A NUMERICAL INVESTIGATION OF THE ROOTS OF THE SECOND KIND λ -BERNOULLI POLYNOMIALS

H. Y. LEE, N. S. JUNG, AND C. S. RYOO

Department of Mathematics Hannam University, Daejeon 306-791, Korea

ABSTRACT. In this paper we consider a new type of the Apostol Bernoulli numbers and polynomials. We call them the second kind λ -Bernoulli numbers $B_{n,\lambda}$ and polynomials $B_{n,\lambda}(x)$. We also observe the behavior of complex roots of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$, using numerical investigation. Finally, we give a table for the solutions of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$.

AMS (MOS) Subject Classification. 11B68, 11S40, 11S80

1. INTRODUCTION

Several mathematicians have studied the Bernoulli numbers and polynomials, Euler numbers and polynomials, Genocchi numbers and polynomials, q-Bernoulli numbers and polynomials (see [1-16]). These numbers and polynomials possess many interesting properties and arising in many areas of mathematics and physics. In this paper, we introduce the second kind λ -Bernoulli numbers $B_{n,\lambda}$ and polynomials $B_{n,\lambda}(x)$. In order to study the second kind λ -Bernoulli numbers $B_{n,\lambda}$ and polynomials $B_{n,\lambda}(x)$, we must understand the structure of the second kind λ -Bernoulli numbers $B_{n,\lambda}$ and polynomials $B_{n,\lambda}(x)$. Therefore, using computer, a realistic study for the second kind λ -Bernoulli numbers $E_{n,q}$ and polynomials $B_{n,\lambda}(x)$ is very interesting. It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ in complex plane. The outline of this paper is as follows. We introduce the second kind λ -Bernoulli numbers $B_{n,\lambda}$ and polynomials $B_{n,\lambda}(x)$. In section 2, we construct the λ -Bernoulli numbers and polynomials. Some interesting results are obtained. In Section 3, we describe the beautiful zeros of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ using a numerical investigation. Finally, we investigate the roots of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$. Also we carried out computer experiments for doing demonstrate a remarkably regular structure of the complex roots of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$. Throughout this paper, we always make use of the following notations: $\mathbb{N} = \{1, 2, 3, ...\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers, \mathbb{C} denotes the set of complex numbers.

The classical Bernoulli polynomials $B_n(x)$ are usually defined by means of the following generating functions:

$$\frac{t}{e^t - 1}e^{xt} = \sum_{n=0}^{\infty} B_n(x)\frac{t^n}{n!} \qquad (|z| < 2\pi)$$

The classical Bernoulli numbers $B_n := B_n(0)$.

We begin by recalling here Apostol's definitions as follows:

Definition 1 (Apostol [1]). The Apostol-Bernoulli polynomials $B_n(x; \lambda)$ are defined by means of the generating function:

$$\frac{t}{\lambda e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x;\lambda) \frac{t^n}{n!} \qquad (|t + \log \lambda| < 2\pi)$$
(1)

with of course,

 $B_n(x) = B_n(x; 1)$ and $B_n(\lambda) := B_n(0; \lambda)$,

where $B_n(\lambda)$ denotes the so-called λ -Bernoulli numbers.

2. THE SECOND KIND λ -BERNOULLI NUMBERS AND POLYNOMIALS

In this section, we introduce the second kind λ -Bernoulli numbers $B_{n,\lambda}$ and polynomials $B_{n,\lambda}(x)$ and investigate their properties. Based on Apostol's idea, it follows that we define the second kind λ -Bernoulli polynomials and numbers.

Definition 2. The second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ and numbers $B_{n,\lambda}$ are defined by means of the generating functions

$$\frac{2te^t}{\lambda e^{2t} - 1}e^{xt} = \sum_{n=0}^{\infty} B_{n,\lambda}(x)\frac{t^n}{n!}, \qquad (|2t + \log\lambda| < 2\pi), \tag{2}$$

and

$$\frac{2te^t}{\lambda e^{2t} - 1} = \sum_{n=0}^{\infty} B_{n,\lambda} \frac{t^n}{n!},\tag{3}$$

respectively.

Setting $\lambda = 1$ in (2) and (3), we can obtain the corresponding definitions for the second kind Bernoulli polynomials $B_n(x)$ and numbers B_n respectively. More studies and results in this subject we may see reference [13].

By simple calculation, the second kind λ -Bernoulli polynomials tune into the following generating function:

$$\sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!} = \frac{2te^t}{\lambda e^{2t} - 1} e^{xt} = -2t \sum_{n=0}^{\infty} \lambda^n e^{(2n+1+x)t}$$
(4)

Setting x = 0 in above generating function, we can obtain the corresponding definitions for the second kind λ -Bernoulli numbers as following generating function:

$$\sum_{n=0}^{\infty} B_{n,\lambda} \frac{t^n}{n!} = -2t \sum_{n=0}^{\infty} \lambda^n e^{(2n+1)t}$$
(5)

By using computer, the second kind λ -Bernoulli numbers $B_{n,\lambda}$ can be determined explicitly. A few of them are

$$B_{0,\lambda} = 0,$$

$$B_{1,\lambda} = \frac{2}{-1+\lambda},$$

$$B_{2,\lambda} = \frac{4}{-1+\lambda} - \frac{8\lambda}{(-1+\lambda)^2},$$

$$B_{3,\lambda} = \frac{6}{-1+\lambda} - \frac{48\lambda}{(-1+\lambda)^2} + \frac{48\lambda^2}{(-1+\lambda)^3},$$

$$B_{4,\lambda} = \frac{8}{-1+\lambda} - \frac{208\lambda}{(-1+\lambda)^2} + \frac{576\lambda^2}{(-1+\lambda)^3} - \frac{384\lambda^3}{(-1+\lambda)^4}.$$

By the above definition, we obtain

$$\sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!} = \frac{2te^t}{\lambda e^{2t} - 1} e^{xt} = \sum_{n=0}^{\infty} B_{n,\lambda} \frac{t^n}{n!} \sum_{k=0}^{\infty} x^k \frac{t^k}{k!}$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \binom{n}{k} B_{k,\lambda} x^{n-k}\right) \frac{t^n}{n!}.$$
(6)

By using comparing coefficients of $\frac{t^n}{n!}$, we have the following theorem.

Theorem 3. For any positive integer n, we have

$$B_{n,\lambda}(x) = \sum_{k=0}^{n} \binom{n}{k} B_{k,\lambda} x^{n-k}.$$
(7)

The second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ can be determined explicitly. A few of them are

$$\begin{split} B_{0,\lambda}(x) &= 0, \\ B_{1,\lambda}(x) &= \frac{2}{-1+\lambda}, \\ B_{2,\lambda}(x) &= \frac{4}{-1+\lambda} - \frac{8\lambda}{(-1+\lambda)^2} + \frac{4x}{-1+\lambda}, \\ B_{3,\lambda}(x) &= \frac{6}{-1+\lambda} - \frac{48\lambda}{(-1+\lambda)^2} + \frac{48\lambda^2}{(-1+\lambda)^3} + \frac{12x}{-1+\lambda} - \frac{24\lambda x}{(-1+\lambda)^2} + \frac{6x^2}{-1+\lambda} \end{split}$$

For n = 1, ..., 10, we can draw a plot of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$, respectively. This shows the ten plots combined into one. We display the shape of $B_{n,\lambda}(x)$, $\lambda = -1/2$, $-6 \le x \le 6$ (Figure 1).

FIGURE 1. Curve of $B_{n,\lambda}(x)$

The following basic properties of the second kind λ - Bernoulli polynomials $B_{n,\lambda}(x)$ are derived from (2), (3), (4), and (5). We, therefore, choose to omit the details involved.

Proposition 4 (Difference equation).

$$\lambda B_{n,\lambda}(x+2) - B_{n,\lambda}(x) = 2n(x+1)^{n-1}.$$

Proposition 5 (Differential relation).

$$\frac{\partial}{\partial x}B_{n,\lambda}(x) = nB_{n-1,\lambda}(x).$$

Proposition 6 (Integral formula).

$$\int_{a}^{b} B_{n-1,\lambda}(x) dx = \frac{1}{n} \left(B_{n,\lambda}(b) - B_{n,\lambda}(a) \right)$$

Proposition 7 (Complement formula).

$$B_{n,\lambda}(x) = \frac{(-1)^n}{\lambda} B_{n,\lambda^{-1}}(-x).$$

Since

$$\sum_{n=0}^{\infty} B_{n,\lambda}(x+y) \frac{t^n}{n!} = \frac{2te^t}{\lambda e^{2t} - 1} e^{(x+y)t}$$
$$= \sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!} \sum_{k=0}^{\infty} y^n \frac{t^k}{k!}$$
$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \binom{n}{k} B_{k,\lambda}(x) y^{n-k}\right) \frac{t^n}{n!},$$

we have the following addition theorem.

Theorem 8. The second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ satisfies the following relation:

$$B_{n,\lambda}(x+y) = \sum_{k=0}^{n} \binom{n}{k} B_{k,\lambda}(x) y^{n-k}.$$

It is easy to see that

$$\sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!} = \frac{2te^t}{\lambda e^{2t} - 1} e^{xt} = \frac{2t}{\lambda^m e^{2mt} - 1} e^{(1+x)t} \sum_{k=0}^{m-1} (\lambda e^{2t})^k$$
$$= \sum_{k=0}^{m-1} \lambda^k \frac{2t}{\lambda^m e^{2mt} - 1} e^{(2k+1+x)t}$$
$$= \frac{1}{m} \sum_{k=0}^{m-1} \lambda^k \sum_{n=0}^{\infty} B_{n,\lambda^m} \left(\frac{2k+1+x-m}{m}\right) \frac{(mt)^n}{n!}$$
$$= \sum_{n=0}^{\infty} \left(m^{n-1} \sum_{k=0}^{m-1} \lambda^k B_{n,\lambda^m} \left(\frac{2k+1+x-m}{m}\right) \right) \frac{t^n}{n!}.$$

Hence we have the below distribution theorem.

Theorem 9. For $n \in \mathbb{N}$, we have

$$B_{n,\lambda}(x) = m^{n-1} \sum_{k=0}^{m-1} \lambda^k B_{n,\lambda^m} \left(\frac{2k+1+x-m}{m} \right)$$

By using generating functions, we also obtain the following λ -odd sum.

Theorem 10. For $n \in \mathbb{N}$, we have

$$\sum_{j=0}^{m-1} \lambda^j (2j+1)^{n-1} = \frac{\lambda^m B_{n,\lambda}(2m) - B_{n,\lambda}}{2n}$$

3. ZEROS OF THE SECOND KIND λ -BERNOULLI POLYNOMIALS $B_{n,\lambda}(x)$

In this section, we investigate the zeros of the second λ -Bernoulli polynomials $B_{n,\lambda}(x)$. We investigate the beautiful zeros of the $B_{n,\lambda}(x)$ by using a computer. We plot the zeros of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ for $n = 15, 20, 25, 30, \lambda = -1/2$ and $x \in \mathbb{C}$ (Figure 2).

In Figure 2 (top-left), we choose n = 15 and $\lambda = -1/2$. In Figure 2 (top-right), we choose n = 20 and $\lambda = -1/2$. In Figure 2 (bottom-left), we choose n = 25 and $\lambda = -1/2$. In Figure 2 (bottom-right), we choose n = 30 and $\lambda = -1/2$.

We plot the zeros of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ for n = 30, $\lambda = -5, -10, -20, -30$ and $x \in \mathbb{C}$ (Figure 3). In Figure 3 (top-left), we choose n = 30and $\lambda = -5$. In Figure 3 (top-right), we choose n = 30 and $\lambda = -10$. In Figure 3

FIGURE 2. Zeros of $B_{n,\lambda}(x)$ for n = 15, 20, 25, 30

(bottom-left), we choose n = 30 and $\lambda = -20$. In Figure 3 (bottom-right), we choose n = 30 and $\lambda = -30$.

The real zeros of $B_{30,\lambda}(x)$ for $\lambda \to -1$ structure are presented (Figure 4). Stacks of zeros of $B_{n,-1/2}(x)$ for $1 \le n \le 30$ from a 3-D structure are presented (Figure 5). Plot of real zeros of $B_{n,\lambda}(x)$ for $1 \le n \le 30$ and $\lambda = -2, -1/2$ structure are presented (Figure 6). In Figure 6 (left), we choose $1 \le n \le 30$ and $\lambda = -2$. In Figure 6 (right), we choose $1 \le n \le 30$ and $\lambda = -1/2$. Plot of real zeros of $B_{n,\lambda}(x)$ for $\lambda \to -1, 1 \le n \le 30$ structure are presented (Figure 7). Our numerical results for approximate solutions of real zeros of $B_{n,w}(x)$ are displayed (Tables 1, 2).

FIGURE 3. Zeros of $B_{n,\lambda}(x)$ for $\lambda = -5, -10, -20, -30$

	$\lambda = -2$		$\lambda = -1/2$	
n	real zeros	complex zeros	real zeros	complex zeros
2	1	0	1	0
3	2	0	2	0
4	3	0	3	0
5	2	2	2	2
6	3	2	3	2
7	4	2	4	2
8	3	4	3	4
9	4	4	4	4
10	3	6	3	6
11	4	6	4	6
12	5	6	5	6
13	6	6	6	6
14	5	8	5	8

Table 1. Numbers of real and complex zeros of $B_{n,\lambda}(x)$

FIGURE 4. Real zeros of $B_{n,\lambda}(x)$ for $\lambda \to -1$

Table 2. Approximate solutions of $B_{n,\lambda}(x) = 0, x \in \mathbb{R}$

n	x		
2	-0.33333		
3	-0.6095, 1.276		
4	-1.401, 0.560, 1.841		
5	-2.055, -0.309		
6	-2.573, -1.171, 0.829		
7	-2.92, -2.056, -0.0320, 1.94		
8	-0.894, 1.106, 2.68		
9	-1.756, 0.244, 2.26, 3.0		
10	-2.61, -0.618, 1.38		
11	-3.39, -1.479, 0.521, 2.5		
12	-4.01, -2.34, -0.341, 1.66, 3.4		

We observe a remarkably regular structure of the complex roots of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$. We hope to verify a remarkably regular structure of the complex roots of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ (Table 1). Next, we calculated an approximate solution satisfying $B_{n,\lambda}(x)$, $\lambda = -2, x \in \mathbb{R}$. The results are given in Table 2.

FIGURE 5. Stacks of zeros of $B_{n,-1/2}(x)$ for $1 \le n \le 30$

FIGURE 6. Real zeros of $B_{n,\lambda}(x)$ for $1 \le n \le 30$

The plot above shows $B_{n,\lambda}(x)$ for real $-7/10 \le \lambda \le 7/10$ and $-5 \le x \le 5$, with the zero contour indicated in black (Figure 8). In Figure 8 (top-left), we choose n = 2. In Figure 8 (top-right), we choose n = 3. In Figure 8 (bottom-left), we choose n = 4. In Figure 8 (bottom-right), we choose n = 5.

4. DIRECTIONS FOR FURTHER RESEARCH

In the special case, $\lambda = 1$, $B_n(x)$ are called the second Bernoulli polynomials (see [13]).

FIGURE 7. Real zeros of $B_{n,\lambda}(x)$ for $\lambda \to -1$ and $1 \le n \le 30$

FIGURE 8. Zero contour of $B_{n,\lambda}(x)$

Since

$$\sum_{n=0}^{\infty} B_n(-x) \frac{(-t)^n}{n!} = \frac{-2te^{-t}}{e^{-2t} - 1} e^{(-x)(-t)} = \frac{2te^t}{e^{2t} - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!},$$

we have

$$B_n(x) = (-1)^n B_n(-x)$$
 for $n \in \mathbb{N}$.

Prove that $B_n(x), x \in \mathbb{C}$, has Re(x) = 0 reflection symmetry in addition to the usual Im(x) = 0 reflection symmetry analytic complex functions. The obvious corollary is that the zeros of $E_n(x)$ will also inherit these symmetries.

If
$$B_n(x_0) = 0$$
, then $B_n(-x_0) = 0 = B_n(x_0^*) = B_n(-x_0^*)$.

* denotes complex conjugation.

The question is: what happens with the reflection symmetry (3.1), when one considers the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$?

Finally, we shall consider the more general problems. How many roots does $B_{n,\lambda}(x)$ have in general? This is an open problem. Prove or disprove: $B_{n,\lambda}(x) = 0$ has n-1 distinct solutions. Find the numbers of complex zeros $C_{B_{n,\lambda}(x)}$ of $B_{n,\lambda}(x)$, $\operatorname{Im}(x) \neq 0$. Since n-1 is the degree of the polynomial $B_{n,\lambda}(x)$, the number of real zeros $R_{B_{n,\lambda}(x)}$ lying on the real plane $\operatorname{Im}(x) = 0$ is then $R_{B_{n,\lambda}(x)} = n - 1 - C_{B_{n,\lambda}(x)}$ where $C_{B_{n,\lambda}(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{B_{n,\lambda}(x)}$ and $C_{B_n\lambda(x)}$. Observe that the structure of the zeros of the second kind Genocchi polynomials $G_n(x)$ resembles the structure of the zeros of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ as $\lambda \to -1$ (see Figures 3, 4, 6, 7, [12]). Find the equation of envelope curves bounding the real zeros lying on the plane. The theoretical prediction on the zeros of $B_{n,\lambda}(x)$ is await for further study. We plot the zeros of $B_{n,\lambda}(x)$, respectively (Figures 2–8). These figures give mathematicians an unbounded capacity to create visual mathematical investigations of the behavior of the roots of the $B_{n,\lambda}(x)$. Moreover, it is possible to create a new mathematical ideas and analyze them in ways that generally are not possible by hand. The authors have no doubt that investigation along this line will lead to a new approach employing numerical method in the field of research of the second kind λ -Bernoulli polynomials $B_{n,\lambda}(x)$ to appear in mathematics and physics. The reader may refer to [11–15] for the details.

REFERENCES

- [1] T. M. Apostal, On the Lerch Zeta function, Pacific J. Math., 1: 161–167, 1951.
- [2] T. Kim, Note on the Euler q-zeta functions, J. Number Theory, 129:1798–1804, 2007.
- [3] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14:15–27, 2007.
- [4] T. Kim, On p-adic interpolating function for q-Euler numbers and its derivatives, J. Math. Anal. Appl., 339: 598–608, 2007.
- [5] T. Kim, On Euler-Barnes multiple zeta function, Russ. J. Math. phys., 10:261-267, 2003.
- [6] T. Kim, On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys., 15:481–486, 2008.
- [7] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9:288–299, 2002.

- [8] T. Kim, L. C. Jang and H. K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad., 77(A):139–141, 2001.
- [9] M-S. Kim, J-W. Son, Analytic properties of the q-volkenborn integral on the ring of p-adic integres, Bull. Korean Math. Soc., 44:1–12, 2007.
- [10] G. Liu, Congruences for higher-order Euler numbers, Proc. Japan Acad., 82(A):30–33, 2006.
- [11] C. S. Ryoo, T. Kim and R. P. Agarwal, A numerical investigation of the roots of q-polynomials, Inter. J. Comput. Math., 83:223–234, 2006.
- [12] C. S. Ryoo, A note on the second kind Genocchi polynomials, J. Comput. Anal. Appl., 13:986– 992, 2011.
- [13] C. S. Ryoo, Distribution of the roots of the second kind Bernoulli polynomials, J. Comput. Anal. Appl., 13:971–976, 2011.
- [14] C. S. Ryoo, A numerical computation on the structure of the roots of q-extension of Genocchi polynomials, Applied Mathematics Letters, 21:348–354, 2008.
- [15] C. S. Ryoo, Calculating zeros of the q-Euler polynomials, Proc. Jangjeon Math. Soc., 12:253– 259, 2009.
- [16] Y. Simesk, V. Kurt and D. Kim, New approach to the complete sum of products of the twisted (h, q)-Bernoulli numbers and polynomials, J. Nonlinear Math. Phys., 14:44–56, 2007.