.1347 3.5982 13.6005 9.2702 9.8133]
t

and

CC =

 0.8147 0.9572 0.6787 0.6948 0.7094

 0.9058 0.4854 0.7577 0.3171 0.7547

 0.1270 0.8003 0.7431 0.9502 0.2760

 0.9134 0.1419 0.3922 0.0344 0.6797

 0.6324 0.4218 0.6555 0.4387 0.6551

 0.0975 0.9157 0.1712 0.3816 0.1626

 0.2785 0.7922 0.7060 0.7655 0.1190

 0.5469 0.9595 0.0318 0.7952 0.4984

 0.9575 0.6557 0.2769 0.1869 0.9597

 0.9649 0.0357 0.0462 0.4898 0.3404

 0.1576 0.8491 0.0971 0.4456 0.5853

 0.9706 0.9340 0.8235 0.6463 0.2238

 2.4140 4.4154 1.9383 2.6294 2.2034

 2.8651 2.5873 1.0615 0.2577 3.4986

 0.5671 2.2093 2.7924 2.2669 -0.0224

then we have the mls x1 of the pruned system Bx-bb and the mls x2 of the non-pruned

system CCx=bc obtained using the commands

>> x1=pinv(B)*bb, x2=pinv(CC)*bc

as

x1 = [1.4061 0.8277 1.0575 1.2195 0.4759]
t

x2 = [0.8656 0.8763 1.5941 1.1482 0.7234]
t

LEAST SQUARES SOLUTION 223

Their respective norms are, using

>> norm(x1), norm(x2),

 2.3439 and 2.4290, respectively.

>> BB=[B;C(15,1:5)], bbb=[bb; C(15,6)]

BB =

 0.8147 0.9572 0.6787 0.6948 0.7094

 0.9058 0.4854 0.7577 0.3171 0.7547

 0.1270 0.8003 0.7431 0.9502 0.2760

 0.9134 0.1419 0.3922 0.0344 0.6797

 0.6324 0.4218 0.6555 0.4387 0.6551

 2.8651 2.5873 1.0615 0.2577 3.4986

 0.5671 2.2093 2.7924 2.2669 -0.0224

bbb = [3.8548 3.2207 2.8966 2.1616 2.8034 9.2702 9.8133]
t

>> x3=pinv(BB)*bbb

x3 = [1.3955 1.4626 1.8621 0.2521 -0.1601]
t

>> norm(x3)

 2.7647

>> x1=pinv(B)*bb

x1 = [1.4061 0.8277 1.0575 1.2195 0.4759]
t

>> norm(x1)

 2.3439

>> CC

CC =

 0.8147 0.9572 0.6787 0.6948 0.7094

 0.9058 0.4854 0.7577 0.3171 0.7547

 0.1270 0.8003 0.7431 0.9502 0.2760

 0.9134 0.1419 0.3922 0.0344 0.6797

 0.6324 0.4218 0.6555 0.4387 0.6551

 0.0975 0.9157 0.1712 0.3816 0.1626

 0.2785 0.7922 0.7060 0.7655 0.1190

 0.5469 0.9595 0.0318 0.7952 0.4984

 0.9575 0.6557 0.2769 0.1869 0.9597

 0.9649 0.0357 0.0462 0.4898 0.3404

224 SEN AND SHAYKHIAN

 0.1576 0.8491 0.0971 0.4456 0.5853

 0.9706 0.9340 0.8235 0.6463 0.2238

 2.4140 4.4154 1.9383 2.6294 2.2034

 2.8651 2.5873 1.0615 0.2577 3.4986

 0.5671 2.2093 2.7924 2.2669 -0.0224

>> bc

bc = [3.8548 3.2207 2.8966 2.1616 2.8034 1.7286 2.6613 2.8318 3.0368 1.8769

 2.1347 3.5982 13.6005 9.2702 9.8133]
t

>> x2=pinv(CC)*bc

x2 = [0.8656 0.8763 1.5941 1.1482 0.7234]
t

>> norm(x2)

 2.4290

3. NUMERICAL EXAMPLE

 Consider the non-over-determined inconsistent system bAx created by the

following Matlab commands

>> A=rand(4,6); A(5,:)=1.5*A(1,:)+2*A(2,:); A(6,:)=3*A(2,:)-1.7*A(3,:)+4*A(4,:),

b=sum(A')'; b(5)=b(5)+ 2; b(6)=b(6)-1

where the coefficient matrix A and the right-hand side column vector b are (correct

up to 4 decimal digits)

A =

 0.6787 0.6555 0.2769 0.6948 0.4387 0.1869

 0.7577 0.1712 0.0462 0.3171 0.3816 0.4898

 0.7431 0.7060 0.0971 0.9502 0.7655 0.4456

 0.3922 0.0318 0.8235 0.0344 0.7952 0.6463

 2.5336 1.3256 0.5077 1.6764 1.4212 1.2598

 2.5788 -0.5594 3.2672 -0.5263 3.0241 3.2970

and

b = [2.9316 2.1635 3.7076 2.7235 10.7244 10.0815]
t
,

respectively although the actual computation was done with 15 digits. If one tries to

compute the rank of A with the foregoing 4-digit entry for each element then one will

find that the rank of A as 6 instead of 4. This is due to rounding errors. However, if

one retains all the 15 digits for each element of A and then compute the rank of A,

then he will get the rank as 4 and the rank of the augmented matrix [A b] as 5.

LEAST SQUARES SOLUTION 225

The system bAx is inconsistent. The 5
th

 and 6
th

 rows of the matrix A is linearly

dependent on the foregoing four rows. The augmented matrix C obtained by the

Matlab command >> C=[A b] is (correct up to 4 decimal digits)

C =

 0.6787 0.6555 0.2769 0.6948 0.4387 0.1869 2.9316

 0.7577 0.1712 0.0462 0.3171 0.3816 0.4898 2.1635

 0.7431 0.7060 0.0971 0.9502 0.7655 0.4456 3.7076

 0.3922 0.0318 0.8235 0.0344 0.7952 0.6463 2.7235

 2.5336 1.3256 0.5077 1.6764 1.4212 1.2598 10.7244

 2.5788 -0.5594 3.2672 -0.5263 3.0241 3.2970 10.0815

The linearly dependent (ld) row of C obtained using the command >>

pruningldrows(C) is its 6
th

 row. The rank of the matrix C or the pruned matrix B is

5 (The input data were kept correct up to 15 decimal digits and not up to 4 decimal

digits in actual computation)

The right-hand side column vector bb is (correct up to 4 decimal digits) bb = [2.9316

2.1635 3.7076 2.7235 10.7244]
t
. The pruned matrix B is (up to 4 decimal digits),

using the command >> BB=B(:,1:6),

BB =

 0.6787 0.6555 0.2769 0.6948 0.4387 0.1869

 0.7577 0.1712 0.0462 0.3171 0.3816 0.4898

 0.7431 0.7060 0.0971 0.9502 0.7655 0.4456

 0.3922 0.0318 0.8235 0.0344 0.7952 0.6463

 2.5336 1.3256 0.5077 1.6764 1.4212 1.2598

We now detect the equation(s), using the command >> nclinsolver(BB,bb), that are

inconsistent as follows.

The system Ax=b (i.e. BBx=bb) is inconsistent. The rank of the matrix A (i.e. BB)

is r = 4. The inconsistency index is inci = 0.1746. Modification in vector b, i.e., Db is

delb = [0 0 0 0 -2.0001]
t
. The fifth element of delb depicts that the fifth

equation is inconsistent. Vector b (i.e. bb) of the nearest consistent system is b =

[2.9316 2.1635 3.7076 2.7235 8.7243]
t
. Solution vector of the nearest consistent

system is x = [1.1102 0.8803 0.9555 0.9595 1.2137 0.7351]
t
. Error in the

solution vector x is err = 0.8266.

 The mls of the pruned system and that of un-pruned system along with their

norms are given using the Matlab commands

>> x1=pinv(BB)*bb, x1n=norm(x1), x2=pinv(A)*b, x2n=norm(x2)

where x1 = 1.0e+003 * [3.8250 -6.4839 -0.5869 1.0113 6.5185 -9.3243]
t

is the mls of the pruned system and x1n = 1.3692e+004 is the norm of x1.

 The mls of the un-pruned system is x2 = 1.0e+004 * [0.7794 2.2436 -1.5833 -

3.4841 2.6687 -1.6636]
t
 and its norm is x2n = 5.4933e+004.

 226 SEN AND SHAYKHIAN

 The square-roots of the sums of the squares of the residuals of the pruned and un-

pruned systems are, using the commands >> x1t=norm(BB*x1-bb), x2t=norm(A*x2-

b), x1t = 1.2841e-011 and x2t = 2.3662e-010, respectively. Here we see that the sum of

the squares of the residuals for the pruned system is less than that of un-pruned system. In

reality, it can be the other way also for some other least-squares problems. However, the

foregoing inconsistency due to the fifth equation may be quite acceptable in most real-

world computations.

4. CONCLUSIONS

 Inconsistency for non-over-determined system bAx is due to linear dependence of

a row of the matrix A while the corresponding element of b on the right-hand side is not

linearly dependent. In other words the row(s) of A are linearly dependent while the

corresponding row(s) of the augmented matrix],[bA are not.

 It is possible to know globally whether inconsistency is relatively large or not by

computing the sum of squares of the residuals, viz. |||| bAxml , where |||| denotes the

Euclidean norm and mlx is the mls of the system bAx . This sum should be acceptably

low in the context. But it is not possible to know the equations which have caused the

inconsistency. In fact, it is more important to detect the equations which cause the

excessive inconsistency and take necessary corrective measures before proceeding.

Hence it is necessary to fall back on to the original physical/statistical problem and the

corresponding mathematical model and find out the reason for over-inconsistency and

correct the model accordingly before proceeding to compute the mls .

 While for consistent systems, linearly dependent rows do not carry any new

information and are hence redundant, for inconsistent systems, the linearly dependent

rows do carry information about the physical problem and hence do not always deserve to

be pruned (in many contexts). The mls for pruned and non-pruned inconsistent systems

will be, in general, different. The sum of the squares of the residuals could be

significantly more or significantly less than that for the non-pruned system. The

foregoing numerical examples demonstrate this fact.

 We have omitted the algorithms in mathematical form and provided them in Matlab

codes (programs). One can readily translate these codes to algorithms in mathematical

form if it is more convenient to appreciate the essence of the algorithms.

 For pruning linearly dependent rows as well as for the detection of the equations that

cause inconsistency, one may use Gauss reduction with partial pivoting. But this method

involves row interchanges and also the need for keeping track of row numbers. These,

specifically row interchanges, are not desirable in many situations. For instance, a

situation where row interchanges disturb the structure of the matrix such as the one

having one main diagonal with two diagonals above and two diagonals below. Of course,

both pruning and detection of inconsistent equations assume that the first equation is

definitely correct. This does not necessarily imply that some other subsequent linearly

independent equation is also correct.

LEAST SQUARES SOLUTION 227

References

[1] S.K. Sen, S. Ramakrishnan, R.P.Agarwal, and G.A. Shaykhian, Should pruning be a

pre-processor of any linear system? Journal of Applied Mathematics and Informatics

(JAMI), (2011), to appear.

[2] S.K. Sen and Sagar Sen, Linear systems: Relook, concise algorithms, and Matlab

programs, National Journal of Jyoti Research Academy, 1, 1, 1-8, 2007.

[3] V. Lakshmikantham, S.K. Sen, Computational Error and Complexity in Science and

 Engineering, Elsevier, Amsterdam, 2005.

 [4] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and Its Application, Wiley,

New York, 1971.

[5] G. Golub, W. Kahan, Calculating the singular values and the pseudo-inverse of a

matrix, SIAM J. Numer. Anal. B-2 (1965) 205–224.

[6] E.V. Krishnamurthy, S.K. Sen, Numerical Algorithms: Computations in Science and

 Engineering, Affiliated East-West Press, New Delhi, 2001.

[7] S.K. Sen, E.V. Krishnamurthy, Rank-augmented LU-algorithm for computing

generalized matrix inverses, IEEE Trans. Comput. C-23 (1974), 199-201.

[8] S.K. Sen, S.S. Prabhu, Optimal iterative schemes for computing Moore–Penrose

matrix inverse, Internat. J. Systems Sci. 8 (1976) 748–753.

[9] E.A. Lord, V.Ch. Venkaiah, S.K. Sen, A concise algorithm to solve under-/over-

determined linear systems, Simulation 54 (1990) 239–240.

 [10] E.H. Moore, On the reciprocal of the general algebraic matrix (abs.), Bull. Amer.

Math. Soc. 26 (1920) 394–395.

[11] R. Penrose, A generalized inverse for matrices, Proc. Chemb. Phil. Soc. 51 (1955)

406–413.

