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ABSTRACT. A parallel computer system is a set of processors that are able to work cooperatively

to solve a computational problem and whose state evolves in time by the occurrence of events

at possibly irregular time intervals. Place-transitions Petri nets (commonly called Petri nets) are

a graphical and mathematical modeling tool applicable to parallel computer systems in order to

represent its states evolution. Timed Petri nets are an extension of Petri nets, where now the timing

at which the state changes is taken into consideration. One of the most important performance issues

to be considered in a parallel computer system is its stability. Lyapunov stability theory provides the

required tools needed to aboard the stability problem for parallel computer systems modeled with

timed Petri nets whose mathematical model is given in terms of difference equations. By proving

practical stability one is allowed to preassigned the bound on the parallel computer system dynamics

performance. Moreover, employing Lyapunov methods, a sufficient condition for the stabilization

problem is also obtained. It is shown that it is possible to restrict the parallel computer systems

state space in such a way that boundedness is guaranteed. However, this restriction results to be

vague. This inconvenience is overcome by considering a specific recurrence equation, in the max-

plus algebra, which is assigned to the timed Petri net graphical model. Moreover, by using max-plus

algebra a timetable for the parallel computer system is set.
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1. INTRODUCTION

A parallel computer system is a set of processors that are able to work coop-

eratively to solve a computational problem and whose state evolves in time by the

occurrence of events at possibly irregular time intervals. Place-transitions Petri nets

(commonly called Petri nets) are a graphical and mathematical modeling tool that

can be applied to parallel computer systems in order to represent its states evolution.

Petri nets are known to be useful for analyzing the systems properties in addition of

being a paradigm for describing and studying information processing systems. Timed

Petri nets are an extension of Petri nets, where now the timing at which the state
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changes is taken into consideration. This is of critical importance since it allows to

consider useful measures of performance as for example: how long does the parallel

computer system spends at a given state etc. For a detailed discussion of Petri net

theory see [1] and the references quoted therein. One of the most important perfor-

mance issues to be considered in a parallel computer system is its stability. Lyapunov

stability theory provides the required tools needed to aboard the stability problem

for parallel computer systems modeled with timed Petri nets whose mathematical

model is given in terms of difference equations [2]. By proving practical stability

one is allowed to preassigned the bound on the parallel computer systems dynamics

performance. Moreover, employing Lyapunov methods, a sufficient condition for the

stabilization problem is also obtained. It is shown that it is possible to restrict the

parallel computer systems state space in such a way that boundedness is guaran-

teed. However, this restriction results to be vague. This inconvenience is overcome

by considering a specific recurrence equation, in the max-plus algebra, which is as-

signed to the the timed Petri net graphical model. Moreover, by using max-plus

algebra a timetable for the parallel computer system is set. This paper proposes a

new methodology consisting in combining Lyapunov theory with max-plus algebra

to give a precise solution to the stability and timetable design problem for parallel

computer systems modeled with timed Petri nets. The presented methodology ap-

plied to parallel computer systems is new and results to be innovative. The paper

is organized as follows. In section 2, Lyapunov theory for parallel computer systems

modeled with Petri nets is given. Section 3, presents max-plus algebra. In section 4,

generalized eigenmodes and recurrence equations are discussed. Section 5, introduces

an algorithm for computing generalized eigenmodes of reducible matrices. In section

6, the solution to the stability problem for parallel computer systems modeled with

Petri nets is considered . In section 7 the modeling, stability analysis and timetable

design for parallel computer systems is addressed. Finally, the paper ends with some

conclusions.

2. LYAPUNOV STABILITY AND STABILIZATION OF PARALLEL

COMPUTER SYSTEMS MODELED WITH PETRI NETS

The solution to the stability problem for parallel computer systems, whose model

is obtained employing timed Petri nets, is achieved thanks to the theory of vector Lya-

punov functions and comparison principles. The methodology shows that it is possible

to restrict the systems state space in such a way that boundedness is guaranteed.

NOTATION: N = {0, 1, 2, . . .}, R+ = [0,∞), N+
n0

= {n0, n0 + 1, . . . , n0 + k, . . . },

n0 ≥ 0. Given x, y ∈ Rn, we usually denote the relation “≤” to mean componentwise

inequalities with the same relation, i.e., x ≤ y is equivalent to xi ≤ yi, ∀i. A function
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f(n, x), f : N+
n0

× Rn → Rn is called nondecreasing in x if given x, y ∈ Rn such that

x ≥ y and n ∈ N+
n0

then, f(n, x) ≥ f(n, y).

Consider systems of first ordinary difference equations given by

(2.1) x(n + 1) = f [n, x(n)], x(no) = x0, n ∈ N+
n0

where n ∈ N+
n0

, x(n) ∈ Rn and f : N+
n0

× Rn → Rn is continuous in x(n).

Definition 1. The n vector valued function Φ(n, n0, x0) is said to be a solution of

(2.1) if Φ(n0, n0, x0) = x0 and Φ(n + 1, n0, x0) = f(n, Φ(n, n0, x0)) for all n ∈ N+
n0

.

Definition 2. The system (2.1) is said to be

i) Practically stable, if given (λ, A) with 0 < λ < A, then

|x0| < λ ⇒ |x(n, n0, x0)| < A, ∀ n ∈ N+
n0

, n0 ≥ 0;

ii) Uniformly practically stable, if it is practically stable for every n0 ≥ 0.

The following class of function is defined.

Definition 3. A continuous function α : [0,∞) → [0,∞) is said to belong to class K

if α(0) = 0 and it is strictly increasing.

Consider a vector Lyapunov function v(n, x(n)), v : N+
n0

× Rn → Rp
+ and define

the variation of v relative to (2.1) by

(2.2) ∆v = v(n + 1, x(n + 1)) − v(n, x(n))

Then, the following result concerns the practical stability of (2.1).

Theorem 4 ([3]). Let v : N+
n0

× Rn → Rp
+ be a continuous function in x, define the

function v0(n, x(n)) =
∑p

i=1 vi(n, x(n)) such that satisfies the estimates

b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|) for a, b ∈ K and

∆v(n, x(n)) ≤ w(n, v(n, x(n)))

for n ∈ N+
n0

, x(n) ∈ Rn, where w : N+
n0

× Rp
+ → Rp is a continuous function in the

second argument.

Assume that g(n, e) , e+w(n, e) is nondecreasing in e, 0 < λ < A are given and

finally that a(λ) < b(A) is satisfied. Then, the practical stability properties of

(2.3) e(n + 1) = g(n, e(n)), e(n0) = e0 ≥ 0.

imply the practical stability properties of system (2.1).
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Proof. Let us suppose that e(n+1) is practically stable for (a(λ), b(A)) then, we have

that
∑p

i=1 e0i
< a(λ) ⇒

∑p

i=1 ei(n, n0, e0) < b(A) for n ≥ n0 where ei(n, n0, e0) is the

vector solution of (2.3). Let ‖x0‖ < λ, we claim that ‖x(n, n0, x0)‖ < A for n ≥ n0.

If not, there would exist n1 ≥ n0 and a solution x(n, n0, x0) such that ‖x(n1)‖ ≥ A

and ‖x(n)‖ < A for n0 ≤ n < n1. Choose e0 = v(n0, x0) then v(n, x(n)) ≤ e(n, n0, e0)

for all n ≥ n0. (If not v(n, x(n)) ≤ e(n, n0, e0) and v(n + 1, x(n + 1)) > e(n +

1, n0, e0) ⇒ g(n, e(n)) = e(n+1, n0, e0) < v(n+1, x(n+1)) = ∆v(n, x0)+v(n, x(n)) ≤

w(n, v(n))+v(n, x(n)) = g(n, v(n))−v(n, x(n))+v(n, x(n)) = g(n, v(n)) ≤ g(n, e(n))

which is a contradiction.) Hence we get that b(A) ≤ b(‖x(n1)‖) ≤ v0(n1, x(n1)) ≤∑p
i=1 ei(n1, n0, e0) < b(A), which can not hold therefore, system (2.1) is practically

stable.

Corollary 5. In Theorem 4:

i) If w(n, e) ≡ 0 we get uniform practical stability of (2.1) which implies structural

stability.

ii) If w(n, e) = −c(e), for c ∈ K, we get uniform practical asymptotic stability of

(2.1).

Definition 6. A Petri net is a 5-tuple, PN = {P, T, F, W, M0} where:

P = {p1, p2, . . . , pm} is a finite set of places,

T = {t1, t2, . . . , tn} is a finite set of transitions,

F ⊂ (P × T ) ∪ (T × P ) is a set of arcs,

W : F → N+
1 is a weight function,

M0: P → N is the initial marking,

P ∩ T = ∅ and P ∪ T 6= ∅.

Definition 7. The clock structure associated with a place pi ∈ P is a set V = {Vi :

pi ∈ P } of clock sequences Vi = {vi,1, vi,2, . . . }, vi,k ∈ R+, k = 1, 2, . . .

The positive number vi,k, associated to pi ∈ P , called holding time, represents

the time that a token must spend in this place until its outputs enabled transitions

ti,1, ti,2, . . . , fire. Some places may have a zero holding time while others not. Thus,

we partition P into subsets P0 and Ph, where P0 is the set of places with zero holding

time, and Ph is the set of places that have some holding time.

Definition 8. A timed Petri net is a 6-tuple TPN = {P, T, F, W, M0,V} where

{P, T, F, W, M0} are as before, and V = {Vi : pi ∈ P} is a clock structure. A timed

Petri net is a timed event petri net when every pi ∈ P has one input and one output

transition, in which case the associated clock structure set of a place pi ∈ P reduces

to one element Vi = {vi}.
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A PN structure without any specific initial marking is denoted by N . A Petri

net with the given initial marking is denoted by (N, M0). Notice that if W (p, t) = α

(or W (t, p) = β) then, this is often represented graphically by α, (β) arcs from p to t

(t to p) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at

time k and let Mk = [Mk(p1), . . . , Mk(pm)]T denote the marking (state) of PN at

time k. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W (pi, tj) for

all pi ∈ P such that (pi,tj) ∈ F . It is assumed that at each time k there exists at

least one transition to fire. If a transition is enabled then, it can fire. If an enabled

transition tj ∈ T fires at time k then, the next marking for pi ∈ P is given by

(2.4) Mk+1(pi) = Mk(pi) + W (tj , pi) − W (pi, tj).

Let A = [aij ] denote an n × m matrix of integers (the incidence matrix) where

aij = a+
ij − a−

ij with a+
ij = W (ti, pj) and a−

ij = W (pj, ti). Let uk ∈ {0, 1}n de-

note a firing vector where if tj ∈ T is fired then, its corresponding firing vector

is uk = [0, . . . , 0, 1, 0, . . . , 0]T with the one in the jth position in the vector and zeros

everywhere else. The matrix equation (nonlinear difference equation) describing the

dynamical behavior represented by a PN is:

(2.5) Mk+1 = Mk + AT uk

where if at step k, a−
ij < Mk(pj) for all pi ∈ P then, ti ∈ T is enabled and if this ti ∈ T

fires then, its corresponding firing vector uk is utilized in the difference equation to

generate the next step. Notice that if M ′ can be reached from some other marking

M and, if we fire some sequence of d transitions with corresponding firing vectors

u0, u1, . . . , ud−1 we obtain that

(2.6) M ′ = M + AT u, u =
d−1∑

k=0

uk.

Let (Nm
n0

, d) be a metric space where d : Nm
n0

× Nm
n0

→ R+ is defined by

d(M1, M2) =
m∑

i=1

ζi|M1(pi) − M2(pi)|; ζi > 0

and consider the matrix difference equation which describes the dynamical behavior

of the discrete event system modeled by a PN

(2.7) M ′ = M + AT u, u =
d−1∑

k=0

uk

where, M ∈ Nm, denotes the marking (state) of the PN , A ∈ Zn×m, its incidence

matrix and u ∈ Nn, is a sequence of firing vectors. Then, the following results

concerns in what to the stability problem means.
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Proposition 9. Let PN be a Petri net. PN is uniform practical stable if there exists

a Φ strictly positive m vector such that

(2.8) ∆v = uTAΦ ≤ 0

Moreover, PN is uniform practical asymptotic stable if the following equation holds

(2.9) ∆v = uT AΦ ≤ −c(e), for c ∈ K

Proof. Pick as our Lyapunov function candidate v(M) = MT Φ with Φ an m vector (to

be chosen). One can verify that v satisfies all the conditions of Theorem 4, and that

one obtains uniform practical (asymptotic) stability if there exists a strictly positive

vector Φ such that equation (2.8) holds.

Lemma 10. Let suppose that Proposition 9 holds then,

(2.10) ∆v = uTAΦ ≤ 0 ⇔ AΦ ≤ 0

Proof. (⇐) This is immediate from the fact that u is positive. (⇒) Since uTAΦ = 0

holds for every u ⇒ AΦ = 0. If uTAΦ < 0 again since u is positive AΦ < 0.

Remark 11. Notice that since the state space of a TPN is contained in the state

space of the same now not timed PN, stability of PN implies stability of the TPN.

2.1. Lyapunov Stabilization. Notice, that in the solution of the stability problem,

the u vector does not play any role, so why not to take advantage of it in order to

get some specific behavior. Consider the matrix difference equation which describes

the dynamical behavior of the discrete event system modeled by a Petri net

M ′ = M + AT u

We are interested in finding a firing sequence vector, control law, such that system

(2.7) remains bounded.

Definition 12. Let PN be a Petri net. PN is said to be stabilizable if there exists

a firing transition sequence with transition count vector u such that system (2.7)

remains bounded.

Proposition 13. Let PN be a Petri net. PN is stabilizable if there exists a firing

transition sequence with transition count vector u such that the following equation

holds

(2.11) ∆v = AT u ≤ 0

Proof. Define as our vector Lyapunov function v(M) = [v1(M), v2(M), . . . , vm(M)]T ;

where vi(M) = M(pi), 1 ≤ i ≤ m we can verify that all the conditions of Theorem 4

are satisfied and, that one obtains uniform practical stability if there exists a fireable
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transition sequence with transition count vector u such that equation (2.11) holds.

Therefore, we conclude that PN is stabilizable.

Remark 14. This result was first stated and proved in [4] and it relies in the use of

vector Lyapunov functions. It is important to underline that by fixing a particular u,

which satisfies (2.11), we restrict the state space to those markings (states) that are

finite. The technique can be utilized to get some type of regulation and/or eliminate

some undesirable events (transitions). Notice that in general (2.8) ; (2.11) and that

the opposite is also true (this is illustrated with the following two examples).

(2.8) ; (2.11) Consider the Petri net model shown in Fig. 1.

Figure 1.

The incidence matrix which represents the model is

(2.12) A =

[
−1 1 0

−1 0 1

]

Then, picking Φ = [1, 1, 1] uniform practical stability is concluded. However, there is

no u such that AT u ≤ 0.

(2.11) ; (2.8). Consider the Petri net model depicted in Fig. 2.

Figure 2.
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The structure is typical of an unbounded Petri net model in which the marking in

p1can grow indefinitely due to the repeated firing of t1. However, by taking u = [k, k],

k > 0 equation (2.11) is satisfied therefore, the system becomes bounded i.e., is

stabilizable.

Remark 15. Notice that by firing all the transitions in the same proportion i.e.,

u = [k, k], k > 0 an unbounded PN becomes stable. This guarantees that there is

no possibility that the marking will grow without bound at any place between two

transitions. This basic idea motivates the definition of stability for TPN which will

be given in section 6.

3. MAX-PLUS ALGEBRA [5, 6]

In this section the concept of max-plus algebra is defined. Its algebraic structure

is described. Matrices and graphs are presented. The spectral theory of matrices is

discussed. Finally the problem of solving linear equations is addressed.

3.1. Basic Definitions. NOTATION: N is the set of natural numbers, R is the set

of real numbers, R
+ is the set of positive real numbers, ǫ = −∞, e = 0, Rmax = R∪{ǫ},

n = 1, 2, . . . , n

Let a, b ∈ Rmax and define the operations ⊕ and ⊗ by:

(3.1) a ⊕ b = max(a, b) and a ⊗ b = a + b.

(Notice that: a ⊕ ǫ = ǫ + a = a and a ⊗ e = e ⊗ a = a, ∀a ∈ Rmax.)

Definition 16. The set Rmax with the two operations ⊕ and ⊗ is called a max-plus

algebra and is denoted by ℜmax = (Rmax,⊕,⊗, ǫ, e).

Definition 17. A semiring is a nonempty set R endowed with two operations ⊕R,

⊗R, and two elements ǫR and eR such that:

• ⊕R is associative and commutative with zero element ǫR;

• ⊗R is associative, distributes over ⊕R, and has unit element eR,

• ∈R is absorbing for ⊗R i.e., a ⊗R ǫ = ǫR ⊗ a = a, ∀a ∈ R.

Such a semiring is denoted by ℜ = (R,⊕R,⊗R, ǫ, e). In addition if ⊗R is commutative

then R is called a commutative semiring, and if ⊕R is such that a ⊕R a = a, ∀a ∈ R

then it is called idempotent.

Theorem 18. The max-plus algebra ℜmax = (Rmax,⊕,⊗, ǫ, e) has the algebraic struc-

ture of a commutative and idempotent semiring.

Proof. The proof follows immediately using the definitions given by equation (3.1)

(in a similar way to the case for addition and multiplication over the reals) just being

careful when one substitutes multiplication for the max operation. As for example in
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the distributive property for a, b, c ∈ Rmax, it holds that: a⊗ (b⊕c) = a+max(b, c) =

max(a + b, a + c) = (a ⊗ b) ⊕ (a ⊗ c).

3.2. Matrices and Graphs. Let R
n×n
max be the set of n×n matrices with coefficients

in Rmax with the following operations:

• The sum of matrices A, B ∈ R
n×n
max , denoted A ⊕ B is defined by:

(3.2) (A ⊕ B)ij = aij ⊕ bij = max(aij , bij)

for i and j ∈ n.

• The product of matrices A ∈ R
n×l
max, B ∈ R

l×n
max, denoted A ⊗ B is defined by:

(3.3) (A ⊕ B)ik =
l⊕

j=1

aij ⊗ bjk = max
j∈l

{aij + bjk}

for i and k ∈ n. (Notice that the matrix product in general fails to be commu-

tative.)

• The scalar product for α ∈ R
n
max and A ∈ R

n×n
max , denoted α ⊗ A is defined by:

(3.4) (α ⊕ A)ij = α ⊗ aij

for i and j ∈ n.

Let E ∈ R
n×n
max denote the matrix with all its elements equal to ǫ and denote by

E ∈ R
n×n
max the matrix which has its diagonal elements equal to e and all the other

elements equal to ǫ. Then, the following result, whose proof is immediate, can be

stated.

Theorem 19. The 5-tuple ℜn×n
max = (Rn×n

max ,⊕,⊗, E , E) has the algebraic structure of

a noncommutative idempotent semiring.

Definition 20. Let A ∈ R
n×n
max and k ∈ N then the k-th power of A denoted by A⊗k

is defined by:

(3.5) A⊗k = A ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k−times

where A⊗0 is set equal to E.

Definition 21. A matrix A ∈ R
n×n
max is said to be regular if A contains at least one

element distinct from ǫ in each row.

Next, an overview in the theory of graphs will be given, emphasizing the rich

relationship that exist between them and matrices.

Definition 22. Let N be a finite and non-empty set and consider D ⊆ N ×N . The

pair G = (N ,D) is called a directed graph, where N is the set of elements called nodes

and D is the set of ordered pairs of nodes called arcs. A directed graph G = (N ,D) is

called a weighted graph if a weight w(i, j) ∈ R is associated with any arc (i, j) ∈ D.
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Let A ∈ R
n×n
max be any matrix, a graph G(A), called the communication graph of

A, can be associated as follows. Define N (A) = n and a pair (i, j) ∈ n × n will be a

member of D(A) ⇔ aji 6= ǫ, where D(A) denotes the set of arcs of G(A).

Definition 23. A path from node i to node j is a sequence of arcs p = {(ik, jk) ∈

D(A)}k∈m such that i = i1, jk = ik+1, for k < m and jm = j. The path p consists of

the nodes i = i1, i2, . . . , im, jm = j with length m denoted by |p|1 = m. In the case

when i = j the path is said to be a circuit. A circuit is said to be elementary if nodes

ik and il are different for k 6= l. A circuit consisting of one arc is called a self-loop.

Let us denote by P (i, j; m) the set of all paths from node i to node j of length

m ≥ 1 and for any arc (i, j) ∈ D(A) let its weight be given by aij then the weight of

a path p ∈ P (i, j; m) denoted by |p|w is defined to be the sum of the weights of all

the arcs that belong to the path. The average weight of a path p is given by |p|w/|p|1.

Given two paths, as for example, p = ((i1, i2), (i2, i3)) and q = ((i3, i4), ((i4, i5) in

G(A) the concatenation of paths ◦ : G(A) × G(A) → G(A) is defined as p ◦ q =

((i1, i2), (i2, i3), (i3, i4), (i4, i5)). The communication graph G(A) and powers of matrix

A are closely related as it is shown in the next theorem, whose proof follows using

induction on the length k of the path (see [1]).

Theorem 24. Let A ∈ R
n×n
max , then ∀k ≥ 1:

(3.6) [A⊗k]ji = max{|p|w : p ∈ P (i, j; k)}

where [A⊗k]ji = ǫ in the case when P (i, j; k) is empty i.e., no path of length k from

node i to node j exists in G(A).

Definition 25. Let A ∈ R
n×n
max then define the matrix A+ ∈ R

n×n
max as:

(3.7) A+ =
∞⊕

k=1

A⊗k

sometimes known as the shortest path matrix. Where the element [A+]ji gives the

maximal weight of any path from j to i. If in addition one wants to add the possibility

of staying at a node then one must include matrix E in the definition of matrix A+

giving rise to its Kleene star representation defined by:

(3.8) A∗ =
∞⊕

k=0

A⊗k.

Lemma 26. Let A ∈ R
n×n
max be such that any circuit in G(A) has average circuit weight

less than or equal to ǫ. Then it holds that:

(3.9) A∗ =

n−1⊕

k=0

A⊗k.
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Proof. Since A∗ =
∞⊕

k=0

A⊗k = (
n−1⊕
k=0

A⊗k) ⊕ (
∞⊕

k≥n

A⊗k) and all paths of length greater

than or equal to n are made up of a circuit and a path of length strictly less than n, we

have that Ak ≤ A⊕A∗2⊕· · ·⊕A∗(n−1) ∀k ≥ n, which implies that A∗ =
⊕n−1

k=0 A⊗k.

Definition 27. Let G = (N ,D) be a graph and i, j ∈ N , node j is reachable from

node i, denoted as iRj, if there exists a path from i to j. A graph G is said to be

strongly connected if ∀i, j ∈ N , jRi. A matrix A ∈ R
n×n
max is called irreducible if its

communication graph is strongly connected, when this is not the case matrix A is

called reducible.

Definition 28. Let G = (N ,D) be a not strongly connected graph and i, j ∈ N ,

node j communicates with node i, denoted as iCj, if either i = j or iRj and jRi.

The relation iCj defines an equivalence relation in the set of nodes, and therefore a

partition of N into a disjoint union of subsets, the equivalence classes, N1,N2, . . . ,Nq

such that N = N1 ∪ N2 ∪ · · · ∪ Nq or N =
⋃

i∈N

[i]; [i] = {j ∈ N : iCj}.

Given the above partition, it is possible to focus on subgraphs of G denoted by

Gr = (Nr,Dr); r ∈ q where Dr denotes the subset of arcs, which belong to D, that

have both the begin node and end node in Nr. If Dr 6= ∅ , the subgraph Gr = (Nr,Dr)

is known as a maximal strongly connected subgraph of G.

Remark 29. In case of having an isolated node i (i.e., a node that does not commu-

nicate with any other node) and which does not even have an arc from it to itself,

the associated subgraph is given by ([i], ∅) which is not strongly connected however,

for convenience it will be considered as if it were.

Definition 30. The reduced graph G̃ = (Ñ , D̃) of G is defined by setting Ñ =

{[i1] , [i2] , . . . [iq]} and ([ir], [is]) ∈ D̃ if r 6= s and there exists an arc (k, l) ∈ D for

some k ∈ [ir] and l ∈ [is].

Let Arr denote the matrix by restricting A to the nodes in [ir] ∀r ∈ q i.e.,

[Arr]kl = akl ∀k, l ∈ [ir]. Then ∀r ∈ q either Arr is irreducible or is equal to ǫ.

Therefore since by construction the reduced graph does not contain any circuits, the

original reducible matrix A after a possible relabeling of the nodes in G(A), can be

written as:

(3.10) A =




A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33
...

...
...

. . .
. . .

...

E E · · · E Aqq
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with matrices Asr 1 ≤ s < r ≤ q of suitable size, where each finite entry in Asr

corresponds to an arc from a node in [ir] to a node in [is].

Definition 31. Let A ∈ R
n×n
max be a reducible matrix then, the block upper triangular

given by (3.10) is said to be a normal form of matrix A.

3.2.1. Spectral Theory.

Definition 32. Let A ∈ R
n×n
max be a matrix. If µ ∈ Rmax is a scalar and v ∈ Rn

max is a

vector that contains at least one finite element such that:

(3.11) A ⊗ v = µ ⊗ v

then, µ is called an eigenvalue and v an eigenvector.

Remark 33. Notice that the eigenvalue can be equal to ǫ and is not necessarily

unique. Eigenvectors are certainly not unique indeed, if v is an eigenvector then α⊗v

is also an eigenvector for all α ∈ R.

Let C(A) denote the set of all elementary circuits in G(A) and write:

(3.12) λ = max
p∈C(A)

|p|w
|p|1

for the maximal average circuit weight. Notice that since C(A) is a finite set, the

maximum of (3.12) is attained (which is always the case when matrix A is irreducible).

In case C(A) = ∅ define λ = ǫ.

Definition 34. A circuit p ∈ G(A) is said to be critical if its average weight is

maximal. The critical graph of A, denoted by Gc(A) = (N c(A),Dc(A)), is the graph

consisting of those nodes and arcs that belong to critical circuits in G(A).

Lemma 35. Let assume that G(A) contains at least one circuit then, any circuit in

Gc(A) is critical.

Proof. If this were not the case, we could find a circuit p ∈ Gc(A), composed of sub-

paths, lets say pi of critical circuits pc, with weight different from λ (which without loss

of generality will be assumed to be equal to e). If this circuit had a weight greater

than e then, since p is also a circuit in G(A), it would contradict the assumption

that the maximal average circuit weight λ is equal to e. On the other hand, if the

weight of it were less than e, since the maximal average circuit weight is λ = e,

the circuit composed of the union of the complements of the paths pi ∈ Gc(A), with

respect to G(A), must have positive weight, in order to assure that the critical circuits

pc ∈ G(A), to which the sub-paths pi belong is critical i.e., has average wight λ = ǫ,

which is also a contradiction. Therefore, any circuit in Gc(A) is critical.
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Definition 36. Let A ∈ R
n×n
max be a matrix and µ an eigenvalue of A with associated

eigenvector v then, the support of v consists of the set of nodes of G(A) which

correspond to finite entries of v.

Lemma 37. Let A ∈ R
n×n
max be an irreducible matrix then any v ∈ Rn

max which satisfies

(3.11) has all components different from ǫ.

Proof. Let us assume that the support of v does not cover the whole node set of

G(A) then since A is irreducible, there are arcs going from nodes in the support of

v going to nodes not belonging to the support of v i.e., there exists a node j in the

support of v and a node i not in the support of v with aij 6= ǫ. But this implies that

[A⊗ v]i ≥ aij ⊗ vj > ǫ therefore, the support of A⊗ v is larger than the support of v

which contradicts (3.11).

Next, the most important result of this sub-subsection is given.

Theorem 38. If A ∈ R
n×n
max is irreducible, then there exists one and only one fi-

nite eigenvalue (with possible several eigenvectors). This eigenvalue is equal to the

maximal average weight of circuits in G(A):

(3.13) λ(A) = max
p∈C(A)

|p|w
|p|1

Proof. Existence of the eigenvalue λ and the eigenvector v. Consider matrix

Aλ with elements [Aλ]ij = aij − λ, λ finite. The maximum average circuit of Aλ is e.

Hence, Lemma 26 implies that A∗
λ and A+

λ exist. Moreover, from Lemma 35, matrix

A+
λ is such that that ∀η ∈ N c(A) : [A+

λ ]ηη = e. Let [A].k denote the kth column of

matrix A then, since ∀η ∈ N c(A) : [A+
λ ]ηη = e ⇒ [A∗

λ]ηη = e + [A+
λ ]ηη = e, it follows

that [A+
λ ].η = [A∗

λ].η. But A+
λ = Aλ ⊕ A∗

λ which implies that:

[Aλ ⊕ A∗
λ].η = [A∗

λ].η ⇒ Aλ ⊕ [A∗
λ].η = [A∗

λ].η ⇐⇒ A ⊕ [A∗
λ].η = λ ⊕ [A∗

λ].η.

Hence, it follows that λ is an eigenvalue of matrix A with associated eigenvector v

the ηth column of A∗
λ for all η ∈ N c(A).

Uniqueness. Suppose µ 6= λ satisfies (3.11) and pick any circuit γ = ((η1, η2), (η2, η3),

. . . , (ηl, ηl+1)) ∈ G(A) of length l = |γ|1 with ηl+1 = η1. Then, since aηk+1ηk
6= ǫ with

k ∈ l, it follows that aηk+1ηk
⊕vηk

≤ µ⊕vηk+1
, k ∈ l, where Lemma 37 assures that all

components of v 6= ǫ, but this implies that
l⊗

k=1

aηk+1ηk
⊕ vηk

≤ µ⊗l ⊕
l⊗

k=1

vηk+1
which

in conventional algebra can be written as:
l∑

k=1

aηk+1ηk
+ vηk

≤ µ × l +
l∑

k=1

vηk+1
which

is reduced to
l∑

k=1

aηk+1ηk
≤ µ× l or |γ|W ≤ µ× l ⇒

|γ|W
|γ|l

≤ µ. But since this holds for

every circuit in G(A)µ has to be equal to λ.
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3.2.2. Linear Equations.

Theorem 39. Let A ∈ R
n×n
max and b ∈ R

n
max. If the communication graph G(A) has

maximal average circuit weight less than or equal to e, then x = A∗ ⊗ b solves the

equation x = (A⊗ x) ⊕ b. Moreover, if the circuit weights in G(a) are negative then,

the solution is unique.

Proof. Existence. By Lemma 26 A∗ exists. Substituting the proposed solution into

the equation one gets:

x = (A⊗[A∗⊗b])⊕b = (A⊗A∗⊗b)⊕(e⊕b) = [(A⊗A∗)⊕e]⊗b = [A⊗A∗]⊕b = A∗⊕b.

Uniqueness. Let y be another solution of x = (A ⊗ x) ⊕ b then substituting y =

b ⊕ (A ⊗ y) it follows that: y = b ⊕ (A ⊗ b) ⊕ (A⊗2 ⊗ y), iterating once and once

again, one gets: y = b ⊕ (A ⊗ b) ⊕ (A⊗2 ⊗ b) ⊕ · · · ⊕ (A⊗(k−1) ⊗ b) ⊕ (A⊗k ⊗ y) =

[
k−1⊕
l=0

(A⊗l ⊗ b)] ⊗ (A⊕k ⊕ y). Now, since by assumption circuits have negative weight

the right side of the above equation, as k goes to ∞ tend to E while the left side,

using Lemma 26, tends to A∗ ⊗ b therefore, y = x.

4. GENERALIZED EIGENMODES AND RECURRENCE

EQUATIONS

This section starts by introducing the concept of generalized eigenmode. Once

this has been done, the section continues by discussing, how to compute the gener-

alized eigenmode for recurrence equations for the cases of irreducible and reducible

matrices. Finally, higher order recurrence relations are considered.

Definition 40. Let A ∈ R
n×n
max be a regular matrix, a pair of vectors (η, v) ∈ R

n ×R
n

is called a generalized eigenmode of A if for all k ≥ 0:

(4.1) A ⊕ (k × η + v) = (k + 1) × η + v

Remark 41. It is important to underline that the second vector v in a generalized

eigenmode is not unique. Indeed, if (η, v) is a generalized eigenmode then the pair

(η, ν ⊕ v) ∀ν ∈ R, also works.

Theorem 42. Consider the inhomogeneous recurrence equation

(4.2) x(k + 1) = A ⊗ x(k) ⊕
m⊕

j=1

Bj ⊗ uj(k), k ≥ 0

with A ∈ R
n×n
max irreducible with eigenvalue λ = λ(A), or A ∈ Rmax A = ǫ with λ = ǫ,

{Bj}m
j=1 ∈ R

n×mj
max for some appropriate mj ≥ 1 matrices different from E , uj(k) ∈ R

mj

such that uj(k) = wj(k)⊗ τ⊗k
j , k ≥ 0, with τj ∈ R and wj ∈ R

mj . Denote τ =
⊕
j∈m

τj.

Then, there exists an integer K ≥ 0 and a vector v ∈ R
n such that the sequence

x(k) = v ⊗ µ⊗k with µ = λ ⊗ τ satisfies equation (4.2) for all k ≥ K.
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Proof. The proof is given by considering two possible cases.

Case λ > τ . Since A is irreducible, Theorem 38 and Lemma 37, guarantee the

existence of the eigenvalue λ with associated finite eigenvector v ∈ R
n. Choose v

such that v ⊕ λ >
m⊕

j=1

Bj ⊗ wj , this can always be done since if not, it is possible to

replace v by v ⊗ ρ, ρ an arbitrary but fixed real number which can be picked as big

as desired (see Remark 33). Set µ = λ > τj ∀j ∈ m then, ∀k ≥ 0 it follows that:

v ⊗ µ⊗(k+1) = A ⊗ v ⊗ µ⊗k and since µ⊗(k+1) ≥
m⊕

j=1

Bj ⊗ wj ⊗ τ⊗k
j it implies that

v ⊗ µ⊗(k+1) = A ⊗ v ⊗ µ⊗k ⊕
m⊕

j=1

Bj ⊗ wj ⊗ τ⊗k
j . Therefore, equation (4.2) is satisfied

∀k ≥ 0.

Case λ ≤ τ .

Sub-case (1): A is a matrix. Recall that τ =
⊕
j∈m

τj and assume that the max-

imum is attained by the first r τ ’s, which can always be accomplished by a proper

renumbering of the sequences uj(k), j ∈ m. Now, look at the equation:

(4.3) s = Aτ ⊗ s ⊕
r⊕

j=1

(Bj)τ ⊗ wj,

where Aτ and (Bj)τ , j ∈ m are obtained from their original matrices A and (Bj) by

subtracting τ from all of its finite elements. Because λ ≤ τ , the communication graph

of Aτ only contains circuits with a non-positive weight therefore, from Theorem 39 a

solution v exists, further since (Aτ )
∗ is completely finite (Aτ is strongly connected)

and
r⊕

j=1

(Bj)τ ⊗ wj contains at least one finite element it implies that v is finite i.e.,

v ∈ R
n. But this implies that;

v ⊗ τ = A ⊗ v ⊕
r⊕

j=1

Bj ⊗ wj .

Then, setting µ = τ = τj , j = 1, 2, . . . , r it follows that:

v ⊗ µ⊗(k+1) = A ⊗ v ⊗ µ⊗k ⊕
r⊕

j=1

Bj ⊗ wj ⊗ τ⊗k
j , ∀k ≥ 0

which leads to:

v ⊗ µ⊗(k+1) ≤ A ⊗ v ⊗ µ⊗k ⊕
m⊕

j=1

Bj ⊗ wj ⊗ τ⊗k
j .

However since µ > τj for j = r + 1, r + 2, . . . , m, there exists an integer K ≥ 0, as

large as needed such that ∀k ≥ K v ⊗ µ⊗(k+1) ≥
m⊕

j=r+1

Bj ⊗ wj ⊗ τ⊗k
j . Therefore,

equation (4.2) is satisfied ∀k ≥ K.
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Sub-case (2): A is the scalar ǫ with λ = ǫ. Take v, solution of (4.3), as v =
r⊕

j=1

(Bj)τ ⊗ wj and proceed exactly as it was done in sub-case (1).

Remark 43. Notice that in Theorem 42 equation (4.2) is satisfied for all k ≥ K.

However, in the case where it is possible to reinitialize the sequences uj(k) = wj(k)⊗

τ⊗k
j , k ≥ 0, by redefining the vectors wj for j ∈ m then, it is possible to satisfy

equation (4.2) ∀k ≥ 0. Indeed, just set v = v ⊗ µ⊗K, wj(k) = wj(k) ⊗ τ⊗K
j , j ∈ m.

Then, the new sequences x(k) = v⊗µ⊗k, uj(k) = wj(k)⊗τ⊗k
j j ∈ m solve our problem

∀k ≥ 0.

Now, let us consider the recurrence equation:

(4.4) x(k + 1) = A ⊗ x(k), k ≥ 0

with A reducible and regular. Recalling what was presented in sub-section (3.2) (see

also definition (31)), and using that matrix A is regular, it follows that matrix A can

always be rewritten in its normal form i.e.,

(4.5) A =




A11 A12 · · · · · · A1q

E A22 · · · · · · A2q

E E A33
...

...
...

. . .
. . .

...

E E · · · E Aqq




with the conditions that Aqq is irreducible, that for i ∈ q − 1 either Aii is an irreducible

matrix or is equal to ǫ, and that the Aij matrices are different from E for i, j = i + 1;

i ∈ q. Let the vector x(k) be partitioned according to the normal form given by

equation (4.5) as:

x(k) =




x1(k)

x2(k)
...

xq(k)




where xi(k), i ∈ q are vectors of suitable size. Therefore the recurrence equation

given by equation (4.4) can be written as:

(4.6) x(k + 1) = Aii ⊗ xi(k) ⊕

q⊕

j=1+1

Aij ⊗ xj(k), i ∈ q, k ≥ 0

Then, the next result follows.

Theorem 44. Consider the recurrence equation given by equation (4.6). Assume that

Aqq is irreducible and that for i ∈ q − 1 either Aii is an irreducible matrix or is equal to

ǫ. Assume also, that the Aij matrices are different from E for i, j = i+1; i ∈ q. Then,
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there exist finite vectors v1, v2, . . . , vq of suitable size and scalars ξ1, ξ2, . . . , ξq ∈ R such

that the sequences:

xi(k) = vi ⊗ ξ⊗k
i , i ∈ q

satisfy equation (4.6) for all k ≥ 0. The scalars ξ1, ξ2, . . . , ξq ∈ R are determined by:

ξi =
⊕

j∈Hi

ξj ⊕ λi,

where Hi = {j ∈ q : j > i, Aij 6= E}.

Proof. The proof follows straightforward by first considering the case i = q, for which

the result is immediate, and then proceeding backwards step by step. Using, at each

step, the result given by Theorem 42, whose hypothesis are automatically satisfied.

The fact that the theorem holds ∀k ≥ 0 follows since all the sequences xi(k) ∈ q can

be reinitialized, see Remark 43.

Corollary 45. Let A ∈ R
n×n
max be a reducible and regular matrix, then there exist a

pair of vectors (η, v) ∈ R
n × R

n, a generalized eigenmode, such that for all k ≥ 0:

(4.7) A ⊕ (k × η + v) = (k + 1) × η + v

Proof. From what was discussed above Theorem 44 about reducible and regular ma-

trices, and applying it. The pair η = (ξ1, ξ2, . . . , ξn) ∈ R
n, v = (v1, v2, . . . , vq) ∈ R

n

result to be a generalized eigenmode which satisfies (4.7) for all k ≥ 0.

The result provided by Corollary 45 plays a fundamental role in the proposed

algorithm for reducible matrices, as will be seen in the next section.

Definition 46. Let Am ∈ R
n×n
max for 0 ≤ m ≤ M and x(m) ∈ R

n
max for −M ≤ m ≤ −1;

M ≥ 0. Then, the recurrence equation:

(4.8) x(k) =

M⊕

m=0

Am ⊗ x(k − m); k ≥ 0

is called an Mth order recurrence equation.

Theorem 47. The Mth order recurrence equation, given by equation (4.8), can be

transformed into a first order recurrence equation x(k+1) = A⊗x(k); k ≥ 0 provided

that A0 has circuit weights less than or equal to zero.

Proof. Since by hypothesis, A0 has circuit weights less than or equal to zero, Lemma 26

allows A0 to be written as A∗
0 =

n−1⊕
i=0

A⊗i
0 . Setting b(k) =

M⊕
m=1

Am ⊗ x(k −m) equation

(4.8) reduces to x(k) = A0 ⊗ x(k) ⊕ b(k) which by Theorem 39 can be rewritten as
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x(k) = A∗
0 ⊗ b(k). Finally, defining x̂(k) = (xT (k − 1), xT (k − 2), . . . , xT (k − M))T

and,

Â =




A∗
0 ⊗ A1 A∗

0 ⊗ A2 · · · · · · A∗
0 ⊗ AM

E E · · · · · · E

E E
. . . E

...
. . .

...

E E · · · E E




we get that x̂(k + 1) = Â ⊗ x̂(k); k ≥ 0 as desired.

4.1. Max-Plus Recurrence Equations For Timed Event Petri Nets. With

any timed event Petri net, matrices A0, A1, . . . , AM ∈ N
n × N

n can be defined by

setting [Am]jl = ajl, where ajl is the largest of the holding times with respect to all

places between transitions tl and tj with m tokens, for m = 0, 1, . . . , M , with M

equal to the maximum number of tokens with respect to all places. Let xi(k) denote

the kth time that transition ti fires, then the vector x(k) = (x1(k), x2(k), . . . xm(k))T ,

called the state of the system, satisfies the Mth order recurrence equation:

(4.9) x(k) =
M⊕

m=0

Am ⊗ x(k − m); k ≥ 0

Now, assuming that all the hypothesis of Theorem 47 are satisfied, and setting x̂(k) =

(xT (k), xT (k − 1), . . . , xT (k − M + 1))T , equation (4.9) can be expressed as:

(4.10) x̂(k + 1) = Â ⊗ x̂(k); k ≥ 0

which is known as the standard autonomous equation.

5. AN ALGORITHM FOR COMPUTING GENERALIZED

EIGENMODES OF REDUCIBLE MATRICES

This section illustrates how by means of Theorems 42, 44 and Corollary 45,

an algorithm for computing a generalized eigenmode for reducible matrices can be

proposed. Two numerical examples are included, (see [5]).

Algorithm

1. Take A ∈ R
n×n
max a reducible and regular matrix.

2. Using the material presented in (3.2) bring it to the normal form and write it in

the form of system (4.6).

3. Consider the last equation of system (4.6) i.e., the nth equation, and compute

its eigenvalue λn with associated eigenvector vn, set ξn = λn and j = n.

4. Consider the above next (j−1)th equation, and compute the eigenvalue of matrix

A(j−1)(j−1), called it λj−1.

5. Is λj−1 > ξj, if this is the case go to 6 if not, go to 7.
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6. Set ξj−1 = λj−1 and compute vj−1 according to the first case of the proof of

Theorem 42. Go to 8.

7. Set ξj−1 = ξj and compute vj−1 according to the second case of the proof of

Theorem 42.

8. Decrease j by one. Is j 6= 1 go back to 4 if not finish.

At the end the algorithm provides one pair of vectors η = (ξ1, ξ2, . . . , ξn) ∈ R
n, v =

(v1, v2, . . . , vq) ∈ R
n which result to be a generalized eigenmode of matrix A ∈ R

n×n
max .

Remark 48. Theorem 38 can be used for computing the eigenvalues of the irreducible

matrices {Aii; i ∈ n}. In addition, the power algorithm (see [1]) results of great help

for computing the eigenvector in case it comes from the solution of equation (3.11).

Example 49. Consider the following regular reducible matrix already in its normal

form:

A =




1 2 ε 7

ε 3 5 ε

ε 4 ε 3

ε 2 8 ε




with A11 = 1, and A22 =




3 5 ε

4 ε 3

2 8 ε


.

From A22 we get that λ2 = max{10/3, 11/2, 9/2, 3} = 11/2 = ξ2 and using the

power algorithm or doing algebra that v2 = (20, 20.5, 23). Now, since A11 = 1 this

implies that λ1 = 1 ≤ ξ2 therefore ξ1 = ξ2 = 11/2 and v1 = 24.5 is obtained as the so-

lution of (1⊗v1)⊕22⊕30 = 11/2⊗v1. Therefore, the pair η = (11/2, 11/2, 11/2, 11/2),

v = (24.5, 20, 41/2, 23) results to be a generalized eigenmode. Notice that sub-

tracting 21 to each member of v we get that η = (11/2, 11/2, 11/2, 11/2), v =

(6/2,−1,−1/2, 2) is also a generalized eigenmode

Example 50. Consider the following regular reducible matrix:



ε 0 ε ε ε ε ε ε ε ε

ε ε −3 ε ε ε ε ε ε ε

ε 4 ε 0 ε ε ε ε ε ε

0 ε ε ε ε ε ε ε ε ε

ε 16 ε ε ε −5 ε ε ε ε

ε ε ε ε ε ε 0 ε ε ε

ε ε ε ε 9 ε ε ε ε ε

ε ε ε ε ε ε 1/2 ε ε ε

ε ε ε ε ε 6 ε ε ε ε

9 ε ε ε ε ε ε ε ε ε
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The communication graph G(A) has five maximal strongly connected subgraphs

which implies that its reduced graph, G̃ = (Ñ , D̃) turns out to be defined by:

Ñ = {[1], [5], [8], [9], [10]}, D̃ = {([1], [10]), ([1], [5]), ([5], [8]), ([5], [9])}, where [1] =

{1, 2, 3, 4}, [5] = {5, 6, 7}, [8] = {8}, [9] = {9}, and [10] = {10}. Based on the reduced

graph, after placing the rows and columns of matrix A in the order 8, 9, 5, 6, 7, 10, 1, 2, 3, 4

the following normal form of matrix A is obtained:




ε ε ε ε 1/2 ε ε ε ε ε

ε ε ε 6 ε ε ε ε ε ε

ε ε ε −5 ε ε ε 16 ε ε

ε ε ε ε 0 ε ε ε ε ε

ε ε 9 ε ε ε ε ε ε ε

ε ε ε ε ε ε 9 ε ε ε

ε ε ε ε ε ε ε 0 ε ε

ε ε ε ε ε ε ε ε −3 ε

ε ε ε ε ε 6 ε 4 ε 0

ε ε ε ε ε ε 0 ε ε ε




with A11 = A22 = A44 = ǫ, A33 =




ε −5 ε

ε ε 0

9 ε ε


 and A55 =




ε 0 ε ε

ε ε −3 ε

ε 4 ε 0

0 ε ε ε




.

From A55 we get that λ5 = max{1/2,−3/4} = 1/2 = ξ5 and doing algebra that

v5 = (17/2, 9, 25/2, 8). Now, since A11 = ǫ this implies that λ1 = ǫ ≤ ξ2 therefore

ξ4 = ξ5 = 1/2 and that v1 = 17. Proceeding with A33 we get that λ3 = 4/3 > ξ4

therefore, we obtain that ξ3 = 4/3 and that v3 = (24, 91/3, 95/3), which is obtained

from the solution of A33⊗v3 = λ3⊗v3 and λ3⊗v32
> a38⊗v52

= 25. Iterating one more

time, we get for A22 that ξ2 = 4/3 and v2 = 35. An finally, for A11, ξ1 = 4/3 and v1 =

185/6 Therefore, the pair η = (4/3, 4/3, 4/3, 4/3, 4/3, 1/2, 1/2, 1/2, 1/2, 1/2), v =

(185/6, 35, 24, 91/3, 95/3, 17, 17/2, 9, 25/2, 8) results to be a generalized eigenmode.

6. THE SOLUTION TO THE STABILITY PROBLEM FOR

PARALLEL COMPUTER SYSTEMS MODELED

WITH TIMED PETRI NETS

This section defines what it means for a TPN to be stable, then gathering the

results previously presented in the past sections the solution to the problem is ob-

tained.
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Definition 51. A TPN is said to be stable if all the transitions fire with the same

proportion i.e., if there exists q ∈ N such that

(6.1) lim
k→∞

xi(k)

k
= q, ∀i = 1, . . . , n

This last definition tell us that in order to obtain a stable TPN all the transitions

have to be fired q times. However, it will be desirable to be more precise and know

exactly how many times. The answer to this question is given next.

Lemma 52. Consider the recurrence relation x(k + 1) = A ⊗ x(k), k ≥ 0, x(0) =

x0 ∈ R
n arbitrary. A an irreducible matrix and λ ∈ R its eigenvalue then,

(6.2) lim
k→∞

xi(k)

k
= λ, ∀i = 1, . . . , n

Proof. Let v be an eigenvector of A such that x0 = v then,

x(k) = λ⊗k ⊗ v ⇒ x(k) = kλ + v ⇒
x(k)

k
= λ +

v

k
⇒ lim

k→∞

xi(k)

k
= λ

Now starting with an unstable TPN , collecting the results given by: proposition

(13), what has just been discussed about recurrence equations for TPN at the end

of subsection (4.1) and the previous Lemma 52 plus Theorem 38, the solution to the

problem is obtained.

7. MODELING, STABILITY ANALYSIS AND TIMETABLE DESIGN

FOR PARALLEL COMPUTER SYSTEMS

In this section the modeling, stability analysis and timetable design for parallel

computer systems is addressed. It is only considered the case where there are two

identical processors since the obtained results are straightforwardly extended to the

case with n processors.

Figure 3. Two processors system
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Figure 4. Timed Petri net model

Consider a two processors parallel computer system (Fig. 3) whose TPN model

is depicted in Fig. 4. Where the events (transitions) that drive the system are: q:

problems to be solved, s1, s2: processing starts, d1,d2: the problem has been solved.

The places that represent the states are: A: problems arriving, P: the problems are

waiting to be solved, B1, B2: the problem is being solved, I1, I2: the processors

are idle. The holding times associated to the places A and I1, I2 are Ca and Cd

respectively, (with Ca > Cd). The incidence matrix that represents the PN model is

A =




0 1 0 0 0 0

0 −1 1 −1 0 0

0 −1 0 0 1 −1

0 0 −1 1 0 0

0 0 0 0 −1 1




Therefore since there does not exists a Φ strictly positive m vector such that AΦ ≤ 0

the sufficient condition for stability is not satisfied. Moreover, the PN (TPN) is

unbounded since by the repeated firing of q, the marking in P grows indefinitely.

However, by taking u = [k, k/2, k/2, k/2, k/2]; k > 0 (but unknown) we get that

AT u ≤ 0. Therefore, the PN is stabilizable which implies that the TPN is stable.

Now, let us proceed to determine the exact value of k. From the TPN model we



PARALLEL COMPUTER PROCESSING SYSTEMS 293

obtain that:

A0 =




ε ε ε ε ε

0 ε ε ε ε

0 ε ε ε ε

ε 0 ε ε ε

ε ε 0 ε ε




and A1 =




Ca ε ε ε ε

ε ε ε Cd ε

ε ε ε ε Cd

ε ε ε ε ε

ε ε ε ε ε




and making the required computations that: A∗
0 =




0 ε ε ε ε

0 0 ε ε ε

0 ε 0 ε ε

0 0 ε 0 ε

0 ε 0 ε 0




, leading to:

Â = A∗
0 ⊗ A1 =




Ca ε ε ε ε

Ca ε ε Cd ε

Ca ε ε ε Cd

Ca 0 ε Cd ε

Ca ε ε ε Cd




Therefore, λ(A) = max
p∈C(A)

|p|w
|p|

1

= max{Ca, Cd} = Ca. This means that in order for the

TPN to be stable and work properly the speed at which the two processors work has

to be equal to Ca which is attained by taking k = Ca, i.e., the problem has to be

equally divided between the two processors.

Now, bringing it into its normal form, Â is expressed as:

Â = A∗
0 ⊗ A1 =




ε Ca ε Cd ε

ε Ca ε ε ε

ε Ca ε ε Cd

ε Ca ε Cd ε

ε Ca ε ε Cd




where A11 = ǫ, and A22 =




Ca ε ε ε

Ca ε ε Cd

Ca ε Cd ε

Ca ε ε Cd




.

From A22 we get that λ2 = Ca = ξ2 and doing algebra that v2 = (v, v, v, v), v > 0.

Now, since A11 = ǫ this implies that λ1 = Ca ≤ ξ2 therefore ξ1 = ξ2 = Ca and

v1 = v is obtained as the solution of (Ca ⊗ v) ⊕ (Cd ⊗ v) = Ca ⊗ v1. Therefore,

the pair η = (Ca, Ca, Ca, Ca, Ca), v = (v, v, v, v, v), v > 0 results to be a generalized

eigenmode and since it satisfies equation (4.10) it provides a timetable given by:

x(k) = k × [Ca, Ca, Ca, Ca, Ca]T + [v, v, v, v, v]T , k ≥ 0.
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Remark 53. This case is easily extended to the case with n processors, obtaining

that u = [Ca, Ca/n, Ca/n, . . . , Ca/n], η = (Ca, Ca, . . . , Ca) and v = (v, . . . v), v > 0.

Notice that it is possible to consider distinct Cd′s and play with different values for

Ca and Cd′s obtaining different types of behaviors.

8. CONCLUSIONS

The main contribution of this paper consists in combining Lyapunov theory with

max-plus algebra to give a complete and precise solution to the stability and timetable

design problem for parallel computer systems modeled with timed Petri nets. The

presented methodology applied to parallel computer systems is new and results to be

innovative.
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